
Constraint Logic Programming

Sylvain Soliman and François Fages
{Sylvain.Soliman,Francois.Fages}@inria.fr

INRIA – Project-Team CONTRAINTES

MPRI C-2-4-1 Course – September 2009 - February 2010

Sylvain.Soliman@inria.fr CLP

Operational Semantics
Fixpoint Semantics

Program Analysis

Part III

CLP - Operational and Fixpoint Semantics

Sylvain.Soliman@inria.fr CLP

Operational Semantics
Fixpoint Semantics

Program Analysis

Part III: CLP - Operational and Fixpoint Semantics

1 Operational Semantics
CSLD resolution
Observables

2 Fixpoint Semantics
Fixpoint Preliminaries
Fixpoint Semantics of Successes
Fixpoint Semantics of Computed Answers

3 Program Analysis
Abstract Interpretation
Constraint-based Model Checking

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Part IV

Logical Semantics

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Part IV: Logical Semantics

4 Logical Semantics of CLP(X)
Soundness
Completeness

5 Automated Deduction
Proofs in Group Theory

6 CLP(λ)
λ-calculus
Proofs in λ-calculus

7 Negation as Failure
Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Undecidability of MXP

loop:- loop.
contr(P):- success(P,P), loop.
contr(P):- fail(P,P).

If contr(contr) has a success,
then success(contr,contr) succeeds,
and fail(contr,contr) doesn’t succeed,
hence contr(contr) doesn’t succeed: contradiction.

If contr(contr) doesn’t succeed,
then fail(contr,contr) succeeds,
hence contr(contr) succeeds: contradiction.

Therefore programs success and fail cannot both exist.

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Clark’s completion

The Clark’s completion of P is the set P∗ of formulas of the form
∀X p(X)↔ (∃Y1c1 ∧A1

1 ∧ ...∧A1
n1

)∨ ...∨ (∃Ykck ∧Ak
1 ∧ ...∧Ak

nk
)

where the p(X)← ci |Ai
1, ...,A

i
ni

are the rules in P and Yi ’s the
local variables,
∀X¬p(X) if p is not defined in P.

Example 1

CLP(H) program p(s(X)):- p(X).
Clark’s completion P∗ = {∀x p(x)↔ ∃y x = s(y) ∧ p(y)}.
The goal p(0) finitely fails, we have P∗,CET |= ¬p(0).
The goal p(X) doesn’t finitely fail,
we have P∗,CET 6|= ¬∃X p(X) although P∗ |=H ¬∃X p(X)

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Models of the Clark’s completion

Theorem 2

i) P∗ has the same least X -model than P, MXP = MXP∗
ii) P |=X c ⊃ A iff P∗ |=X c ⊃ A, for all c and A,
iii) P, T |= c ⊃ A iff P∗, T |= c ⊃ A.

Proof.

i) is an immediate corollary of full abstraction and least X -model
theorems
For iii) we clearly have (P, T |= c ⊃ A)⇒ (P∗, T |= c ⊃ A). We show
the contrapositive of the opposite, (P, T 6|= c ⊃ A)⇒ (P∗, T 6|= c ⊃ A).
Let I be a model of P and T , based on a structure X , let ρ be a
valuation such that I |= ¬Aρ and X |= cρ.
We have MXP |= ¬Aρ, thus MXP∗ |= ¬Aρ, and as T |= cρ, we conclude
that P∗, T 6|= c ⊃ A.
The proof of ii) is identical, the structure X being fixed.

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Soundness of Negation as Finite Failure

Theorem 3

If G is finitely failed then P∗, T |= ¬G .

Proof.

By induction on the height h of the tree in finite failure for G = c |A, α
where A is the selected atom at the root of the tree.
In the base case h = 1, the constrained atom c |A has no CSLD transition,
we can deduce that P∗, T |= ¬(c ∧ A) hence that P∗, T |= ¬G .

For the induction step, let us suppose h > 1. Let G1, ...,Gn be the sons

of the root and Y1, ...,Yn be the respective sets of introduced variables.

We have P∗, T |= G ↔ ∃Y1 G1 ∨ ... ∨ ∃n Gn. By induction hypothesis,

P∗, T |= ¬Gi for every 1 ≤ i ≤ n, therefore P∗, T |= ¬G .

Sylvain.Soliman@inria.fr CLP

Logical Semantics of CLP(X)
Automated Deduction

CLP(λ)
Negation as Failure

Finite Failure
Clark’s Completion
Soundness w.r.t. Clark’s Completion
Completeness w.r.t. Clark’s Completion

Completeness of Negation as Failure

Theorem 4 ([JL87])

If P∗, T |= ¬G then G is finitely failed.

We show that if G is not finitely failed then P∗, T ,∃(G) is satisfiable. If
G has a success then by the soundness of CSLD resolution, P∗, T |= ∃G .
Else G has a fair infinite derivation G = c0|G0 −→ c1|G 1 −→ ...

For every i ≥ 0, ci is T -satisfiable, thus by the compactness theorem,

cω =
∧

i≥0 ci is T -satisfiable. Let X be a model of T s.t. X |= ∃(cω).

Let I0 = {Aρ | A ∈ Gi for some i ≥ 0 and X |= cωρ}. As the derivation

is fair, every atom A in I0 is selected, thus cω|A −→ cω|A1, ...,An with

[cω|A] ∪ ... ∪ [cω|An] ⊆ I0. We deduce that I0 ⊆ TXP (I0). By

Knaster-Tarski’s theorem, the iterated application up to ordinal ω of the

operator TXP from I0 leads to a fixed point I s.t. I0 ⊆ I , thus [cω|G0] ∈ I .

Hence P∗,∃(G) is X -satisfiable, and P∗, T ,∃(G) is satisfiable.

Sylvain.Soliman@inria.fr CLP

CLP implementation, the WAM
Optimizing CLP

Summing up

Part V

Practical CLP Programming

Sylvain.Soliman@inria.fr CLP

CLP implementation, the WAM
Optimizing CLP

Summing up

The Warren Abstract Machine

First Prolog implementation in the early 70’s (by Colmerauer et
al.).

In 1983, David H. Warren creates the Warren Abstract Machine.

Remains the state of the art (for term representation, basic
instructions, . . .)

Slightly extended for CLP

(constraints instead of substitutions)

(C)SLD resolution seen as a call stack (with marks for choice
points)

Sylvain.Soliman@inria.fr CLP

CLP implementation, the WAM
Optimizing CLP

Summing up

The Warren Abstract Machine

First Prolog implementation in the early 70’s (by Colmerauer et
al.).

In 1983, David H. Warren creates the Warren Abstract Machine.

Remains the state of the art (for term representation, basic
instructions, . . .)

Slightly extended for CLP (constraints instead of substitutions)

(C)SLD resolution seen as a call stack (with marks for choice
points)

Sylvain.Soliman@inria.fr CLP

CLP implementation, the WAM
Optimizing CLP

Summing up

Optimizations from the WAM

Search for predicates should be almost in constant time

Use a hash table - indexing - for the predicate name/arity,

and the
functor of the first argument

Each call normally adds a frame to the call stack (removed on
backtracking)

As for other programming paradigms, not always necessary

Tail recursion can be optimized, when calling and called contexts
are deterministic.

Sylvain.Soliman@inria.fr CLP

CLP implementation, the WAM
Optimizing CLP

Summing up

Optimizations from the WAM

Search for predicates should be almost in constant time

Use a hash table - indexing - for the predicate name/arity, and the
functor of the first argument

Each call normally adds a frame to the call stack (removed on
backtracking)

As for other programming paradigms, not always necessary

Tail recursion can be optimized, when calling and called contexts
are deterministic.

Sylvain.Soliman@inria.fr CLP

CLP implementation, the WAM
Optimizing CLP

Summing up

Optimizations from the WAM

Search for predicates should be almost in constant time

Use a hash table - indexing - for the predicate name/arity, and the
functor of the first argument

Each call normally adds a frame to the call stack (removed on
backtracking)

As for other programming paradigms, not always necessary

Tail recursion can be optimized,

when calling and called contexts
are deterministic.

Sylvain.Soliman@inria.fr CLP

CLP implementation, the WAM
Optimizing CLP

Summing up

Optimizations from the WAM

Search for predicates should be almost in constant time

Use a hash table - indexing - for the predicate name/arity, and the
functor of the first argument

Each call normally adds a frame to the call stack (removed on
backtracking)

As for other programming paradigms, not always necessary

Tail recursion can be optimized, when calling and called contexts
are deterministic.

Sylvain.Soliman@inria.fr CLP

CLP implementation, the WAM
Optimizing CLP

Summing up

Putting it all together

Naive sum

sum([], 0).
sum([H | T], S) :-

sum(T, S1),
S is S1 + H.

Much better

sum(L, S) :-
sum_aux(L, 0, S).

sum_aux([], S, S).
sum_aux([H | T], S0, S) :-

S1 is S0 + H,
sum_aux(T, S1, S).

Sylvain.Soliman@inria.fr CLP

CLP implementation, the WAM
Optimizing CLP

Summing up

Putting it all together

Naive sum

sum([], 0).
sum([H | T], S) :-

sum(T, S1),
S is S1 + H.

Much better

sum(L, S) :-
sum_aux(L, 0, S).

sum_aux([], S, S).
sum_aux([H | T], S0, S) :-

S1 is S0 + H,
sum_aux(T, S1, S).

Sylvain.Soliman@inria.fr CLP

CLP implementation, the WAM
Optimizing CLP

Summing up

Putting it all together

If numbers are coded as the fact number(X)?

sum(S) :- findall(X, number(X), L), sum(L, S).

sum(S) :-
g_assign(sum, 0),
(

number(N),
g_read(sum, S1),
S2 is S1 + N,
g_assign(sum, S2),
fail

;
g_read(sum, S)

).

Sylvain.Soliman@inria.fr CLP

CLP implementation, the WAM
Optimizing CLP

Summing up

Putting it all together

If numbers are coded as the fact number(X)?

sum(S) :- findall(X, number(X), L), sum(L, S).

sum(S) :-
g_assign(sum, 0),
(

number(N),
g_read(sum, S1),
S2 is S1 + N,
g_assign(sum, S2),
fail

;
g_read(sum, S)

).

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Part VI

Concurrent Constraint Programming

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Part VI: Concurrent Constraint Programming

11 Introduction
Syntax
CC vs. CLP

12 Operational Semantics
Transitions
Properties
Observables

13 Examples
append
merge
CC(FD)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Syntax
CC vs. CLP

The Paradigm of Constraint Programming

memory of values
programming variables

memory of constraints
mathematical variables

Xi ∈ [3, 15]

ΣaiXi ≥ b

card(1, [X ≥ Y + 5,
Y ≥ X + 3])

Xi = Xj + 2
add

Xi ≥ 5?

test

V1

Vi

Vj

Vi := Vj + 1

read

write

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Syntax
CC vs. CLP

Concurrent Constraint Programs

Class of programming languages CC(X) introduced by Saraswat
[Sar93] as a merge of Constraint and Concurrent Logic
Programming.

Processes P ::= D.A
Declarations D ::= p(~x) = A,D | ε
Agents A ::= tell(c) |

∀~x(c → A)

| A ‖ A | A + A | ∃xA | p(~x)

Constraint Store

CC agent CC agent

tellask

+

+ +

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Syntax
CC vs. CLP

Concurrent Constraint Programs

Class of programming languages CC(X) introduced by Saraswat
[Sar93] as a merge of Constraint and Concurrent Logic
Programming.

Processes P ::= D.A
Declarations D ::= p(~x) = A,D | ε
Agents A ::= tell(c) | ∀~x(c → A) | A ‖ A | A + A | ∃xA | p(~x)

Constraint Store

CC agent CC agent

tellask

+

+ +

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Syntax
CC vs. CLP

Translating CLP(X) into CC(X) Declarations

CLP(X) program:

A← c |B,C
A← d |D,E
B ← e

equivalent CC(X) declaration:

A = tell(c)||B||C + tell(d)||D||E
B = tell(e)

This is just a process calculus syntax for CLP programs. . .

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Syntax
CC vs. CLP

Translating CC(X) without ask into CLP(X)

(CC agent)† = CLP goal

(tell(c))† =

c
(A || B)† = A†,B†

(A + B)† = p(~x) where ~x = fv(A) ∪ fv(B) and
p(~x)← A†

p(~x)← B†

(∃x A)† = q(~y) where ~y = fv(A) \ {x} and
q(~y)← A†

(p(~x))† = p(~x)

The ask operation c → A has no CLP equivalent.

It is a new synchronization primitive between agents.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Syntax
CC vs. CLP

Translating CC(X) without ask into CLP(X)

(CC agent)† = CLP goal

(tell(c))† = c
(A || B)† =

A†,B†

(A + B)† = p(~x) where ~x = fv(A) ∪ fv(B) and
p(~x)← A†

p(~x)← B†

(∃x A)† = q(~y) where ~y = fv(A) \ {x} and
q(~y)← A†

(p(~x))† = p(~x)

The ask operation c → A has no CLP equivalent.

It is a new synchronization primitive between agents.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Syntax
CC vs. CLP

Translating CC(X) without ask into CLP(X)

(CC agent)† = CLP goal

(tell(c))† = c
(A || B)† = A†,B†

(A + B)† =

p(~x) where ~x = fv(A) ∪ fv(B) and
p(~x)← A†

p(~x)← B†

(∃x A)† = q(~y) where ~y = fv(A) \ {x} and
q(~y)← A†

(p(~x))† = p(~x)

The ask operation c → A has no CLP equivalent.

It is a new synchronization primitive between agents.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Syntax
CC vs. CLP

Translating CC(X) without ask into CLP(X)

(CC agent)† = CLP goal

(tell(c))† = c
(A || B)† = A†,B†

(A + B)† = p(~x) where ~x = fv(A) ∪ fv(B) and
p(~x)← A†

p(~x)← B†

(∃x A)† =

q(~y) where ~y = fv(A) \ {x} and
q(~y)← A†

(p(~x))† = p(~x)

The ask operation c → A has no CLP equivalent.

It is a new synchronization primitive between agents.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Syntax
CC vs. CLP

Translating CC(X) without ask into CLP(X)

(CC agent)† = CLP goal

(tell(c))† = c
(A || B)† = A†,B†

(A + B)† = p(~x) where ~x = fv(A) ∪ fv(B) and
p(~x)← A†

p(~x)← B†

(∃x A)† = q(~y) where ~y = fv(A) \ {x} and
q(~y)← A†

(p(~x))† =

p(~x)

The ask operation c → A has no CLP equivalent.

It is a new synchronization primitive between agents.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Syntax
CC vs. CLP

Translating CC(X) without ask into CLP(X)

(CC agent)† = CLP goal

(tell(c))† = c
(A || B)† = A†,B†

(A + B)† = p(~x) where ~x = fv(A) ∪ fv(B) and
p(~x)← A†

p(~x)← B†

(∃x A)† = q(~y) where ~y = fv(A) \ {x} and
q(~y)← A†

(p(~x))† = p(~x)

The ask operation c → A has no CLP equivalent.

It is a new synchronization primitive between agents.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

CC Computations

Concurrency = communication (shared variables)
+ synchronization (ask)

Communication channels, i.e. variables, are transmissible by agents
(like in π-calculus, unlike CCS, CSP, Occam,...)

Communication is additive (a constraint will never be removed),
monotonic accumulation of information in the store (as in CLP, as
in Scott’s information systems)

Synchronization makes computation both data-driven and
goal-directed.

No private communication, all agents sharing a variable will see a
constraint posted on that variable,

Not a parallel implementation model.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

CC(X) Configurations

Configuration (~x ; c ; Γ): store c of constraints, multiset Γ of agents,
modulo ≡ the smallest congruence s.t.:

X -equivalence
ca`Xd

c ≡ d

α-Conversion
z 6∈ fv(A)

∃yA ≡ ∃zA[z/y]

Parallel (~x ; c; A ‖ B, Γ) ≡ (~x ; c ; A,B, Γ)

Hiding
y 6∈ fv(c , Γ)

(~x ; c ;∃yA, Γ) ≡ (~x , y ; c ; A, Γ)

y 6∈ fv(c , Γ)

(~x , y ; c; Γ) ≡ (~x ; c ; Γ)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

CC(X) Transitions

Interleaving semantics

Procedure call
(p(~y) = A) ∈ D

(~x ; c ; p(~y), Γ) −→ (~x ; c ; A, Γ)

Tell (~x ; c ; tell(d), Γ) −→ (~x ; c ∧ d ; Γ)

Ask

c `X d [~t/~y]

(~x ; c ;∀~y(d → A), Γ) −→ (~x ; c ; A[~t/~y], Γ)

Blind choice (~x ; c ; A + B, Γ) −→ (~x ; c ; A, Γ)
(local/internal) (~x ; c ; A + B, Γ) −→ (~x ; c ; B, Γ)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

CC(X) Transitions

Interleaving semantics

Procedure call
(p(~y) = A) ∈ D

(~x ; c ; p(~y), Γ) −→ (~x ; c ; A, Γ)

Tell (~x ; c ; tell(d), Γ) −→ (~x ; c ∧ d ; Γ)

Ask
c `X d [~t/~y]

(~x ; c ;∀~y(d → A), Γ) −→ (~x ; c ; A[~t/~y], Γ)

Blind choice (~x ; c ; A + B, Γ) −→ (~x ; c ; A, Γ)
(local/internal) (~x ; c ; A + B, Γ) −→ (~x ; c ; B, Γ)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

CC(X) extra rules

Guarded choice
c `X cj

(~x ; c ; Σici → Ai , Γ) −→ (~x ; c ; Aj , Γ)
(global/external)

AskNot
c `X ¬d

(~x ; c ; ∀~y(d → A), Γ) −→ (~x ; c; Γ)

Sequentiality
(~x ; c ; Γ) −→ (~x ; d ; Γ′)

(~x ; c ; (Γ; ∆),Φ) −→ (~x ; d ; (Γ′; ∆),Φ)

(~x ; c ; (∅; Γ),∆) −→ (~x ; d ; Γ,∆)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

Properties of CC Transitions (1)

Theorem 5 (Monotonicity)

If (~x ; c ; Γ)→ (~y ; d ; ∆) then (~x ; c ∧ e; Γ,Σ)→ (~y ; d ∧ e; ∆,Σ) for
every constraint e and agents Σ.

Proof.

tell and ask are monotonic (monotonic conditions in guards).

Corollary 6

Strong fairness and weak fairness are equivalent.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

Properties of CC Transitions (1)

Theorem 5 (Monotonicity)

If (~x ; c ; Γ)→ (~y ; d ; ∆) then (~x ; c ∧ e; Γ,Σ)→ (~y ; d ∧ e; ∆,Σ) for
every constraint e and agents Σ.

Proof.

tell and ask are monotonic (monotonic conditions in guards).

Corollary 6

Strong fairness and weak fairness are equivalent.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

Properties of CC Transitions (2)

A configuration without + is called deterministic.

Theorem 7 (Confluence)

For any deterministic configuration κ with deterministic
declarations,
if κ→ κ1 and κ→ κ2 then κ1 → κ′ and κ2 → κ′ for some κ′.

Corollary 8

Independence of the scheduling of the execution of parallel agents.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

Properties of CC Transitions (3)

Theorem 9 (Extensivity)

If (~x ; c ; Γ)→ (~y ; d ; ∆) then ∃~yd `X ∃~xc.

Proof.

For any constraint e, c ∧ e `X c.

Theorem 10 (Restartability)

If (~x ; c ; Γ)→∗ (~y ; d ; ∆) then (~x ;∃~yd ; Γ)→∗ (~y ; d ; ∆).

Proof.

By extensivity and monotonicity.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

Properties of CC Transitions (3)

Theorem 9 (Extensivity)

If (~x ; c ; Γ)→ (~y ; d ; ∆) then ∃~yd `X ∃~xc.

Proof.

For any constraint e, c ∧ e `X c.

Theorem 10 (Restartability)

If (~x ; c ; Γ)→∗ (~y ; d ; ∆) then (~x ;∃~yd ; Γ)→∗ (~y ; d ; ∆).

Proof.

By extensivity and monotonicity.

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

CC(X) Operational Semanticssss

observing the set of success stores,

Oss(D.A; c) = {∃~xd ∈ X |(∅; c; A) −→∗ (~x ; d ; ε)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃~xd ∈ X |(∅; c ; A) −→∗ (~x ; d ; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃~xd ∈ X |(∅; c ; A) −→∗ (~x ; d ; B)}

observing the set of limit stores?

O∞(D.A; c0) = {t?{∃~xici}i≥0|(∅; c0; A) −→ (~x1; c1; Γ1) −→ ...}

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

CC(X) Operational Semanticssss

observing the set of success stores,

Oss(D.A; c) = {∃~xd ∈ X |(∅; c; A) −→∗ (~x ; d ; ε)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃~xd ∈ X |(∅; c ; A) −→∗ (~x ; d ; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃~xd ∈ X |(∅; c ; A) −→∗ (~x ; d ; B)}

observing the set of limit stores?

O∞(D.A; c0) = {t?{∃~xici}i≥0|(∅; c0; A) −→ (~x1; c1; Γ1) −→ ...}

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

CC(X) Operational Semanticssss

observing the set of success stores,

Oss(D.A; c) = {∃~xd ∈ X |(∅; c; A) −→∗ (~x ; d ; ε)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃~xd ∈ X |(∅; c ; A) −→∗ (~x ; d ; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃~xd ∈ X |(∅; c ; A) −→∗ (~x ; d ; B)}

observing the set of limit stores?

O∞(D.A; c0) = {t?{∃~xici}i≥0|(∅; c0; A) −→ (~x1; c1; Γ1) −→ ...}

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

CC(X) Operational Semanticssss

observing the set of success stores,

Oss(D.A; c) = {∃~xd ∈ X |(∅; c; A) −→∗ (~x ; d ; ε)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃~xd ∈ X |(∅; c ; A) −→∗ (~x ; d ; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃~xd ∈ X |(∅; c ; A) −→∗ (~x ; d ; B)}

observing the set of limit stores?

O∞(D.A; c0) = {t?{∃~xici}i≥0|(∅; c0; A) −→ (~x1; c1; Γ1) −→ ...}

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(H) ’append’ Program(s)

Undirectional CLP style

append(A,B,C) = tell(A = [])||tell(C = B)
+tell(A = [X |L])||tell(C = [X |R])||append(L,B,R)

Directional CC success store style

append(A,B,C) = (A = []→ tell(C = B))
+∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
||∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(H) ’append’ Program(s)

Undirectional CLP style

append(A,B,C) = tell(A = [])||tell(C = B)
+tell(A = [X |L])||tell(C = [X |R])||append(L,B,R)

Directional CC success store style

append(A,B,C) = (A = []→ tell(C = B))
+∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
||∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(H) ’append’ Program(s)

Undirectional CLP style

append(A,B,C) = tell(A = [])||tell(C = B)
+tell(A = [X |L])||tell(C = [X |R])||append(L,B,R)

Directional CC success store style

append(A,B,C) = (A = []→ tell(C = B))
+∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
||∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(H) ’append’ Program(s)

Undirectional CLP style

append(A,B,C) = tell(A = [])||tell(C = B)
+tell(A = [X |L])||tell(C = [X |R])||append(L,B,R)

Directional CC success store style

append(A,B,C) = (A = []→ tell(C = B))
+∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
||∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(H) ’append’ Program(s)

Undirectional CLP style

append(A,B,C) = tell(A = [])||tell(C = B)
+tell(A = [X |L])||tell(C = [X |R])||append(L,B,R)

Directional CC success store style

append(A,B,C) = (A = []→ tell(C = B))
+∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
||∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(H) ’append’ Program(s)

Undirectional CLP style

append(A,B,C) = tell(A = [])||tell(C = B)
+tell(A = [X |L])||tell(C = [X |R])||append(L,B,R)

Directional CC success store style

append(A,B,C) = (A = []→ tell(C = B))
+∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
||∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(H) ’merge’ Program

Merging streams

merge(A,B,C) = (A = []→ tell(C = B))
+(B = []→ tell(C = A))
+∀X , L(A = [X |L]→ tell(C = [X |R])||merge(L,B,R))
+∀X , L(B = [X |L]→ tell(C = [X |R])||merge(A, L,R))

Good for the

Oss

observable(s?)

Many-to-one communication:
client(C 1, ...)
...
client(Cn, ...)
server([C 1, ...,Cn], ...) =∑n

i=1 ∀X , L(Ci = [X |L]→ ...||server([C 1, ..., L, ...,Cn], ...)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(H) ’merge’ Program

Merging streams

merge(A,B,C) = (A = []→ tell(C = B))
+(B = []→ tell(C = A))
+∀X , L(A = [X |L]→ tell(C = [X |R])||merge(L,B,R))
+∀X , L(B = [X |L]→ tell(C = [X |R])||merge(A, L,R))

Good for the Oss observable

(s?)

Many-to-one communication:
client(C 1, ...)
...
client(Cn, ...)
server([C 1, ...,Cn], ...) =∑n

i=1 ∀X , L(Ci = [X |L]→ ...||server([C 1, ..., L, ...,Cn], ...)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(FD) Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition

EL: c ∧ Γ −→ Γ
if

FD |= cσ for every valuation σ of the variables in c by values of
their domain.

Suppose access to min and max indexicals:
ask(X ≥ Y + k) ∼= min(X) ≥ max(Y) + k

asknot(X ≥ Y + k) ∼= max(X) < min(Y) + k

ask(X 6= Y) ∼= max(X) < min(Y) ∨min(X) > max(Y)
a better approximation with dom:
∼= (dom(X) ∩ dom(Y) = ∅)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(FD) Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition

EL: c ∧ Γ −→ Γ
if FD |= cσ for every valuation σ of the variables in c by values of
their domain.

Suppose access to min and max indexicals:
ask(X ≥ Y + k)

∼= min(X) ≥ max(Y) + k

asknot(X ≥ Y + k) ∼= max(X) < min(Y) + k

ask(X 6= Y) ∼= max(X) < min(Y) ∨min(X) > max(Y)
a better approximation with dom:
∼= (dom(X) ∩ dom(Y) = ∅)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(FD) Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition

EL: c ∧ Γ −→ Γ
if FD |= cσ for every valuation σ of the variables in c by values of
their domain.

Suppose access to min and max indexicals:
ask(X ≥ Y + k) ∼= min(X) ≥ max(Y) + k

asknot(X ≥ Y + k)

∼= max(X) < min(Y) + k

ask(X 6= Y) ∼= max(X) < min(Y) ∨min(X) > max(Y)
a better approximation with dom:
∼= (dom(X) ∩ dom(Y) = ∅)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(FD) Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition

EL: c ∧ Γ −→ Γ
if FD |= cσ for every valuation σ of the variables in c by values of
their domain.

Suppose access to min and max indexicals:
ask(X ≥ Y + k) ∼= min(X) ≥ max(Y) + k

asknot(X ≥ Y + k) ∼= max(X) < min(Y) + k

ask(X 6= Y)

∼= max(X) < min(Y) ∨min(X) > max(Y)
a better approximation with dom:
∼= (dom(X) ∩ dom(Y) = ∅)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(FD) Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition

EL: c ∧ Γ −→ Γ
if FD |= cσ for every valuation σ of the variables in c by values of
their domain.

Suppose access to min and max indexicals:
ask(X ≥ Y + k) ∼= min(X) ≥ max(Y) + k

asknot(X ≥ Y + k) ∼= max(X) < min(Y) + k

ask(X 6= Y) ∼= max(X) < min(Y) ∨min(X) > max(Y)
a better approximation with dom:

∼= (dom(X) ∩ dom(Y) = ∅)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(FD) Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition

EL: c ∧ Γ −→ Γ
if FD |= cσ for every valuation σ of the variables in c by values of
their domain.

Suppose access to min and max indexicals:
ask(X ≥ Y + k) ∼= min(X) ≥ max(Y) + k

asknot(X ≥ Y + k) ∼= max(X) < min(Y) + k

ask(X 6= Y) ∼= max(X) < min(Y) ∨min(X) > max(Y)
a better approximation with dom:
∼= (dom(X) ∩ dom(Y) = ∅)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(FD) Constraints as “in..”

Basic constraints
(X ≥ Y + k) =

X in min(Y) + k .. ∞ || Y in 0 .. max(X)− k

Reified constraints
(B ⇔ X = A) = B in 0..1 ||

X = A→ B = 1 || X 6= A→ B = 0 ||
B = 1→ X = A || B = 0→ X 6= A

Higher-order constraints
card(N, L) = L = []→ N = 0 ||

L = [C |S]→
∃B,M (B ⇔ C || N = B + M || card(M,S))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(FD) Constraints as “in..”

Basic constraints
(X ≥ Y + k) = X in min(Y) + k .. ∞ || Y in 0 .. max(X)− k

Reified constraints
(B ⇔ X = A) =

B in 0..1 ||
X = A→ B = 1 || X 6= A→ B = 0 ||
B = 1→ X = A || B = 0→ X 6= A

Higher-order constraints
card(N, L) = L = []→ N = 0 ||

L = [C |S]→
∃B,M (B ⇔ C || N = B + M || card(M,S))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(FD) Constraints as “in..”

Basic constraints
(X ≥ Y + k) = X in min(Y) + k .. ∞ || Y in 0 .. max(X)− k

Reified constraints
(B ⇔ X = A) = B in 0..1 ||

X = A→ B = 1 || X 6= A→ B = 0 ||
B = 1→ X = A || B = 0→ X 6= A

Higher-order constraints
card(N, L) = L = []→ N = 0 ||

L = [C |S]→
∃B,M (B ⇔ C || N = B + M || card(M,S))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(FD) Constraints as “in..”

Basic constraints
(X ≥ Y + k) = X in min(Y) + k .. ∞ || Y in 0 .. max(X)− k

Reified constraints
(B ⇔ X = A) = B in 0..1 ||

X = A→ B = 1 || X 6= A→ B = 0 ||
B = 1→ X = A || B = 0→ X 6= A

Higher-order constraints
card(N, L) =

L = []→ N = 0 ||
L = [C |S]→
∃B,M (B ⇔ C || N = B + M || card(M,S))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(FD) Constraints as “in..”

Basic constraints
(X ≥ Y + k) = X in min(Y) + k .. ∞ || Y in 0 .. max(X)− k

Reified constraints
(B ⇔ X = A) = B in 0..1 ||

X = A→ B = 1 || X 6= A→ B = 0 ||
B = 1→ X = A || B = 0→ X 6= A

Higher-order constraints
card(N, L) = L = []→ N = 0 ||

L = [C |S]→
∃B,M (B ⇔ C || N = B + M || card(M,S))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

CC(FD) Constraints as “in..”

Basic constraints
(X ≥ Y + k) = X in min(Y) + k .. ∞ || Y in 0 .. max(X)− k

Reified constraints
(B ⇔ X = A) = B in 0..1 ||

X = A→ B = 1 || X 6= A→ B = 0 ||
B = 1→ X = A || B = 0→ X 6= A

Higher-order constraints
card(N, L) = L = []→ N = 0 ||

L = [C |S]→
∃B,M (B ⇔ C || N = B + M || card(M,S))

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

Andora Principle

“Always execute deterministic computation first”.

Disjunctive scheduling:

deterministic propagation of the disjunctive constraints for which
one of the alternatives is dis-entailed:

card(1, [x ≥ y + dy , y ≥ x + dx])

before creating choice points:

(x ≥ y + dy) + (y ≥ x + dx)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

Constructive Disjunction in CC(FD) (1)

∨L
c `X e d `X e

c ∨ d `X e

Intuitionistic logic tells us we can infer the common information to
both branches of a disjunction without creating choice points!

max(X ,Y ,Z) = (X > Y ||Z = X) + (X <= Y ||Z = Y)
or
max(X ,Y ,Z) = X > Y → Z = X + X <= Y → Z = Y .
or
max(X ,Y ,Z) = X > Y → Z = X || X <= Y → Z = Y .
better? (with indexicals)

max(X ,Y ,Z) = Z in min(X)..∞ || Z in min(Y)..∞
|| Z in dom(X) ∪ dom(Y) || · · ·

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

Constructive Disjunction in CC(FD) (1)

∨L
c `X e d `X e

c ∨ d `X e

Intuitionistic logic tells us we can infer the common information to
both branches of a disjunction without creating choice points!

max(X ,Y ,Z) = (X > Y ||Z = X) + (X <= Y ||Z = Y)
or
max(X ,Y ,Z) = X > Y → Z = X + X <= Y → Z = Y .
or
max(X ,Y ,Z) = X > Y → Z = X || X <= Y → Z = Y .
better? (with indexicals)
max(X ,Y ,Z) = Z in min(X)..∞ || Z in min(Y)..∞

|| Z in dom(X) ∪ dom(Y) || · · ·

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

Constructive Disjunction in CC(FD) (2)

Disjunctive precedence constraints

disjunctive(T 1,D1,T 2,D2) =
(T 1 >= T 2 + D2)+
(T 2 >= T 1 + D1)

Using constructive disjunction

disjunctive(T 1,D1,T 2,D2) =
T 1 in (0..max(T 2)− D1) ∪ (min(T 2) + D2..∞) ||
T 2 in (0..max(T 1)− D2) ∪ (min(T 1) + D1..∞)

Sylvain.Soliman@inria.fr CLP

Introduction
Operational Semantics

Examples

append
merge
CC(FD)

Constructive Disjunction in CC(FD) (2)

Disjunctive precedence constraints

disjunctive(T 1,D1,T 2,D2) =
(T 1 >= T 2 + D2)+
(T 2 >= T 1 + D1)

Using constructive disjunction

disjunctive(T 1,D1,T 2,D2) =
T 1 in (0..max(T 2)− D1) ∪ (min(T 2) + D2..∞) ||
T 2 in (0..max(T 1)− D2) ∪ (min(T 1) + D1..∞)

Sylvain.Soliman@inria.fr CLP

Bibliography I

Joxan Jaffar and Jean-Louis Lassez.

Constraint logic programming.
In Proceedings of the 14th ACM Symposium on Principles of Programming Languages, Munich, Germany,
pages 111–119. ACM, January 1987.

Vijay A. Saraswat.

Concurrent constraint programming.
ACM Doctoral Dissertation Awards. MIT Press, 1993.

Sylvain.Soliman@inria.fr CLP

	CLP - Introduction and Logical Background
	Constraint solving and symmetries
	CLP - Operational and Fixpoint Semantics
	Operational Semantics
	CSLD resolution
	Observables

	Fixpoint Semantics
	Fixpoint Preliminaries
	Fixpoint Semantics of Successes
	Fixpoint Semantics of Computed Answers

	Program Analysis
	Abstract Interpretation
	Constraint-based Model Checking

	Logical Semantics
	Logical Semantics of CLP(X)
	Soundness
	Completeness

	Automated Deduction
	Proofs in Group Theory

	CLP()
	-calculus
	Proofs in -calculus

	Negation as Failure
	Finite Failure
	Clark's Completion
	Soundness w.r.t. Clark's Completion
	Completeness w.r.t. Clark's Completion

	Practical CLP Programming
	CLP implementation, the WAM
	Optimizing CLP
	Summing up

	Concurrent Constraint Programming
	Introduction
	Syntax
	CC vs. CLP

	Operational Semantics
	Transitions
	Properties
	Observables

	Examples
	append
	merge
	CC(FD)

	Appendix

