Constraint Logic Programming

Marco Gavanelli! and Francesca Rossi?

! Dipartimento di Ingegneria-Universita di Ferrara
2 Dipartimento di Matematica Pura e Applicata - Universita di Padova

Abstract. Constraint Logic Programming (CLP) is one of the most
successful branches of Logic Programming; it attracts the interest of the-
oreticians and practitioners, and it is currently used in many commercial
applications. Since the original proposal, it has developed enormously:
many languages and systems are now available either as open source
programs or as commercial systems.

Also, CLP has been one of the technologies able to recruit researchers
from other communities to the declarative programming cause. Current
CLP engines include technologies and results developed in other commu-
nities, which themselves discovered logic as an invaluable tool to model
and solve real-life problems.

1 The CLP Paradigm

Constraint Logic Programming (CLP) [7] represents a successful attempt to
merge the best features of logic programming (LP) and constraint solving.

Constraint solving [127,[6,56,B1] includes a variety of expressive modelling
frameworks and efficient solving tools for real-life problems that can be de-
scribed via a set of variables and constraints over them. A constraint is just
a restriction imposed over the combination of values of some variables of the
problem. Solving a problem with constraints means finding a way to assign val-
ues to all its variables such that all constraints are satisfied. Constraint solving
methods have been successfully applied to many application domains, such as
scheduling, planning, resource allocation, vehicle routing, computer networks,
and bioinformatics [137,[127,51].

Embedding the notion of constraint into a high-level programming language
allows for a more flexible and practical constraint processing environment, where
constraints can be represented as formulae and can be incrementally accumu-
lated. Moreover, the presence of constraints in a programming language usually
augments its expressive power, in the sense that some complex relations can be
defined easily by means of constraints, and there are also efficient techniques to
prove them.

For these reasons, constraints have been embedded in many programming
environments, but some are more suitable than others. For example, the fact
that constraints can be seen as relations or predicates, that constraint solving
can be seen as a generalized form of unification, that their conjunction can be
seen as a logical and, and that backtracking search is the base methodology to

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 64-[86] 2010.
© Springer-Verlag Berlin Heidelberg 2010

Constraint Logic Programming 65

solve them, makes them very compatible with logic programming, which is based
on predicates, unification, logical conjunctions, and depth-first search.

These observations led to the development of the CLP paradigm, where con-
straints are embedded in the logic programming paradigm. The main goal is to
maintain a declarative programming paradigm while increasing expressivity and
efficiency via the use of specific constraint sorts and algorithms.

The first CLP language was Prolog IT [42], designed by Colmerauer in the early
80’s. Prolog II could treat term equations like Prolog, but in addition could also
handle term disequations. After this, Jaffar and Lassez observed that both term
equations and disequations were just a special form of constraints, and developed
the concept of a constraint logic programming scheme in 1987 [99].

Syntactically, constraints are added to logic programming by considering a
specific constraint sort (e.g., linear equations over the reals) and then allowing
constraints of this type in the body of the usual logic programming clauses.
Beside the classical resolution engine of logic programming, a (complete or in-
complete) constraint solving system is added, able to check the consistency of
constraints of the considered sort. Moving from LP to CLP, the concept of uni-
fication is generalized to constraint solving: the relationship between a goal and
a clause (to be used in a resolution step) can be described not only via term
equations but via more general statements, i.e., constraints. This allows for a
more general and flexible way to control the flow of the computation. Also, the
presence of an underlying constraint solver, usually based on incomplete con-
straint propagation of some sort, allows one to alternate backtracking search (as
in classical LP) with efficient constraint propagation, thus generating a more
efficient solver, that is nevertheless complete, being based on systematic search.

More precisely, a CLP clause is just like an LP clause, except that its body
may contain also constraints of the considered sort. For example, if we can use
linear inequations over the reals, a CLP clause could be:

p(X,¥) :- X < Y+1, q(X), r(X,Y,Z).

Logically speaking, this clause states that p(X,Y) is true if q(X) and r(X,Y,Z)
are true, and if the value of x is smaller than that of y + 1.

From the operational point of view, in an LP resolution step, we have to check
the existence of a most general unifier between the selected subgoal and the head
of a clause. In CLP, instead, we also have to check the consistency of the current
set of constraints (called the constraint store) with the constraints in the body
of the clause. Thus two solvers are involved: unification, as usual in LP, and the
specific constraint solver for the constraints in use. To make it more efficient,
this constraint solver may be not complete, that is, it may fail to discover some
inconsistencies.

While in LP a computation state consists of a goal and a substitution, in
CLP we have a goal and a constraint store. While in LP we just accumulate
substitutions during a computation, in CLP we also accumulate constraints.
Given a state (G, S), where G is the current goal (the resolvent) and S is the
current constraint store, assume G consists of an atom A (that we want to
rewrite) and a rest R, i.e., G = (A, R). Then, at each step:

66 M. Gavanelli and F. Rossi

— if A is a constraint, A is added to .S and its consistency is checked through a
transition that checks if consistent(AAS); if it is, the new state is (R, prop(SA
A)), where prop(C) is the result of applying some constraint propagation
algorithm (like arc-consistency) to the constraint store C

— if instead A is a literal, and there is a clause H : —B with the same head-
predicate as A, then we add the constraint A = H to the constraint store,
check its consistency, and replace A with B in the resolvent: the new goal is
then ((B, R),prop(S A {A = H})).

A CLP computation is successful if there is a way to get from the initial state
(G, true) to the goal (G’,S), where G’ is the empty goal and S is satisfiable.
Derivation trees are defined as in LP, except that each node in the tree now
represents both the current goal and the current constraint store. Also, in prac-
tical CLP systems, the usual depth-first Prolog traversal mode is retained, with
subgoals selected from left to right, and clauses from the first to the last one.
Early detection of failing computations is achieved by checking the consistency
of the current constraint store. At each node, the underlying constraint system
is automatically invoked (via function prop above) to check consistency and the
computation along this path continues only if the check is successful (although
the check itself could be incomplete). Otherwise, backtracking is performed.
Although CLP significantly extends LP in expressive power and application
domains, it maintains its semantic properties, such as the existence of equivalent
operational, model-theoretic, and fixpoint semantics [99]. Several semantics, de-
scribing different observable properties of CLP programs, have been presented
in the literature, with significant contributions from Italian researchers [84,[94]
52,7443, [TT5,[19]. Properties of such semantics, such as fully abstraction, com-
positionality, and correctness, have been studied in depth. The power of CLP
has also been exploited to treat negation in LP, by allowing constraints that are
equalities or inequalities over the Herbrand domain [29]. Also, constraint solving
in LP was compared with the equivalent notions in automated deduction [8].
Finally, abstract interpretation has been applied to CLP [I1], but we will not
discuss the issue because it is subject of another chapter of this book [59].

2 Constraint Sorts

CLP is not a programming language, but a programming paradigm, which is
parametric with respect to the class (sort) of constraints used in the language.
Working with a particular CLP language means choosing a specific class of con-
straints (for example, finite domains, linear, or arithmetic) and a suitable con-
straint system for that class. Notice also that unification is not replaced, rather it
is assisted by the specific constraint solver, since every CLP language also needs
to perform usual LP-style unification over its variables.

Denoting a CLP language over a constraint class X as CLP(X), we can say
that logic programming is just CLP(Trees), where Trees identifies the class of
term equalities, with the unification algorithm to solve them. Other examples
of instances of the CLP scheme are Prolog III [41], that treats constraints over

Constraint Logic Programming 67

terms, strings, booleans, and real linear arithmetic, the language CLP(R) [100],
that works with both terms and arithmetic constraints over the reals.

The possibility to instantiate the CLP scheme with many constraint sorts is
one of the features that made CLP successful, since in this way the variety of
solvers added to a LP language becomes almost unlimited (e.g., [I10]).

2.1 Finite Domains

A popular class of constraints used with the CLP scheme is the class of con-
straints with variables ranging over finite domains. Constraint logic program-
ming using finite domain constraints is a useful language scheme, referred to as
CLP(FD). Its applicability is very large, since many real-life problems can be
modelled via imposing a set of constraints over variables with finite domains (for
example, the wide class of Constraint Satisfaction Problems [56]). Examples can
be found in configuration, scheduling, and resource allocation [56L127,12,5T].

Finite domain constraints, as used within CLP languages, are usually intended
to be arithmetic constraints over finite integer domain variables. Thus a CLP(FD)
language needs a constraint system which is able to perform consistency checks
and projection over this kind of constraints. Usually, the consistency check is based
on some kind of constraint propagation, such as arc-consistency [105], some weaker
version, like bound-consistency [20], or, more rarely, path-consistency [117] (see
also Section B]).

Many CLP(FD) languages or environments have been developed, either in
academic or commercial environments. Constraint logic programming over finite
domains was first implemented in the late 80’s by Pascal Van Hentenryck [135]
within the language CHIP. Since then, more sophisticated constraint propagation
algorithms have been developed and added to more recent CLP(FD) languages,
like ECLPS® [37], GNU Prolog [60], CIAO [32], B-Prolog [141], SWI-Prolog [139]
and SICStus Prolog [35].

One of the main features of CLP(FD) languages is that they have a specific
mechanism for defining the initial finite domains of the variables: usually as an
interval over the integers. For example, a typical CLP(FD) syntax to say that
the domain of variable contains all integers between 1 and 10is X in [1..10],
or X::[1,10], or fd_domain(X,1,10).

Another feature of all CLP(FD) languages is the use of a built-in predicate
called labeling defined over a list of variables, and which finds values for them
such that all constraints in the current store are satisfied. The labeling pred-
icate provides a mechanism to generate solutions, that is, variable assignments
that satisfy all accumulated constraints. More precisely, this predicate triggers
backtracking search over a set of variables. For example, the following clause
defines a problem with three finite domain variables (z, y, and z), each with
domain containing the integers from 1 to 10, and sets a constraint over them
(z+y = 9—2). After this, it triggers backtracking search via predicate labeling:

p(X,Y,Z) :- [X,Y,Z]::[1,10], X + Y = 9 - Z, labeling([X,Y,Z]).

68 M. Gavanelli and F. Rossi

The result of executing the goal : - p(X,Y,Z) . is any instantiation of the three
variables over their domains which satisfies the constraint x + y = 9 — z. No-
tice that without labeling, this same goal would return just the new domains
obtained after applying constraint propagation (together with the constraint
store). E.g., running this goal in the CLP(FD) language GNU Prolog [40] re-
turns the answer [X,Y,Z]:[1,7], meaning that the domains have been reduced
from [1..10] to [1..7] via constraint propagation. The clause above presents the
typical shape of a CLP(FD) program: first the variable domains are specified,
then the constraints are imposed, and finally the backtracking search is invoked
via a labeling predicate. A CLP(FD) program can cousist of many clauses, but
the overall structure of the program always reflects this order, which refers to a
methodology called constrain and generate, where first variables are constrained
and only later (when the domains are smaller) backtracking search is invoked.
This corresponds to applying constraint propagation prior to search and there-
fore avoiding early some dead-ends.

In many CLP(FD) systems, arc-consistency is considered too expensive: for
each binary constraint one should (in general) check if for each domain element
there exists a support in the other domain. So, for each constraint involving two
variables with d elements in the domains, one has to do O(d?) constraint checks.
Since constraints are many, and arc-consistency propagation can wake many
times the same constraint, a quicker algorithm is often adopted, at the expenses
of a lower pruning. Bound consistency considers only the bounds (minimum
and maximum values) of the domains, so the number of checks is drastically
reduced. This means that, e.g., the propagation of the X = 2Y constraint will
not remove all the odd values from the domain of X, but will have to perform
only 4 checks. A powerful feature of CLP(FD) is that for each constraint one
can have a different propagation algorithm: if we know an efficient algorithm to
perform arc-consistency for a specific constraint, we can use it, even if for other
constraints the solver performs only bound consistency.

For example, consider the goal A :: [-1,0,1], B :: [-1,1], C :: [0,1], A = B,
A? < C. If all the constraints have bound-consistency propagation, no pruning
occurs, in fact all the extreme values in each domain are consistent with some
value in each other domain. On the other hand, arc-consistency propagation for
the equality constraint is very simple: one has to compute the intersection of the
two domains, which has linear complexity, instead of the expensive O(d?) of the
general case. By applying arc-consistency to the A = B constraint we can remove
value 0 from the domain of A. Now, the bound-consistency propagation of A2 < C
detects that the value 0 in the domain of C' is no longer supported and removes
it, implicitly assigning 1 to C. So, by strengthening the propagation of a single
constraint (in the example, the equality constraint), we can propagate removals
also by constraints with a weak bound-consistency propagation.

Global constraints are non-binary constraints that appear often in applica-
tions and for which specialized constraint propagation methods are developed.
Sometimes those constraints are logically equivalent to the conjunction of a set of
binary constraints, but global constraint typically perform stronger propagation

Constraint Logic Programming 69

than applying standard arc-consistency to many binary constraints. A typical
example is the alldifferent constraint [I36], which requires that n variables
have mutually different values. Although this constraint can be defined with a
binary not-equal constraint for each pair of variables, such a representation does
not allow for much domain pruning by arc-consistency. Since such a constraint
appears very often, it is worthwhile to strengthen its propagation method by em-
ploying an ad hoc filtering algorithm. The concept of arc-consistency was suitably
extended for non-binary constraints and named Generalized Arc-Consistency
(GAC). Most current CLP languages are equipped with a rich taxonomy of global
constraints. During a computation, the current constraint store in a CLP com-
putation may contain both binary and global constraints such as alldifferent.
At each step, when constraint propagation is performed, each constraint prop-
agates with its own algorithm, and achieves arc or bound-consistency. Not all
non-binary constraints have a specialized constraint propagation algorithm, just
those that occur more frequently in applications.

Other logic languages, such as Answer Set Programming (ASP) [27], address
similar types of problems addressed by CLP(FD); there are works comparing
the two approaches [63,[109], and also integrating the two [15]. We will not give
more details on ASP, since it is the subject of another chapter of this book [27].

2.2 Sets

Various Italian researchers studied the integration of sets into logic programming.
Sets are widely used in mathematics to define new objects, and they allow for
a natural representation of concepts in Al and in software engineering. One
of the languages that integrate sets into logic programming is {log} [64], that
later evolved into the language CLP(SET) [65]. In CLP(SET), unification is
extended to deal with variables representing sets and set objects. Prolog users
often represent collections of values as lists, but this is insufficient when one needs
a set semantics. Sets intrinsically remove symmetries (see also Section [£.2)), since
{1,2} and {2,1} are the same set, while for lists [1,2] and [2,1] represent different
terms (i.e., they do not unify). In CLP(SET), {1,2} = {2,1} succeeds, as well as
{1,2,3,2} = {3,2,1,1}; moreover, one can have variables and non-ground terms as
elements of sets, so the unification {p(X), p(2)} = {Y'} succeeds, giving Y = p(2)
and X = 2. CLP(SET) supports sets, possibly partially specified and nested like
e.g. {X,{0}} UY. Moreover, set unification and set constraint solving has been
analysed in a modular way so as to easily replace sets with multi sets (and other
similar data structures)—see e.g. [67,66].

CLP(SET) has been used for various applications, among which to represent
actions [124], and to implement abductive reasoning [89] (see also Section B.3).
Other efforts tried to integrate reasoning on sets with the classical CLP(FD). In
one case the starting point was a visual search application [45]. Visual search and
image recognition are classical applications of CLP(FD) [45.[75]. Visual search
is the task of finding an object (described in some formal way, called the object
model) in an image. CLP(FD) provides the language for describing the object
model: first one decides the visual features (the basic components of the image,

70 M. Gavanelli and F. Rossi

such as lines, points, surface patches, etc.), then he/she defines the object model
by means of constraints that relate the visual features (surface s is orthogonal
to surface sz, etc.). Now, before CLP(FD) performs constraint propagation and
subsequent search, one has to know all the visual features in the image, as they
compose the domains of the variables. This task is performed by a segmentation
system, that takes often most of the computing time, since it has to relate the
pixels of the image with higher-level information. In order to speed up the acqui-
sition process, one can interleave constraint propagation and value acquisition;
in this way only those features actually required for solving the CSP are acquired
from the segmentation system. The classical CSP model is then extended to an
Interactive CSP [46], with corresponding solving algorithms. A corresponding
CLP language [88] uses sets to represent the domains of FD variables. Later on,
a general integration of the two sorts was proposed [50l[18], which integrates sets
and finite domain variables to speedup the CLP(SE7) computation.

3 Related Frameworks

3.1 Constraint Handling Rules

In classical CLP languages, solvers are embedded in the language in a hard-wired
way: each language comes with one or more solvers for some constraint sorts.
However, defining a new constraint, or even a new solver, is often tricky: one
has to know (part of) the implementation of the solver itself, study the interface
for defining new constraints, and implement the propagation algorithm. While
usually very efficient, this approach is rather operational and not always flexible.
Constraint Handling Rules (CHR) [82] represents a successful example of a high-
level, logic language for designing constraint solvers. Also, usually solvers adopt
arc or bound consistency, that look at one constraint at a time. For example,
the constraints [A, B] : [1..10], A < B, B < A, A # B do not perform any
pruning, even if we can easily see that there is no solution. If we looked at
pairs of constraints, we could infer from (A < BA B < A) that A = B, and
from (A = BA A # B) that there is no solution. Intuitively, looking at pairs
of constraints allows one to achieve higher levels of consistency, such as path-
consistency [117].

CHR is a powerful language for modelling solvers, based on the rewriting of
constraints into simpler ones until they are solved. CHR can be seen as a CLP
language where clauses are multi-headed guarded rules for constraint rewriting.

CHR rules are of two kinds, based on the notions of simplification and propaga-
tion over user-defined constraints. Simplification rules replace constraints by sim-
pler constraints while preserving logical equivalence. Propagation rules add new,
logically redundant constraints, which may cause further simplifications. More
precisely, a CHR program is a finite set of CHR rules. A simplification CHR rule
is of the form H < G|B and a propagation CHR rule is of the form H = G|B. The
multi-head H is a conjunction of CHR constraints. The optional guard G is a con-
junction of built-in constraints. The body B is a conjunction of built-in and CHR,

Constraint Logic Programming 71

constraints. An example of a simplification ruleis X <Y AY < X & X =Y,
while a possible propagation rulesis X <Y AY <Z = X < Z.

A state of a computation is a conjunction of built-in and CHR constraints,
and states evolve via derivation steps. An initial state (or query) is an arbitrary
state. In a final state (or answer), either the built-in constraints are inconsis-
tent or no derivation step is possible anymore. A rule with head H and guard
G is applicable to CHR constraints H' in the context of constraints D, if the
underlying constraint theory entails D and 30(H6 = H' A GH). Notice that the
symbol = is to be understood as built-in constraint for syntactic equality and
is usually implemented by a (one-way) unification. If H' matches H, we equate
H’ and H. This corresponds to parameter passing in conventional programming
languages, since only variables from the rule head H can be further constrained,
and all those variables are new. Finally, using the variable equalities from D and
H' = H, we check the guard G.

Any of the applicable rules can be applied, but the choice of the rule is a
committed choice, thus it cannot be undone.

If an applicable simplification rule (H < G | B) is applied to the CHR
constraints H’, H’ is removed from the state, and the body B, the equation
H = H’, and the guard G are added to the state. If a propagation rule (H =
G | B) is applied to H', we add B, H = H' and G, but do not remove H'.

CHR is now implemented in most major CLP languages (e.g., SICStus, SWI
or ECL’PS®), and the number of applications developed in CHR is impressive
(see, e.g., the web page@ “The first fifty applications using CHR”, amongst which
we find many works of Italian researchers [4[126,22,[61].)

Beside the operational semantics briefly outlined above, several declarative
semantics have been defined for CHR programs, and soundness and complete-
ness results have been obtained. The issue of confluence has also been studied
in depth, since applicable CHR rules may be applied in any order giving rise
to resulting states with the same meaning but not necessarily the same syntax.
This may be a problem in terms of constraint solvers, since the ability to detect
the inconsistency of the current set of constraints depends also on the syntax.
Another important property is compositionality [58]. This property allows to
compute the semantics of a conjunctive query from the semantics of its compo-
nents, and is obviously very desirable since it allows to define incremental and
modular analysis and verification tools.

Various extensions of the basic CHR language have been proposed in the
literature. For example, CHR, has been extended with a probabilistic weighting
of the rules, by specifying the probability of their application [83]. In this way, it is
possible to formalise various randomised algorithms, such as simulated annealing.

3.2 Concurrent Constraint Programming

In CLP, each computation step adds new constraints to the constraint store, and
checks if the resulting store is consistent. However, the constraint store could
also be used to check whether it contains enough information to entail certain

! http://www.cs.kuleuven.be/~dtai/projects/CHR/chr-appls.html

72 M. Gavanelli and F. Rossi

constraints. This is what is done in the concurrent constraint (cc) programming
paradigm [I30], where several agents work concurrently with a unique constraint
store. Each agent can perform two kinds of actions: either to add (called tell) a
new constraint to the store, and proceed if this produces a consistent new store,
or to wait (called ask) until the current store entails a certain constraint, and
proceed only after this holds. In this paradigm, the concurrent agents commu-
nicate via the shared constraint store. CLP can be seen, very abstractly, as a
restriction of the cc paradigm where only tell operations are performed.

Many significant results from Italian researchers have been obtained in defin-
ing and proving properties of several different semantics for the cc paradigm [53]
T3U71]. Also, the cc paradigm has been extended to work with soft constraints [26],
with probabilistic actions [123], and with timed operators [54,123].

We avoid entering into the details of the various research lines related to cc,
since it is the subject of another chapter of this volume [85].

3.3 Abductive Constraint Logic Programming

Logic programming is based on deductive reasoning, i.e., if we have a rule with
conditions and a conclusion, and we know that the preconditions of the rule are
true, we infer that also the conclusion is true. On the other hand, the human
mind uses also other types of inference: for example, in medical diagnosis a
physician is given a set of symptoms, that are the effects of some illness, and
has to infer the illness that possibly caused such effects. The inference rule that
allows one to reason from the conclusions to possible causes, or conditions, was
called abduction by the philosopher Peirce.

Abductive Logic Programming [T02|[T0T] is an extension of LP that deals with
incomplete information by performing abduction. In ALP, there are some syn-
tactically distinguished predicates that have no definition, and cannot be proven:
an abductive proof-procedure will assume their possible truth, and provide the
abduced literal in the answer. E.g., an abductive program could be:

headache :- flu.

where flu is declared as an abducible predicate. Given the query :- headache,
an abductive proof-procedure will provide as answer

yes, flu.

However, abductive reasoning has a very wide search space, and researchers soon
found out that it could be reduced by means of constraints [103]. Obviously the
integration also provides more expressivity to the abductive language, as the
user can now write constraints in his/her programs. This opened the path to
the development of a series of proof-procedures that integrate abductive reason-
ing with constraint propagation [I04,[69,3]. Abductive constraint programming
languages have been used for a variety of applications, including agents, plan-
ning, web service composition [2[I], web sites verification [107] and two-player
games [87].
More on Abductive Logic Programming can be found in the chapter [95].

Constraint Logic Programming 73

3.4 Soft Constraints and Preferences

Classical constraints are statements that have to be satisfied in order to ob-
tain a feasible solution. Thus the role of a constraint solver is to find a variable
assignment that satisfies all constraints. In several real-life scenarios, this ap-
proach is too rigid, since there may be no variable assignment that satisfies all
constraints. These scenarios often occur when constraints are used to formalize
desired properties rather than requirements that cannot be violated. Such de-
sired properties are not faithfully represented by constraints, but should rather
be considered as preferences, whose violation should be avoided as far as possible.
Soft constraints [24] provide one way to model such preferences, by extending
the classical constraint notion into a more general and flexible one.

A soft constraint is just like a constraint, but instead of being only satisfied or
violated, it may have several levels of satisfiability. Historically, first a variety of
specific extensions of the basic constraint formalism have been introduced, such
as fuzzy constraints [129]. Later, these extensions have been generalized using
more abstract frameworks, which have been crucial in proving general proper-
ties and in identifying the relationship among the specific frameworks [24,[133].
Moreover, for each of the specific classes, algorithms for solving problems speci-
fied in the corresponding formalisms have been defined. In fact, many techniques
and approaches to solve classical constraints, included constraint propagation,
have been generalized to work also with soft constraints.

In the semiring-based formalism [24], a soft constraint is a cost function, where
each assignment of the variables of the constraint is associated to an element
coming from an ordered set, whose properties are similar to those of a semiring.
This set contains all possible levels of preference (or costs, or quality, etc.),
of a variable assignment in the considered constraint class. For example, for
fuzzy constraints, the preference levels are values between 0 and 1, and higher
values are more preferred. Classical constraints can also be cast in this general
framework: in this case the preference set contains just two elements (true and
false, or satisfied and violated). The preference set also comes with an operation
to combine preference levels. This is useful to compute the satisfiability level
of a complete variable assignment from those given by the constraints to the
portion of the assignment relevant to them. For example, in fuzzy constraints the
combination takes the minimum preference level, while in classical constraints
it is just a logical and, since all constraints need to be satisfied. A survey of the
various approaches to deal with soft constraints can be found in [I13].

The notion of global constraints has been exploited also in the context of soft
constraints. For example, in [97] a general method to soften global constraints is
presented, which is based on the notion of a flow in a graph, and several global
constraints are defined in their soft version. Also, in [140] efficient algorithms are
proposed to achieve generalized arc consistency for the soft global cardinality
constraint.

Classical CLP handles only standard constraint solving. Thus it is natural to
try to extend the CLP formalism in order to handle also soft constraints. A first
attempt was the hierarchical CLP (HCLP) system [28], a CLP language where

74 M. Gavanelli and F. Rossi

each constraint has a level of importance and a solution of a constraint problem is
found by respecting the hierarchy of constraints. The finite domain CLP language
clp(fd) [40] has been extended to handle semiring-based constraints, obtaining a
language paradigm called clp(fd,S) [93] where S is any semiring, chosen by the
user. By choosing one particular semiring, the user uses a specific class of soft
constraints: fuzzy, optimized, probabilistic, or even classical hard constraints.
The language SCLP [25] treats in a uniform way, and with the same underlying
machinery, all constraints that can be seen as instances of the semiring-based
approach: from optimization to satisfaction problems, from fuzzy to probabilistic,
prioritized, or uncertain constraints, and also multi-criteria problems, while still
being able to handle classical constraints. Syntactically, SCLP extends CLP by
allowing the presence of preference levels as the body of a clause. E.g., the
clause p(X,Y,N) :- (X+Y)/N. states that (X +Y)/N is the preference level to
be given to the assignment (X, Y, N) for constraint p. The usual three equivalent
semantics (model-theoretic, fix-point, and operational) can be defined also for
the SCLP paradigm, although suitably generalized to handle soft constraints.

4 Improvements, Solution Techniques

4.1 Integration with Operations Research

CLP(FD) is an effective language to model and solve combinatorial problems.
However, there are other frameworks that address the same problems, such
as meta-heuristics, integer linear programming, population-based methods, etc.
CLP(FD) has unique advantages: there are many types of available constraints,
compared to integer linear programming that accepts only linear inequalities. It
supports complete solving algorithms, while local search or genetic algorithms
are usually incomplete (i.e., they might fail to produce a solution even if it
exists). On the other hand, there are some types of problems in which other
techniques are more efficient. For this reason, various efforts tried to merge algo-
rithms and solvers, in order to improve on both of them. The fact that CLP(FD)
is very general makes it the ideal playground to test the integration of different
techniques.

One type of integration, already mentioned, is global constraints. In general,
the (generalized) arc-consistency propagation of an n-ary constraint is very ex-
pensive (see, e.g., [116]): since an n-ary constraint can encode a whole CSP,
removing all values that do not belong to a solution is in general NP-hard.
However, despite this worst-case complexity, there exist significant constraints
of practical use that have polynomial-time, specific propagation algorithms. For
example, the alldifferent constraint uses results from graph theory, the global
cardinality constraint gcc computes the maximum flow of a graph, all tech-
niques borrowed from Operations Research (OR). In OR there are very efficient
algorithms to solve very specific tasks, however a slight change in the problem
formulation (e.g., a new constraint added by the user) can make a very good
algorithm inapplicable. CLP(FD), instead, is very general-purpose. In OR, com-
bining a graph algorithm with a maximum flow is a rather complex task, while

Constraint Logic Programming 75

in CLP(FD) it is trivial: just a matter of adding two constraints (alldifferent
and gcc) to the program, and they will automatically communicate through the
constraint store and the domains of the variables. The user does not even need
to know the details of the propagation algorithm.

Another key observation is that CLP(FD), being based on the concept of
consistency, is very oriented to solve satisfiability problems, and optimization
problems are often converted into (sequences of) satisfiability ones. OR, instead,
has a wide literature focussed on optimization problems, using bounds, relax-
ations, and cuts, to remove sub-optimal parts of the search space. Moreover,
arc-consistency reasons about one constraint at a time, meaning that if no con-
straint is able to perform pruning alone, no propagation occurs. This can be
partially solved using higher levels of consistency, also supported by languages
like CHR, (Section B1l), but this is not always a solution, since higher levels of
consistency require more computation time. Linear programming algorithms, in-
stead, navigate a polytope focussing only on the vertices carrying the best values
of objective function, so they have a more global view.

So, an interesting way to integrate CLP and OR is by trying to exploit both the
satisfaction-based techniques of CLP and the optimization-based tools of OR. A
simple idea is to use both a linear model and a CLP(FD) model at the same time:
if either of the two detects inconsistency, we can fail and backtrack. An important
information a linear solver provides is a bound: by giving up the integrality
constraint, the linear solver is able to compute an over-optimal solution. So,
if the linear relaxation of the current node gives a worse bound than the best
solution found so far, the current node can be pruned [34]. Moreover, the linear
solver is able to provide another piece of information, namely reduced costs. For
each variable x; in the linear model, the reduced cost r; is the derivative of the
objective function with respect to z;. Suppose we have a minimization problem
min(f), and that the linear relaxation provides a value LB (Lower Bound).
Suppose that we already know a solution with cost UB (Upper Bound). Of
course, if LB > UB, we can fail and backtrack. Otherwise, suppose that there
is some variable x; that in the optimal solution of the linear relaxation takes
value 0, and suppose the reduced cost is 10. This means that, if we change the
value of x; to 1, the value of the objective function will increase of at least 10.
If LB+ 10 > UB, then I cannot add 1 to z;, because that would mean going to
a worse solution than the current best, so we can remove the value 1 from the
domain of x;. This is called cost-based filtering [80L[90].

Other techniques from (integer) linear programming have been adapted to
include constraint programming. Column generation is a technique used in linear
programming to solve very large problems. The basic idea is that the simplex
algorithm uses a tableaux to represent the linear program, and uses reduced
costs to drive the search. Since reduced costs are the derivatives of the objective
function with respect to the variables in the current solution, if all reduced
costs are positive, then there is no way to reduce the value of the objective
function, i.e., we are in the optimal solution (global minimum). Otherwise, if
there is at least a negative reduced cost, increasing the value of the corresponding

76 M. Gavanelli and F. Rossi

variable will reduce the objective function, and the search continues. However,
if the tableaux contains a huge number of columns, finding a negative cost may
become a constraint satisfaction problem itself that can be solved with various
techniques, including constraint programming [96].

Bender’s decomposition is another technique used to solve very large prob-
lems. The whole problem is decomposed into a master problem and a sub-
problem, that will then communicate. One of the two could be more easily
solvable by an FD solver, while the other by a linear solver; this gives an in-
teresting pattern to have the two solvers communicate [70L17,98].

Finally, various methods exist to integrate local search with CLP [38/T12/7839].

4.2 Symmetry Breaking

In CLP and constraint reasoning in general, there are several techniques that
try to change the problem formulation to improve the efficiency of the solution
process. For example, some approaches include rewriting (through folding and
unfolding steps) a constraint logic program [77], to make it more efficient for a
specific instance or a query. We will not go into further details, as the interested
reader will find an exhaustive exposition in another chapter of this book [122].

Another interesting and useful idea is to try to remove some symmetrical
parts of the search space, by rewriting the constraint program or by adding (by
hand or automatically [I08], in the CLP program) so-called symmetry breaking
constraints. In fact, the presence of symmetries can expand exponentially the
size of the search space. Consider, for example, a graph coloring problem: each
node of a graph should be assigned a color from a finite palette (the same one for
all nodes), with the constraint that two nodes connected with an arc should have
different colors. Backtracking search will try to assign a value to a first node, for
example color red to node Nj. Suppose that, after constraint propagation and a
long search, we find out that there is no solution with N; = red: backtrack search
will now choose the second value in the domain of N, say blue. However, since
the colors are symmetric, there is no solution with blue as well. This observation
can be used to reduce significantly the search space. Other problems have many
more symmetries than the graph coloring. The classical benchmark problem in
this research area is the social golfer, which is an abstraction of many real-life
scenarios: N golf players want to play golf every week, in groups of M golfers;
we have to find a schedule for W weeks such that no two players play in the
same group more than once.

A first way to tackle this problem is by changing the constraint model, by
switching to a representation with no symmetries, or with a reduced number
of symmetries. The first solution to the social golfer problem was implemented
by Stefano Novello in CLP [120]. The idea was to use a set representation (see
also Section 2.2)): the position of elements in a set is immaterial, so the intrinsic
symmetry related to the order of the elements no longer exists.

Other solutions include finding the equivalence classes for the symmetries, and
adding constraints that are satisfied only by one representative of each equiv-
alence class. In the graph coloring example, one can leave only one element in

Constraint Logic Programming 7

the domain of a given node. Of course, this simple constraint will not always re-
move all the symmetries, but it usually greatly reduces the search space. When
the constraint problem is represented by a sequence of symmetric variables (i.e.,
every permutation of a solution is still a solution), one can impose that the vari-
ables are ordered. If the problem contains a matrix of variables, and exchanging
two lines or two columns of a solution yields another solution, a lexicographic
ordering between the rows/columns can be imposed [81].

In some cases, one has a very powerful heuristics for solving a CSP, and the
heuristic can become less effective if we change the constraint model; in particular
the heuristic could be deceived by the addition of symmetry breaking constraints.
In those cases, one can revert to algorithms that break the symmetries during
search: i.e., after exploring (unsuccessfully) some part of the search space, they
prune the symmetrical parts of the already explored zones [T14L92L[79[72].

All these methods assume that the symmetries are already known; however,
there are also approaches trying to identify the symmetries from the specifica-
tions [108]. In some cases, one tries to detect the symmetries from the general
model [33], without looking at the specific instance. E.g., the graph coloring
problem has symmetries in general, irrespectively of the particular graph we are
considering. In other cases, one tries to detect symmetries that hold only in the
given instance we are about to solve [86].

5 Applications

CLP has shown to be successfully used in many application domains. For space
reasons, we will just mention few of them, not intending to give a complete
survey. The reader can refer to existing surveys on CLP applications [I37], as
well as on the chapter on applications of LP in this book [51].

In recent years, biology has been the source of interesting application problems
for the whole of computer science, due to the large volume of data and the
combinatorial nature of many scenarios. CLP, and constraint programming in
general, has been recently applied to some of these problems [I0]. In particular,
CLP has been used to tackle the protein structure prediction problem, which is
one of the most challenging problems in biological sciences, and which can be seen
as an optimization problem [48[55]. The complexity of constraint propagation
was also studied [49]. The results obtained on small proteins show that CLP
can be employed for studying protein simplified models. The advantage of CLP
over other approaches lies in the rapid software prototyping, in the easy way
of encoding heuristics, and in the several efficient constraint-based techniques,
such as constraint propagation, to prune huge search spaces.

Constraint logic programming was also used to reason about spatial and tem-
poral data, and a CLP solver was integrated with a geographical information
system. One practical applications was the study of the mating habit of the
crested porcupine [125], in which information is gathered through radio-collars
and processed by a CLP program.

Planning and scheduling have always been two of the main application ar-
eas for constraint-based approaches [12]. Scheduling is the problem of assigning

78 M. Gavanelli and F. Rossi

a timing to the various tasks composing a complex activity, and often, other
resources. As such, it has various specializations: in sport scheduling [I31] one
wants to fix the matches of a tournament; in school timetabling [I32[86] the
aim is deciding when and where lessons take place, in crew rostering we have
to find a sequencing of a given set of duties into rosters satisfying operational
constraints [34], etc. [30,B6]. CLP(FD) has proved to be very successful in this
area mainly because of an important global constraint, called cumulative. This
constraint relates the start times, the durations, and the resource consumptions
of a set of tasks, and it ensures that in any instant of time, the total resource
consumption of the tasks being executed does not exceed a given limit. So, for a
school timetabling, one can state that the rooms are resources: if in a school there
are R available rooms, there cannot be more that R lessons at the same time.
Teachers can also be considered as resources: two contemporary lessons cannot
involve the same teacher, and so on. There are various implementations of the
cumulative constraint, that give different balances of computational complexity
(usually from O(n?) to O(n?)) and achieved pruning.

Planning, instead, is the problem of finding a sequence of actions that, taken
in the correct order, achieve a given goal. Each action has pre-conditions and
post-conditions, and the automatic planner must ensure that the post-conditions
of some action do not invalidate the pre-conditions of the subsequent actions.
CLP(FD) is useful to detect such possible situations, called threats [I4l[13], and
to implement the temporal reasoning [121]. Also, some notable works propose
to implement action description languages in CLP(FD) [62].

A remarkable amount of work in CLP is connected with database theories and
applications. Considering the theory, the semantics of the U-Datalog language
is cast through a CLP semantics, and, in particular, updates in rule bodies
are specified through constraints [118]. Constraints are also used to schedule
the transactions in a distributed database [I11]. Constraints are also useful to
represent incomplete information, e.g., in temporal-probabilistic databases [106].

CLP(FD) was used to find an optimal placement of sirens to alert the popu-
lation in Venice of the high tide [9]. The map of the city is divided by a grid into
cells, and for each cell a number of features is recorded, such as the average and
maximum height of the buildings, their density, etc. The authors use a simulator
to compute the sound propagation, and they relate the sound propagation with
the position of the sirens through constraints. The objective is to find the best
placement (that minimizes the number of sirens) such that in each cell the signal
strength is greater than or equal to a given threshold.

Other authors [76] tackle the problem of detecting excess of pollution in the
Venice lagoon. Every day, information is acquired through sensors, and fed to
a decision support system. The system is implemented in CLP, and uses con-
straints to model the propagation of pollutants in the lagoon; it is able to provide
suggestions to the Venice Water Magistracy on which implants to close, which
to relocate, etc, to keep the level of pollution within acceptable levels.

The system LODE [91] applies CLP to reason about temporal information in
an e-learning software devoted to deaf children. Deaf people can have difficulties

Constraint Logic Programming 79

in understanding temporal relations in textual information, and such software
helps them by proposing stories and exercises.

Verification is a very important application of CLP, that has been deeply
studied by many authors in Italy and abroad. It is also a vast discipline, that
includes important applications of theoretical and practical importance, such as
security verification [57,441[16]. We will not delve into this fascinating discipline,
because it is the subject of another chapter of this book [59].

6 Conclusions

Constraint Logic Programming is a computation paradigm that joins the theo-
retical features of Logic Programming (declarative semantics, soundness, com-
pleteness) with an important range of practical applications. However, additional
efforts are needed to make it more widely applicable. Features such as uncer-
tainty, multi-agent reasoning, lack of data, and vast amounts of information,
just to cite few examples, should be fully integrated and satisfactorily handled
in CLP-style languages if we want CLP to be successfully used also in more
modern applications. We also see two other threats to the spreading of the CLP
technology into the industrial world. One is the lack of a common syntax: as
already hinted in Section 2] every CLP(FD) solver has itw own syntax for
defining domains, and same constraints can have different names. There are
standardisation efforts, and new modelling languages such as (Mini)Zinc [I19]
become more and more supported by CLP systems, but still the goal of a com-
monly agreed language seems far away. A second threat comes from imperative
and object-oriented languages: many solvers are now available also with C++
(ILOGH, Gecode [134]) or Java syntax (Choco, Jacoph, JsetL [128]), giving up the
gains coming from logic programming, but with the advantage of an easier inte-
gration into already developed applications. To keep up with those solvers, CLP
languages should either provide new features, unapplicable to imperative/OOP
languages, or have better integration with real world applications, with ability
to develop attractive user interfaces, access to web services, and so on. Finally,
CLP languages are usually tailored for the experienced user: one can develop ex-
tremely efficient search strategies, and heuristics for solving a specific problem,
even with integration of different solvers, but these technologies are often out of
reach for the naive user. CLP has taken the opposite viewpoint with respect to,
e.g., SAT, MIP or ASP solvers: in those languages the user has only to state the
problem, and the solver will choose a good strategy to solve it. Research try-
ing to bridge the gap between the unexperienced user and the state-of-the-art
technology could really boost the widespreading of the CLP word.

Acknowledgements. This research has been partially funded by PRIN 2008
project ‘Innovative and multi-disciplinary approaches for constraint and prefer-
ence reasoning’.

2 ILOG: www.ilog.com/products/cp/
3 Choco: http://choco.emn.fr/, Jacop: http://jacop.osolpro.com/

80 M. Gavanelli and F. Rossi
References
1. Alberti, M., Cattafi, M., Gavanelli, M., Lamma, E., Chesani, F., Montali, M.,

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Mello, P., Torroni, P.: Integrating abductive logic programming and description
logics in a dynamic contracting architecture. In: IEEE Int. Conf. on Web Services
(2009)

. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M.: An

abductive framework for a-priori verification of web services. In: PPDP (2006)
Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Ver-
ifiable agent interaction in abductive logic programming: the SCIFF framework.
ACM Transactions on Computational Logics 9(4) (2008)

Alberti, M., Lamma, E.: Synthesis of object models from partial models: A csp
perspective. In: van Harmelen, F. (ed.) ECAI pp. 116-120. IOS Press, Amsterdam
(2002)

Alpuente, M., Sessa, M. (eds.): GULP-PRODE 1995 (1995)

Apt, K.R.: Principles of Constraint Programming. Cambridge Univ. Press,
Cambridge (2003)

Apt, K.R., Wallace, M.G.: Constraint Logic Programming Using ECL‘PS®.
Cambridge University Press, Cambridge (2006)

Armando, A., Melis, E., Ranise, S.: Constraint solving in logic programming and
in automated deduction: A comparison. In: Giunchiglia, F. (ed.) AIMSA 1998.
LNCS (LNAI), vol. 1480, pp. 28-38. Springer, Heidelberg (1998)

Avanzini, F., Rocchesso, D., Belussi, A., Dal Palu, A., Dovier, A.: Designing an
urban-scale auditory alert system. IEEE Computer 37(9), 55-61 (2004)
Backofen, R., Gilbert, D.: Bioinformatics and constraints. In: Rossi, et al [127]
Bagnara, R., Gori, R., Hill, P.M., Zaffanella, E.: Finite-tree analysis for con-
straint logic-based languages. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126,
pp. 165-184. Springer, Heidelberg (2001)

Baptiste, P., Laborie, P., Le Pape, C., Nuijten, W.: Constraint-based scheduling
and planning. In: Rossi, et al [127]

Barruffi, R., Milano, M., Montanari, R.: Planning for security management. IEEE
Intelligent Systems 16(1), 74-80 (2001)

Barruffi, R., Milano, M., Torroni, P.: Planning while executing: A constraint-based
approach. In: Ohsuga, S., Ra$, Z.W. (eds.) ISMIS 2000. LNCS (LNATI), vol. 1932,
pp. 228-236. Springer, Heidelberg (2000)

Baselice, S., Bonatti, P., Gelfond, M.: Towards an integration of answer set
and constraint solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS,
vol. 3668, pp. 52-66. Springer, Heidelberg (2005)

Bella, G., Bistarelli, S.: Soft constraint programming to analysing security proto-
cols. TPLP 4(5-6), 545-572 (2004)

Benini, L., Lombardi, M., Mantovani, M., Milano, M., Ruggiero, M.: Multi-
stage Benders decomposition for optimizing multicore architectures. In: Perron,
L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 36-50. Springer,
Heidelberg (2008)

Bergenti, F., Dal Palu, A., Rossi, G.: Generalizing finite domain constraint solving.
In: Formisano, A. (ed.) CILC 2008 (2008)

Bertolino, B., Bonatti, P.A., Montesi, D., Pelagatti, S.: Correctness and complete-
ness of logic programs under the CLP schema. In: Asirelli, P. (ed.) Proc. Sixth
Italian Conference on Logic Programming, Pisa, Italy, pp. 391-405 (1991)
Bessiere, C.: Constraint propagation. In: Rossi, et al. [127]

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Constraint Logic Programming 81

Bessiere, C. (ed.): CP 2007. LNCS, vol. 4741. Springer, Heidelberg (2007)
Bistarelli, S., Frithwirth, T.W., Marte, M.: Soft constraint propagation and solving
in chrs. In: SAC, pp. 1-5. ACM, New York (2002)

Bistarelli, S., Gabbrielli, M., Meo, M., Santini, F.: Timed soft concurrent con-
straint programs. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS,
vol. 5052, pp. 50-66. Springer, Heidelberg (2008)

Bistarelli, S., Montanari, U., Rossi, F.: Semiring based constraint solving and
optimization. Journal of the ACM 44(2), 201-236 (1997)

Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint logic program-
ming. In: IJCAI 2001, pp. 352-357 (2001)

Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming.
In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 53-67. Springer,
Heidelberg (2002)

Bonatti, P., Calimeri, F., Leone, N., Ricca, F.: Answer Set Programming. In:
Dovier, A., Pontelli, E. (eds.) 25 Years of Logic Programming, ch.8. LNCS,
vol. 6125, pp. 159-182. Springer, Heidelberg (2010)

Borning, A., Maher, M., Martindale, A., Wilson, M.: Constraint hierarchies and
logic programming. In: Levi, G., Martelli, M. (eds.) ICLP (1989)

Bruscoli, P., Levi, F., Levi, G., Meo, M.: Compilative constructive negation
in constraint logic programs. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787,
pp. 52-67. Springer, Heidelberg (1994)

Brusoni, V., Console, L., Lamma, E., Mello, P., Milano, M., Terenziani, P.:
Resource-based vs. task-based approaches for scheduling problems. In:
Michalewicz, M., Ras, Z.W. (eds.) ISMIS 1996. LNCS, vol. 1079. Springer,
Heidelberg (1996)

Buscemi, M.G., Montanari, U.: A survey of constraint-based programming
paradigms. Computer Science Review 2(3), 137141 (2008)

Cabeza, D., Hermenegildo, M.: Implementing distributed concurrent constraint
execution in the CIAO system. In: Lucio, P., Martelli, M., Navarro, M. (eds.)
APPIA-GULP-PRODE (1996)

Cadoli, M., Mancini, T.: Using a theorem prover for reasoning on constraint prob-
lems. In: Bandini, S., Manzoni, S. (eds.) AT*IA. Springer, Heidelberg (2005)
Caprara, A., Focacci, F., Lamma, E., Mello, P., Milano, M., Toth, P., Vigo, D.:
Integrating constraint logic programming and operations research techniques for
the crew rostering problem. Softw. Pract. Exper. 28(1), 49-76 (1998)

Carlsson, M., Widen, J.: SICStus Prolog User’s Manual. Technical report, Swedish
Institute of Computer Science (SICS) (1999)

Carraresi, P., Gallo, G., Rago, G.: A hypergraph model for constraint logic pro-
gramming and applications to bus drivers’ scheduling. AMAI 8(3-4) (1993)
Cheadle, A., Harvey, W., Sadler, A., Schimpf, J., Shen, K., Wallace, M.: ECLiPSe:
a tutorial introduction (2003), http://eclipse-clp.org/doc/tutorial
Cipriano, R., Di Gaspero, L., Dovier, A.: Hybrid approaches for rostering: A case
study in the integration of constraint programming and local search. In: Almeida,
F., Blesa Aguilera, M.J., Blum, C., Moreno Vega, J.M., Pérez Pérez, M., Roli, A.,
Sampels, M. (eds.) HM 2006. LNCS, vol. 4030, pp. 110-123. Springer, Heidelberg
(2006)

Cipriano, R., Di Gaspero, L., Dovier, A.: A hybrid solver for large neighborhood
search: Mixing Gecode and EasyLocal™™. In: Sampels, M. (ed.) HM 2009. LNCS,
vol. 5818, pp. 141-155. Springer, Heidelberg (2009)

Codognet, P., Diaz, D.: Compiling constraints in clp(fd). J. Log. Prog. (1996)

http://eclipse-clp.org/doc/tutorial

82

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

M. Gavanelli and F. Rossi

Colmerauer, A.: An introduction to Prolog-III. Communication of the ACM
(1990)

Colmerauer, A.: Prolog II reference manual and theoretical model. Technical re-
port, Groupe Intelligence Artificielle, Universite Aix-Mareseille 1T (October 1982)
Colussi, L., Marchiori, E., Marchiori, M.: A dataflow semantics for constraint logic
programs. In: Alpuente, Sessa [5], pp. 557568

Corin, R., Etalle, S.: An improved constraint-based system for the verification of
security protocols. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS,
vol. 2477, pp. 326-341. Springer, Heidelberg (2002)

Cucchiara, R., Gavanelli, M., Lamma, E., Mello, P., Milano, M., Piccardi, M.:
Extending CLP(FD) with interactive data acquisition for 3D visual object recog-
nition. In: Proc. PACLP 1999, pp. 137-155 (1999)

Cucchiara, R., Gavanelli, M., Lamma, E., Mello, P., Milano, M., Piccardi, M.:
From eager to lazy constrained data acquisition: A general framework. New Gen-
eration Computing 19(4), 339-367 (2001)

Dahl, V., Niemel4, I. (eds.): ICLP 2007. LNCS, vol. 4670. Springer, Heidelberg
(2007)

Dal Palu, A., Dovier, A., Fogolari, F.: Constraint logic programming approach to
protein structure prediction. BMC Bioinformatics 5 (2004)

Dal Palu, A., Dovier, A., Pontelli, E.: Computing approximate solutions of the
protein structure determination problem using global constraints on discrete crys-
tal lattices. Int’l Journal of Data Mining and Bioinformatics 4(1) (January 2010)
Dal Palu, A., Dovier, A., Pontelli, E., Rossi, G.: Integrating finite domain con-
straints and CLP with sets. In: PPDP 2003, pp. 219-229. ACM, New York (2003)
Dal Palu, A., Torroni, P.: 25 Years of Applications of Logic Programming. In:
Dovier, Pontelli [68], vol. 6125, ch.14, pp. 298-325 (2010)

de Boer, F.S., Di Pierro, A., Palamidessi, C.: An algebraic perspective of con-
straint logic programming. Journal of Logic and Computation 7(1), 1-38 (1997)
de Boer, F.S., Gabbrielli, M.: Infinite computations in concurrent constraint pro-
gramming. Electr. Notes Theor. Comput. Sci. 6 (1997)

de Boer, F.S., Gabbrielli, M., Meo, M.C.: A timed concurrent constraint language.
Inf. Comput. 161(1), 45-83 (2000)

De Maria, E., Dovier, A., Montanari, A., Piazza, C.: Exploiting model checking
in constraint-based approaches to the protein folding. In: WCB 2006 (2006)
Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
Delzanno, G., Etalle, S.: Proof theory, transformations, and logic programming
for debugging security protocols. In: Pettorossi, A. (ed.) LOPSTR 2001. LNCS,
vol. 2372, p. 76. Springer, Heidelberg (2002)

Delzanno, G., Gabbrielli, M., Meo, M.: A compositional semantics for CHR. In:
PPDP 2005, pp. 209-217. ACM, New York (2005)

Delzanno, G., Giacobazzi, R., Ranzato, F.: Analysis, Abstract Interpretation,
and Verification in (Constraint Logic) Programming. In: Dovier, Pontelli [6§],
vol. 6125, ch. 7, pp. 136-158 (2010)

Diaz, D., Codognet, P.. GNU Prolog: Beyond compiling Prolog to C. In:
Pontelli, E., Santos Costa, V. (eds.) PADL 2000. LNCS, vol. 1753, p. 81. Springer,
Heidelberg (2000)

Dondossola, G., Ratto, E.: GRF temporal reasoning language. Technical report,
CISE, Milano (1993)

Dovier, A., Formisano, A., Pontelli, E.: Multivalued action languages with con-
straints in CLP(FD). In: Dahl, Niemela [47], pp. 255-270

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.
73.

4.

75.

76.

7.

78.

79.

80.

81.

82.

83.

Constraint Logic Programming 83

Dovier, A., Formisano, A., Pontelli, E.: An empirical study of constraint logic
programming and answer set programming solutions of combinatorial problems.
J. Exp. Theor. Artif. Intell. 21(2) (2009)

Dovier, A., Omodeo, E., Pontelli, E., Rossi, G.: {log}: A logic programming lan-
guage with finite sets. In: ICLP, pp. 111-124 (1991)

Dovier, A., Piazza, C., Pontelli, E., Rossi, G.: Sets and constraint logic program-
ming. ACM Trans. Program. Lang. Syst. 22(5), 861-931 (2000)

Dovier, A., Piazza, C., Rossi, G.: A uniform approach to constraint-solving for
lists, multisets, compact lists, and sets. ACM Trans. Comput. Log. 9(3) (2008)
Dovier, A., Policriti, A., Rossi, G.: A uniform axiomatic view of lists, multisets,
and sets, and the relevant unification algorithms. Fundam. Inform. 36(2-3) (1998)
Dovier, A., Pontelli, E. (eds.): 25 Years of Logic Programming. LNCS, vol. 6125.
Springer, Heidelberg (2010)

Endriss, U., Mancarella, P., Sadri, F., Terreni, G., Toni, F.: The CIFF proof pro-
cedure for abductive logic programming with constraints. In: Alferes, J.J., Leite,
J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 31-43. Springer, Heidelberg
(2004)

FEremin, A., Wallace, M.: Hybrid Benders decomposition algorithms in constraint
logic programming. In: Walsh [138], pp. 1-15

Etalle, S., Gabbrielli, M., Meo, M.: Transformations of CCP programs. ACM
Trans. Program. Lang. Syst. 23(3), 304-395 (2001)

Fahle, T., Schamberger, S., Sellman, M.: Symmetry breaking. In: Walsh [138]
Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C.: Confluence in concur-
rent constraint programming. Theor. Comput. Sci. 183(2), 281-315 (1997)
Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C.: Constraint logic pro-
gramming with dynamic scheduling: A semantics based on closure operators. In-
formation and Computation 137(1), 41-67 (1997)

Farenzena, M., Fusiello, A., Dovier, A.: Reconstruction with interval constraints
propagation. In: CVPR, pp. 1185-1190. IEEE Computer Society, Los Alamitos
(2006)

Festa, G., Sardu, G., Felici, R.: A decision support system for the Venice lagoon.
In: Herold, A. (ed.) Handbook of parallel constraint logic programming applica-
tions (1995)

Fioravanti, F., Pettorossi, A., Proietti, M.: Transformation rules for locally strat-
ified constraint logic programs. In: Bruynooghe, M., Lau, K.-K. (eds.) Program
Development in Computational Logic. LNCS, vol. 3049, pp. 291-339. Springer,
Heidelberg (2004)

Focacci, F., Laburthe, F., Lodi, A.: Local search and constraint programming: LS
and CP illustrated on a transportation problem. In: Milano, M. (ed.) Constraint
and Integer Programming. Towards a Unified Methodology, pp. 137-167. Kluwer
Academic Publishers, Dordrecht (2003)

Focacci, F., Milano, M.: Global cut framework for removing symmetries. In: Walsh
[138], pp. 7792

Focacci, F., Milano, M., Lodi, A.: Soving TSP with time windows with constraints.
In: International Conference on Logic Programming, pp. 515-529 (1999)

Frisch, A., Hnich, B., Kiziltan, Z., Miguel, 1., Walsh, T.: Propagation algorithms
for lexicographic ordering constraints. Artif. Int. 170(10), 803-834 (2006)
Frithwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming 37, 95-138 (1998)

Frithwirth, T., Di Pierro, A., Wiklicky, H.: An implementation of probabilistic
constraint handling rules. In: Comini, M., Falaschi, M. (eds.) WFLP (2002)

84

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.
106.

107.

M. Gavanelli and F. Rossi

Gabbrielli, M., Dore, G.M., Levi, G.: Observable semantics for constraint logic
programs. J. Log. Comput. 5(2), 133-171 (1995)

Gabbrielli, M., Palamidessi, C., Valencia, F.D.: Concurrent and Reactive Con-
straint Programming. In: Dovier, Pontelli [68], vol. 6125, ch. 11, pp. 225-248
(2010)

Gavanelli, M.: University timetabling in ECLiPSe. ALP Newsletter 19(3) (2006)
Gavanelli, M., Alberti, M., Lamma, E.: Integration of abductive reasoning and
constraint optimization in SCIFF. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009.
LNCS, vol. 5649, pp. 387-401. Springer, Heidelberg (2009)

Gavanelli, M., Lamma, E., Mello, P., Milano, M.: Dealing with incomplete knowl-
edge on CLP(FD) variable domains. ACM TOPLAS 27(2) (2005)

Gavanelli, M., Lamma, E.; Mello, P., Torroni, P.: An abductive framework for
information exchange in multi-agent systems. In: Dix, J., Leite, J. (eds.) CLIMA
2004. LNCS (LNAI), vol. 3259, pp. 34-52. Springer, Heidelberg (2004)
Gavanelli, M., Milano, M.: Cost-based filtering for determining the Pareto frontier.
In: Junker, U., KieBling, W. (eds.) Multidisciplinary Workshop on Advances in
Preference Handling, in conjunction with ECAI 2006 (2006)

Gennari, R., Mich, O.: Constraint-based temporal reasoning for e-learning with
LODE. In: Bessiere [21]

Gent, I.P., Smith, B.M.: Symmetry breaking in constraint programming. In: Horn,
W. (ed.) ECAI pp. 599-603. IOS Press, Amsterdam (2000)

Georget, Y., Codognet, P.: Compiling semiring-based constraints with clp(fd,s).
In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, p. 205. Springer,
Heidelberg (1998)

Giacobazzi, R., Debray, S., Levi, G.: Generalized semantics and abstract inter-
pretation for constraint logic programs. J. Log. Program. 25(3) (1995)
Giordano, L., Toni, F.: Knowledge representation and non-monotonic reasoning.
In: Dovier, Pontelli [68], vol. 6125, ch. 5, pp. 86-110 (2010)

Gualandi, S., Malucelli, F.: Constraint programming-based column generation.
40R: A Quarterly Journal of Operations Research 7(2), 113-137 (2009)

Hoeve, W.-J.V., Pesant, G., Rousseau, L.-M.: On global warming: Flow-based
soft global constraints. Journal of Heuristics 12(4-5), 347-373 (2006)

Hooker, J.: Logic-Based Methods for Optimization: Combining Optimization and
Constraint Satisfaction. John Wiley & Sons, Chichester (2000)

Jaffar, J., Lassez, J.-L.: Constraint logic programming. In: Proc. 14th symp. on
Principles of programming languages. ACM, New York (1987)

Jaffar, J., Michaylov, S., Stuckey, P., Yap, R.: The CLP(R) Language and System.
ACM Transactions on Programming Languages and Systems (1992)

Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of
Logic and Computation 2(6), 719-770 (1993)

Kakas, A.C., Mancarella, P.: On the relation between Truth Maintenance and
Abduction. In: Fukumura, T. (ed.) PRICAI (1990)

Kakas, A.C., Michael, A., Mourlas, C.: ACLP: Abductive Constraint Logic Pro-
gramming. Journal of Logic Programming 44(1-3), 129-177 (2000)

Kakas, A.C., van Nuffelen, B., Denecker, M.: A-System: Problem solving through
abduction. In: Nebel, B. (ed.) Proc. of IJCAI 2001, pp. 591-596 (2001)
Mackworth, A.: Consistency in networks of relations. Artif. Intell. 8(1) (1977)
Majkic, Z.: Constraint logic programming and logic modality for event’s valid-
time approximation. In: 2nd Indian Int. Conf. on Artificial Intelligence (2005)
Mancarella, P., Terreni, G., Toni, F.: Web sites verification: An abductive logic
programming tool. In: Dahl, Niemel4 [47]

108.

109.

110.

111.

112.

113.

114.

115.

116.
117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

Constraint Logic Programming 85

Mancini, T., Cadoli, M.: Detecting and breaking symmetries by reasoning on
problem specifications. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS
(LNAI), vol. 3607, pp. 165-181. Springer, Heidelberg (2005)

Mancini, T., Micaletto, D., Patrizi, F., Cadoli, M.: Evaluating ASP and commer-
cial solvers on the CSPLib. Constraints 13(4), 407-436 (2008)

Manco, G., Turini, F.: A structural (meta-logical) semantics for linear objects. In:
Alpuente, Sessa [5], pp. 421-434

Mascardi, V., Merelli, E.: Agent-oriented and constraint technologies for dis-
tributed transaction management. In: Parenti, R., Masulli, F. (eds.) Proc. Int.
ICSC Symposia ITA 1999 and SOCO 1999 (1999)

Merelli, E., De Leone, R., Martelli, M., Panti, M.: Embedding constraint logic
programming formula in a local search algorithm for job shop scheduling. In:
EURO XVI, Bruxelles (July 1998)

Meseguer, P., Rossi, F., Schiex, T.: Soft constraints. In: Rossi, et al [127]
Meseguer, P., Torras, C.: Exploiting symmetries within constraint satisfaction
search. Artificial Intelligence 129(1-2), 133-163 (2001)

Mesnard, F., Ruggieri, S.: On proving left termination of constraint logic pro-
grams. ACM Trans. Comput. Log. 4(2) (2003)

Mohr, R., Masini, G.: Good old discrete relaxation. In: ECATI (1988)

Montanari, U.: Networks of constraints: Fundamental properties and applications
to picture processing. Information Science 7, 95-132 (1974)

Montesi, D., Bertino, E., Martelli, M.: Transactions and updates in deductive
databases. IEEE Trans. Knowledge and Data Engineering 9(5), 784-797 (1997)
Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.: MiniZinc:
Towards a standard CP modelling language. In: Bessiere [21], pp. 529-543
Novello, S.: ECL'PS® examples (1998),
http://eclipse-clp.org/examples/golf.ecl.txt

Orlandini, A.: Model-based rescue robot control with ECLiPSe framework. In:
Oddi, A., Cesta, A., Fages, F., Policella, N., Rossi, F. (eds.) CSCLP (2008)
Pettorossi, A., Proietti, M., Senni, V.: The Transformational Approach to Pro-
gram Development. In: Dovier, Pontelli [68], vol. 6125, ch. 6, pp. 111-135 (2010)
Pierro, A.D., Wiklicky, H.: An operational semantics for probabilistic concurrent
constraint programming. In: ICCL, pp. 174-183 (1998)

Provetti, A., Rossi, G.: Action specifications in {log}. In: Falaschi, M., Navarro,
M., Policriti, A. (eds.) APPIA-GULP-PRODE (1997)

Raffaeta, A., Ceccarelli, T., Centeno, D., Giannotti, F., Massolo, A., Parent,
C., Renso, C., Spaccapietra, S., Turini, F.: An application of advanced spatio-
temporal formalisms to behavioural ecology. Geoinformatica 12(1), 37-72 (2008)
Raffaeta, A., Frihwirth, T.W.: Spatio-temporal annotated constraint logic
programming. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, wvol. 1990,
pp. 259-273. Springer, Heidelberg (2001)

Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier, Amsterdam (2006)

Rossi, G., Panegai, E., Poleo, E.: JSetL: a Java library for supporting declarative
programming in Java. Softw. Pract. Exper. 37(2), 115-149 (2007)

Ruttkay, Z.: Fuzzy constraint satisfaction. In: FUZZ-IEEE 1994, Orlando, FL
(1994)

Saraswat, V.A.: Concurrent Constraint Programming. MIT Press, Cambridge
(2003)

Schaerf, A.: Scheduling sport tournaments using constraint logic programming.
Constraints 4(1), 43-65 (1999)

http://eclipse-clp.org/examples/golf.ecl.txt

86

132.
133.

134.
135.
136.
137.
138.
139.

140.

141.

M. Gavanelli and F. Rossi

Schaerf, A.: A survey of automated timetabling. Artif. Intell. Review 13(2) (1999)
Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems:
hard and easy problems. In: IJCAI 1995, pp. 631-637 (1995)

Schulte, C., Stuckey, P.: Efficient constraint propagation engines. In: ToPLaS 2008
(2008)

Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT,
Cambridge (1989)

van Hoeve, W.-J.: The all different constraint: a survey. In: Sixth Annual Work-
shop of the ERCIM Working Group on Constraints (2001)

Wallace, M.: Practical applications of constraint programming. Constraints (1996)
Walsh, T. (ed.): CP 2001. LNCS, vol. 2239. Springer, Heidelberg (2001)
Wielemaker, J., Huang, Z., Van der Meij, L.: SWI-Prolog and the web. Theory
and Practice of Logic Programming 8(3), 363-392 (2008)

Zanarini, A., Milano, M., Pesant, G.: Improved algorithm for the soft global car-
dinality constraint. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS,
vol. 3990, pp. 288-299. Springer, Heidelberg (2006)

Zhou, N.-F.: Programming finite-domain constraint propagators in action rules.
Theory and Practice of Logic Programming 6(5), 483-507 (2006)

	Constraint Logic Programming
	The CLP Paradigm
	Constraint Sorts
	Finite Domains
	Sets

	Related Frameworks
	Constraint Handling Rules
	Concurrent Constraint Programming
	Abductive Constraint Logic Programming
	Soft Constraints and Preferences

	Improvements, Solution Techniques
	Integration with Operations Research
	Symmetry Breaking

	Applications
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

