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Part Il

CLP - Operational and Fixpoint Semantics
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Part Ill: CLP - Operational and Fixpoint Semantics

@ Operational Semantics

o

@ CSLD resolution
@ Observables

Fixpoint Semantics

@ Fixpoint Preliminaries

@ Fixpoint Semantics of Successes

@ Fixpoint Semantics of Computed Answers

Program Analysis
@ Abstract Interpretation
o Constraint-based Model Checking
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Part IV

Logical Semantics
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Part IV: Logical Semantics

@ Logical Semantics of CLP(X)
@ Soundness
o Completeness

© Automated Deduction

@ Proofs in Group Theory
Q CLP()

@ A-calculus

@ Proofs in A-calculus

@ Negation as Failure
@ Finite Failure
@ Clark’s Completion
@ Soundness w.r.t. Clark's Completion
o Completeness w.r.t. Clark's Completion
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Finite Failure

Clark’s Completion

Soundness w.r.t. Clark’s Completion
Negation as Failure Completeness w.r.t. Clark’s Completion

Undecidability of M7

loop:- loop.
contr(P) :- success(P,P), loop.
contr(P):- fail(P,P).

If contr(contr) has a success,

then success(contr,contr) succeeds,

and fail (contr,contr) doesn't succeed,

hence contr (contr) doesn't succeed: contradiction.

If contr (contr) doesn’t succeed,
then fail (contr,contr) succeeds,
hence contr (contr) succeeds: contradiction.

Therefore programs success and fail cannot both exist.
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Finite Failure

Clark’s Completion

Soundness w.r.t. Clark’s Completion
Negation as Failure Completeness w.r.t. Clark’s Completion

Clark’s completion

The Clark’s completion of P is the set P* of formulas of the form
VX p(X) « (AY1ict ANATA L AAL)V LV (3Yick ANAS A LA AR )
where the p(X) < ci|A], ..., A}, are the rules in P and Y;'s the
local variables,

VX=p(X) if p is not defined in P.

CLP(H) program p(s(X)):- p(X).
Clark’s completion P* = {Vx p(x) < Jy x =s(y) A p(y)}.
The goal p(0) finitely fails, we have P*, CET = —p(0).
The goal p(X) doesn't finitely fail,

we have P*, CET (= —3X p(X) although P* =4 —3X p(X)
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Finite Failure

Clark’s Completion

Soundness w.r.t. Clark’s Completion
Negation as Failure Completeness w.r.t. Clark’s Completion

Models of the Clark’s completion

Theorem 2

i) P* has the same least X-model than P, M = M.
i) P=x c DAIffP* =x c DA, for all c and A,
i) P, T =c D AIff P*,T |=c D A.

| N

Proof.

i) is an immediate corollary of full abstraction and least X-model
theorems

For iii) we clearly have (P,7 = c D A) = (P*,7 |= ¢ D A). We show
the contrapositive of the opposite, (P,7 [~ c D A) = (P*,7 [~ c D A).
Let / be a model of P and 7, based on a structure X, let p be a
valuation such that / = —-Ap and X = cp.

We have M7 = =Ap, thus MZ. = —Ap, and as 7 |= cp, we conclude
that P*,7 [~ c D A.

The proof of ii) is identical, the structure X being fixed. O
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Finite Failure

Clark’s Completion

Soundness w.r.t. Clark’s Completion
Negation as Failure Completeness w.r.t. Clark’s Completion

Soundness of Negation as Finite Failure

If G is finitely failed then P*,T = —G.

Proof.

By induction on the height h of the tree in finite failure for G = ¢c|A, «
where A is the selected atom at the root of the tree.

In the base case h = 1, the constrained atom c|A has no CSLD transition,
we can deduce that P*,7 = —(c A A) hence that P*, T = —-G.

For the induction step, let us suppose h > 1. Let Gy, ..., G, be the sons
of the root and Y7, ..., Y, be the respective sets of introduced variables.
We have P*, 7 = G < 3Y; G V ...V 3, G,. By induction hypothesis,
P*, T |= —G; for every 1 < j < n, therefore P*, 7 E —G. L]

<
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Finite Failure

Clark’s Completion

Soundness w.r.t. Clark’s Completion
Negation as Failure Completeness w.r.t. Clark’'s Completion

Completeness of Negation as Failure

Theorem 4 ([JL87])

If P*,T |= =G then G is finitely failed.

We show that if G is not finitely failed then P*,7,3(G) is satisfiable. If
G has a success then by the soundness of CSLD resolution, P*,7 |= 3G.
Else G has a fair infinite derivation G = ¢y|Gy — ¢1|G1 — ...

For every i > 0, ¢; is 7 -satisfiable, thus by the compactness theorem,

Cwo = N\j>o Gi is T-satisfiable. Let X be a model of 7 s.t. X = 3(c).
Let fo = {Ap | A€ G; for some i >0 and X |= c.p}. As the derivation
is fair, every atom A in Iy is selected, thus ¢,|A — ¢, |Aq, ..., A, with
[culA] U ... U[cu]An] C fo. We deduce that Iy C T5 (). By
Knaster-Tarski's theorem, the iterated application up to ordinal w of the
operator T from Iy leads to a fixed point I s.t. Ip C /, thus [c,|Go] € /.

Hence P*,3(G) is X-satisfiable, and P*, 7, 3(G) is satisfiable. B inria
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Part V

Practical CLP Programming
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CLP implementation, the WAM

The Warren Abstract Machine

First Prolog implementation in the early 70's (by Colmerauer et

al.).
In 1983, David H. Warren creates the Warren Abstract Machine.

Remains the state of the art (for term representation, basic
instructions, .. .)

Slightly extended for CLP

(C)SLD resolution seen as a call stack (with marks for choice
points)
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CLP implementation, the WAM

The Warren Abstract Machine

First Prolog implementation in the early 70's (by Colmerauer et

al.).
In 1983, David H. Warren creates the Warren Abstract Machine.

Remains the state of the art (for term representation, basic
instructions, .. .)

Slightly extended for CLP (constraints instead of substitutions)

(C)SLD resolution seen as a call stack (with marks for choice
points)
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Optimizing CLP

Optimizations from the WAM

Search for predicates should be almost in constant time

Use a hash table - indexing - for the predicate name/arity,

Each call normally adds a frame to the call stack (removed on
backtracking)

As for other programming paradigms, not always necessary
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Optimizing CLP

Optimizations from the WAM

Search for predicates should be almost in constant time

Use a hash table - indexing - for the predicate name/arity, and the
functor of the first argument

Each call normally adds a frame to the call stack (removed on

backtracking)

As for other programming paradigms, not always necessary
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Optimizing CLP

Optimizations from the WAM

Search for predicates should be almost in constant time

Use a hash table - indexing - for the predicate name/arity, and the
functor of the first argument

Each call normally adds a frame to the call stack (removed on
backtracking)

As for other programming paradigms, not always necessary

Tail recursion can be optimized,
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Optimizing CLP

Optimizations from the WAM

Search for predicates should be almost in constant time

Use a hash table - indexing - for the predicate name/arity, and the
functor of the first argument

Each call normally adds a frame to the call stack (removed on
backtracking)

As for other programming paradigms, not always necessary

Tail recursion can be optimized, when calling and called contexts
are deterministic.
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Summing up

Putting it all together

sum([], 0).
sum([H | T], S) :-
sum(T, S1),

S is S1 + H.
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Summing up

Putting it all together

Naive sum

sum([], 0).
sum([H | T], S) :-
sum(T, S1),

S is S1 + H.

Much better
sum(L, S) :-
sum_aux(L, 0, S).

sum_aux([], S, S).

sum_aux([H | T], SO, S) :-
S1 is SO + H,
sum_aux(T, S1, S).

=" NRIA
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Summing up

Putting it all together

If numbers are coded as the fact number (X)?

sum(S) :- findall(X, number(X), L), sum(L, S). J
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Summing up

Putting it all together

If numbers are coded as the fact number (X)?

sum(S) :- findall(X, number(X), L), sum(L, S). J
sum(S) :-

g_assign(sum, 0),

(

number (N) ,
g_read(sum, S1),
S2 is S1 + N,
g_assign(sum, S2),
fail

g_read(sum, S)
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Part VI

Concurrent Constraint Programming
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Part VI: Concurrent Constraint Programming

@ Introduction
@ Syntax
e CCvs. CLP

@ Operational Semantics
@ Transitions
o Properties
@ Observables

@ Examples
@ append

@ merge

o CC(FD)
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Intr ion
troductio Syntax

CCvs. CLP

The Paradigm of Constraint Programming

memory of values memory of constraints
programming variables mathematical variables
Vi
X=X +2

X; € [3,15]
Za,-X,- > b

S

-

®
&
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Introduction

Syntax
CCvs. CLP

Concurrent Constraint Programs

Class of programming languages CC(X') introduced by Saraswat
[Sar93] as a merge of Constraint and Concurrent Logic
Programming.

Processes P:=DA
Declarations D 1= p(X) =A,D | ¢
Agents A = tell(c) | |A||A]A+A]|3xA | p(X)

CC agent CC agent

Constraint Store
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Introduction

Syntax
CCvs. CLP

Concurrent Constraint Programs

Class of programming languages CC(X') introduced by Saraswat
[Sar93] as a merge of Constraint and Concurrent Logic
Programming.

Processes P:=DA
Declarations D 1= p(X) =A,D | ¢
Agents A= tell(c) | VX(c — A) |A]A| A+ A| IxA | p(X)

CC agent CC agent

Constraint Store
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Introduction Sy

CCvs. CLP

Translating CLP(&') into CC(&X') Declarations

CLP(X) program:

A«—d|D,E
B«—e

A«—c|B,C J

equivalent CC(X’) declaration:

A = tell(c)||B||C + tell(d)||D||E
B = tell(e) J

This is just a process calculus syntax for CLP programs. ..
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Intr ion
troductio Syntax

CCvs. CLP

Translating CC(X’) without ask into CLP(X)

CC agent)’ = CLP goal
(CC agent) g
(tell(c)) =
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Intr ion
troductio Syntax

CCvs. CLP

Translating CC(X’) without ask into CLP(X)

(CC agent)’ = CLP goal

(tell(c)) =c
(Al B =
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Intr ion
troductio Syntax

CCvs. CLP

Translating CC(X’) without ask into CLP(X)

(CC agent)’ = CLP goal

(tell(c)) =c
(All B) = AT B
(A+B) =
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Intr ion
troductio Syntax

CCvs. CLP

Translating CC(X’) without ask into CLP(X)

(CC agent)’ = CLP goal

(tell(c)) =c

(Al B)l = AlBI

(A+ B)' = p(X) where X = fv(A) U fv(B) and
p(X) — Al
p(x) — BT

(Ax A =
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Intr ion
troductio Syntax

CCvs. CLP

Translating CC(X’) without ask into CLP(X)

(CC agent)’ = CLP goal

(tell(c)) =c

(Al B)l = Al Bl

(A+ B)' = p(X) where X = fv(A) U fv(B) and
p(X) — Al
p(x) — BT

(3x A = q(y) where y = fv(A)\ {x} and
q(y) — AT

(pR) =
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Intr ion
troductio Syntax

CCvs. CLP

Translating CC(X’) without ask into CLP(X)

(CC agent)’ = CLP goal

(tell(c)) =c

(Al B = Al B

(A+ B)' = p(X) where X = fv(A) U fv(B) and
p(X) — Al
p(x) — BT

(3x A = q(y) where y = fv(A)\ {x} and

q(y) « Af
(P = p(x)
The ask operation ¢ — A has no CLP equivalent.

It is a new synchronization primitive between agents.
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Transitions
Operational Semantics Properties
Observables

CC Computations

Concurrency = communication (shared variables)
+ synchronization (ask)

Communication channels, i.e. variables, are transmissible by agents
(like in m-calculus, unlike CCS, CSP, Occam,...)

Communication is additive (a constraint will never be removed),
monotonic accumulation of information in the store (as in CLP, as
in Scott’s information systems)

Synchronization makes computation both data-driven and
goal-directed.

No private communication, all agents sharing a variable will see a
constraint posted on that variable,
Not a parallel implementation model.
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Transitions
Operational Semantics Properties
Observables

CC(&X) Configurations

Configuration (X; ¢;I): store ¢ of constraints, multiset I' of agents,
modulo = the smallest congruence s.t.:

cFxd
c=d

z & fv(A)
JyA = 3zA[z/y]

X-equivalence

a-Conversion

Parallel (X% ¢, Al B,T)=(X;c;A B,T)

y & fv(c,T) y & fv(c,T)

Hidi
iding (X% cIVAT) =X,y AT) Xy, =(X¢T)
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Transitions
Operational Semantics Properties
Observables

CC(X) Transitions

Interleaving semantics

(p(y)=A) €D
Procedure call Fc p(h) 1) — (R AT

Tell (X; c; tell(d),T) — (X;cnd;T)
Ask

Blind choice (X A+ B, I) — (X ¢;AT)
(local/internal) (X;c;A+ B,T) — (X;¢;B,T)
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Transitions
Operational Semantics Properties
Observables

CC(X) Transitions

Interleaving semantics

Procedure call —

Tell (X; c; tell(d),T) — (X;cnd;T)

ctx d[t/y]

Ask =

(X; e vy(d — A),T) — (X c; Alt/y],T)
Blind choice (X A+ B, I) — (X ¢;AT)
(local/internal) (X;c;A+ B,T) — (X;¢;B,T)
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Transitions
Operational Semantics Properties
Observables

CC(X) extra rules

Cl—XcJ'

ded choi
Guarded choice (% 2ic — ALT) — (G AT

(global/external)
C '_X —d
AskNot
o (X;aVy(d — A),T) — (X aT)
X c T 2 d: r/
Sequentiality (xial) — (X diT)

(X ¢, (T A), ) — (X, d; (I, A), P)

(X ¢, (0;T),A) — (%, d; T, A)
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Transitions
Operational Semantics Properties
Observables

Properties of CC Transitions (1)

Theorem 5 (Monotonicity)

If (X;¢;T) — (¥;d; A) then (X;cANe;T,X) — (V;d ANe; AY) for
every constraint e and agents ¥.

L] \
Corollary 6
Strong fairness and weak fairness are equivalent.
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Transitions
Operational Semantics Properties
Observables

Properties of CC Transitions (1)

Theorem 5 (Monotonicity)

If (X;¢;T) — (¥;d; A) then (X;cANe;T,X) — (V;d ANe; AY) for
every constraint e and agents ¥.

tell and ask are monotonic (monotonic conditions in guards). [

Corollary 6
Strong fairness and weak fairness are equivalent.
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Transitions
Operational Semantics Properties
Observables

Properties of CC Transitions (2)

A configuration without + is called deterministic.

Theorem 7 (Confluence)

For any deterministic configuration x with deterministic
declarations,

if Kk — k1 and kK — ko then k1 — k' and ko — K' for some K.

Corollary 8

Independence of the scheduling of the execution of parallel agents.
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Transitions
Operational Semantics Properties
Observables

Properties of CC Transitions (3)

Theorem 9 (Extensivity)
If (X;¢;T) — (y;d; A) then Jyd -y IxXc.

Theorem 10 (Restartability)
If (X;¢;T) —=* (v, d; A) then (X;3yd;T) —=* (y;d; A).

By extensivity and monotonicity. [ \
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Transitions
Operational Semantics Properties
Observables

Properties of CC Transitions (3)

Theorem 9 (Extensivity)
If (X;¢;T) — (y;d; A) then Jyd -y IxXc.

For any constraint e, c Ae by c.

Theorem 10 (Restartability)
If (X;¢;T) —=* (v, d; A) then (X;3yd;T) —=* (y; d; A).

By extensivity and monotonicity. [ \
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Transitions
Operational Semantics Properties
Observables

CC(X') Operational Semanticssss

@ observing the set of success stores,

@ observing the set of terminal stores (successes and
suspensions),

@ observing the set of accessible stores,

@ observing the set of limit stores?
Ox(D.A; o) = {U2{3FXici}izol(0; cos A) — (x1; ¢ T1) — ...}
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Transitions
Operational Semantics Properties
Observables

CC(X') Operational Semanticssss

@ observing the set of success stores,
Oss(D.A;c) = {3Xd € X |(0; c; A) —* (X d; €)}

@ observing the set of terminal stores (successes and
suspensions),

@ observing the set of accessible stores,

@ observing the set of limit stores?
Ox(D.A; o) = {U2{3FXici}izol(0; cos A) — (x1; ¢ T1) — ...}
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Transitions
Operational Semantics Properties
Observables

CC(X') Operational Semanticssss

@ observing the set of success stores,
Oss(D.A;c) = {3Xd € X |(0; c; A) —* (X d; €)}

@ observing the set of terminal stores (successes and
suspensions),

Ows(D.A c) ={3xd € X |(0; c; A) —* (X, d;T) +—}

@ observing the set of accessible stores,

@ observing the set of limit stores?

Ouxo(D.A; o) = {Ur{3Xici}izo|(0; co; A) — (x1;¢1:T1) — ...}
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Transitions
Operational Semantics Properties
Observables

CC(X') Operational Semanticssss

@ observing the set of success stores,
Oss(D.A;c) = {3Xd € X |(0; c; A) —* (X d; €)}

@ observing the set of terminal stores (successes and
suspensions),

Ots(D.A;c) ={3Xd € X |(0; c; A) —* (X, d;T) +}
@ observing the set of accessible stores,
Oa5(D.A;c) = {3Xd € X |(0; c; A) —* (X, d; B)}
@ observing the set of limit stores?
Ooo(D.A; o) = {U2{3Xici}izol(0; cos A) — (X35 c1;T1) — ..}
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append
merge

Examples CC(FD)

CC(H) 'append’ Program(s)

Undirectional CLP style

Sylvain.Soliman@inria.fr CLP
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append
merge

Examples CC(FD)

CC(H) 'append’ Program(s)

Undirectional CLP style
append(A, B, C) = tell(A = [])||tell(C = B)
+tell(A = [X|L])||tell(C = [X|R])||append(L, B, R)
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append
merge

Examples CC(FD)

CC(H) 'append’ Program(s)

Undirectional CLP style

append(A, B, C) = tell(A = [])||tell(C = B)
+tell(A = [X|L])||tell(C = [X|R])||append(L, B, R)

Directional CC success store style
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append
merge

Examples CC(FD)

CC(H) 'append’ Program(s)

Undirectional CLP style

append(A, B, C) = tell(A = [])||tell(C = B)
+tell(A = [X|L])||tell(C = [X|R])||append(L, B, R)

Directional CC success store style

append(A,B,C) = (A= ] — tell(C = B))
+VX, L (A= [X]|L] — tell(C = [X|R])||append(L, B, R))
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append
merge

Examples CC(FD)

CC(H) 'append’ Program(s)

Undirectional CLP style

append(A, B, C) = tell(A = [])||tell(C = B)
+tell(A = [X|L])||tell(C = [X|R])||append(L, B, R)

Directional CC success store style

append(A,B,C) = (A= ] — tell(C = B))
+VX, L (A= [X]|L] — tell(C = [X|R])||append(L, B, R))

v

Directional CC terminal store style

v
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append
merge

Examples CC(FD)

CC(H) 'append’ Program(s)

Undirectional CLP style

append(A, B, C) = tell(A = [])||tell(C = B)
+tell(A = [X|L])||tell(C = [X|R])||append(L, B, R)

Directional CC success store style
append(A,B,C) = (A= ] — tell(C = B))
+VX, L (A= [X]|L] — tell(C = [X|R])||append(L, B, R))

v

Directional CC terminal store style

append(A,B,C) = A =[] — tell(C = B)
[IVX, L (A =[X]|L] — tell(C = [X]|R])||append(L, B, R))

v
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append
merge
Examples CC(FD)

CC(H) 'merge’ Program

Merging streams

merge(A,B,C) = (A=]] — tell(C = B))
+(B =[] — tell(C = A))
+VX, L(A = [X|L] — tell(C = [X|R])||merge(L, B,
+VX, L(B = [X|L] — tell(C = [X|R])||merge(A, L,

R))
R))

Good for the observable(s?)

Many-to-one communication:
client(C1,...)

client(Chn, ...)
server([C1,...,Cn],...) =
S VX, L(Ci = [X|L] — ...||server([C1, ..., L, ..., Cn], ...)
ZIINRIA
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append
merge
Examples CC(FD)

CC(H) 'merge’ Program

Merging streams

merge(A,B,C) = (A=]] — tell(C = B))
+(B =[] — tell(C = A))
+VX, L(A = [X|L] — tell(C = [X|R])||merge(L, B,
+VX, L(B = [X|L] — tell(C = [X|R])||merge(A, L,

R))
R))

Good for the O observable

Many-to-one communication:
client(C1,...)

client(Chn, ...)
server([C1,...,Cn],...) =
S VX, L(Ci = [X|L] — ...||server([C1, ..., L, ..., Cn], ...)
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append
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CC(FD) Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition

EL: cAT — T
if
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CC(FD) Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition

EL: cAT — T
if 7D |= co for every valuation o of the variables in ¢ by values of
their domain.

Suppose access to min and max indexicals:
ask(X > 'Y + k)
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Examples CC(FD)

CC(FD) Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition

EL: cAT — T
if 7D |= co for every valuation o of the variables in ¢ by values of
their domain.

Suppose access to min and max indexicals:
ask(X > Y + k) = min(X) > max(Y) + k

asknot(X > Y + k)
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Examples CC(FD)

CC(FD) Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition

EL: cAT — T
if 7D |= co for every valuation o of the variables in ¢ by values of
their domain.

Suppose access to min and max indexicals:
ask(X > Y + k) = min(X) > max(Y) + k

asknot(X > Y + k) = max(X) < min(Y)+ k
ask(X #Y)
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CC(FD) Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition

EL: cAT — T
if 7D |= co for every valuation o of the variables in ¢ by values of
their domain.

Suppose access to min and max indexicals:
ask(X > Y + k) = min(X) > max(Y) + k

asknot(X > Y + k) = max(X) < min(Y)+ k

ask(X #Y) = max(X) < min(Y)V min(X) > max(Y)
a better approximation with dom:
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CC(FD) Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition

EL: cAT — T
if 7D |= co for every valuation o of the variables in ¢ by values of
their domain.

Suppose access to min and max indexicals:
ask(X > Y + k) = min(X) > max(Y) + k

asknot(X > Y + k) = max(X) < min(Y)+ k

ask(X #Y) = max(X) < min(Y)V min(X) > max(Y)
a better approximation with dom:
= (dom(X) N dom(Y) = 0)
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CC(FD) Constraints as “in.."

Basic constraints
(X>Y+k)=
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Examples CC(FD)

CC(FD) Constraints as “in.."

Basic constraints
(X>Y+k)y= Xinmin(Y)+ k.. ool Yin0. max(X)—k

Reified constraints
(BeX=A)=
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Examples CC(FD)

CC(FD) Constraints as “in.."

Basic constraints
(X>Y+k)y= Xinmin(Y)+ k.. ool Yin0. max(X)—k

Reified constraints
(B&X=A)= Bin0.1|
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Examples CC(FD)

CC(FD) Constraints as “in.."

Basic constraints
(X>Y+k)y= Xinmin(Y)+ k.. ool Yin0. max(X)—k

Reified constraints

(B&X=A)= Bin0.1|
X=A—-B=1||X#A—-B=0]|
B=1-X=A||B=0—=X#A

Higher-order constraints
card(N, L) =
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CC(FD) Constraints as “in.."

Basic constraints
(X>Y+k)y= Xinmin(Y)+ k.. ool Yin0. max(X)—k

Reified constraints

(B&X=A)= Bin0.1|
X=A—-B=1||X#A—-B=0]|
B=1-X=A||B=0—=X#A

Higher-order constraints
card(N, L) = L=[]—-N=0]

ZIINRIA

Sylvain.Soliman@inria.fr CLP



append
merge

Examples CC(FD)

CC(FD) Constraints as “in.."

Basic constraints
(X>Y+k)y= Xinmin(Y)+ k.. ool Yin0. max(X)—k

Reified constraints

(B&X=A)= Bin0.1|
X=A—-B=1||X#A—-B=0]|
B=1-X=A||B=0—=X#A

Higher-order constraints
card(N, L) = L=[]—-N=0]
L=[C|S] —
dB,M (B< C||N=B+ M || card(M,5))

ZIINRIA

Sylvain.Soliman@inria.fr CLP



append
merge

Examples CC(FD)

Andora Principle

“Always execute deterministic computation first”.

Disjunctive scheduling:

deterministic propagation of the disjunctive constraints for which
one of the alternatives is dis-entailed:

card(1, [x >y +d,, y > x+dy])
before creating choice points:
(x =y +dy)+(y = x+dx)
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Constructive Disjunction in CC(FD) (1)

ckyre dblye
cVdbkye

Intuitionistic logic tells us we can infer the common information to
both branches of a disjunction without creating choice points!

VL

max(X,Y,Z)=(X>Y||Z=X)+ (X <=Y||[Z=Y)
or
max(X,Y,2)=X>Y > Z=X+X<=Y=Z=Y.
or
max(X,Y,Z)=X>Y = Z=X|[X<=Y = Z=Y.
better? (with indexicals)

y
VAd IN RTA
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Constructive Disjunction in CC(FD) (1)

ckyre dblye
cVdbkye

Intuitionistic logic tells us we can infer the common information to
both branches of a disjunction without creating choice points!

VL

max(X,Y,Z)=(X>Y||Z=X)+ (X <=Y||[Z=Y)
or
max(X,Y,Z)=X>Y 2 Z=X+X<=Y > Z=Y.
or
max(X,Y,Z)=X>Y 5 Z=X||X<=Y = Z=Y.
better? (with indexicals)
max(X,Y,Z) = Z in min(X)..co || Z in min(Y)..00

|| Z in dom(X)Udom(Y) || ---

y
VAd IN RTA
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Constructive Disjunction in CC(FD) (2)

Disjunctive precedence constraints

disjunctive(T1,D1, T2, D2) =
(T1>=T2+ D2)+
(T2>=T1+ D1)

Using constructive disjunction

ZIINRIA

Sylvain.Soliman@inria.fr CLP



append
merge

Examples CC(FD)

Constructive Disjunction in CC(FD) (2)

Disjunctive precedence constraints

disjunctive(T1,D1, T2, D2) =
(T1>=T2+ D2)+
(T2>=T1+ D1)

Using constructive disjunction

disjunctive(T1, D1, T2, D2) =
T1 in (0..max(T2) — D1) U (min(T2)+ D2..00) ||
T2 in (0..max(T1) — D2) U (min(T1) + D1..00)
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