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Undecidability of MXP

loop:- loop.
contr(P):- success(P,P), loop.
contr(P):- fail(P,P).

If contr(contr) has a success,
then success(contr,contr) succeeds,
and fail(contr,contr) doesn’t succeed,
hence contr(contr) doesn’t succeed: contradiction.

If contr(contr) doesn’t succeed,
then fail(contr,contr) succeeds,
hence contr(contr) succeeds: contradiction.

Therefore programs success and fail cannot both exist.
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Clark’s completion

The Clark’s completion of P is the set P∗ of formulas of the form
∀X p(X )↔ (∃Y1c1 ∧A1

1 ∧ ...∧A1
n1

)∨ ...∨ (∃Ykck ∧Ak
1 ∧ ...∧Ak

nk
)

where the p(X )← ci |Ai
1, ...,A

i
ni

are the rules in P and Yi ’s the
local variables,
∀X¬p(X ) if p is not defined in P.

Example 1

CLP(H) program p(s(X)):- p(X).
Clark’s completion P∗ = {∀x p(x)↔ ∃y x = s(y) ∧ p(y)}.
The goal p(0) finitely fails, we have P∗,CET |= ¬p(0).
The goal p(X) doesn’t finitely fail,
we have P∗,CET 6|= ¬∃X p(X ) although P∗ |=H ¬∃X p(X )
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Models of the Clark’s completion

Theorem 2

i) P∗ has the same least X -model than P, MXP = MXP∗
ii) P |=X c ⊃ A iff P∗ |=X c ⊃ A, for all c and A,
iii) P, T |= c ⊃ A iff P∗, T |= c ⊃ A.

Proof.

i) is an immediate corollary of full abstraction and least X -model
theorems
For iii) we clearly have (P, T |= c ⊃ A)⇒ (P∗, T |= c ⊃ A). We show
the contrapositive of the opposite, (P, T 6|= c ⊃ A)⇒ (P∗, T 6|= c ⊃ A).
Let I be a model of P and T , based on a structure X , let ρ be a
valuation such that I |= ¬Aρ and X |= cρ.
We have MXP |= ¬Aρ, thus MXP∗ |= ¬Aρ, and as T |= cρ, we conclude
that P∗, T 6|= c ⊃ A.
The proof of ii) is identical, the structure X being fixed.
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Soundness of Negation as Finite Failure

Theorem 3

If G is finitely failed then P∗, T |= ¬G .

Proof.

By induction on the height h of the tree in finite failure for G = c |A, α
where A is the selected atom at the root of the tree.
In the base case h = 1, the constrained atom c |A has no CSLD transition,
we can deduce that P∗, T |= ¬(c ∧ A) hence that P∗, T |= ¬G .

For the induction step, let us suppose h > 1. Let G1, ...,Gn be the sons

of the root and Y1, ...,Yn be the respective sets of introduced variables.

We have P∗, T |= G ↔ ∃Y1 G1 ∨ ... ∨ ∃n Gn. By induction hypothesis,

P∗, T |= ¬Gi for every 1 ≤ i ≤ n, therefore P∗, T |= ¬G .
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Completeness of Negation as Failure

Theorem 4 ([JL87])

If P∗, T |= ¬G then G is finitely failed.

We show that if G is not finitely failed then P∗, T ,∃(G ) is satisfiable. If
G has a success then by the soundness of CSLD resolution, P∗, T |= ∃G .
Else G has a fair infinite derivation G = c0|G0 −→ c1|G 1 −→ ...

For every i ≥ 0, ci is T -satisfiable, thus by the compactness theorem,

cω =
∧

i≥0 ci is T -satisfiable. Let X be a model of T s.t. X |= ∃(cω).

Let I0 = {Aρ | A ∈ Gi for some i ≥ 0 and X |= cωρ}. As the derivation

is fair, every atom A in I0 is selected, thus cω|A −→ cω|A1, ...,An with

[cω|A] ∪ ... ∪ [cω|An] ⊆ I0. We deduce that I0 ⊆ TXP (I0). By

Knaster-Tarski’s theorem, the iterated application up to ordinal ω of the

operator TXP from I0 leads to a fixed point I s.t. I0 ⊆ I , thus [cω|G0] ∈ I .

Hence P∗,∃(G ) is X -satisfiable, and P∗, T ,∃(G ) is satisfiable.
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CLP implementation, the WAM
Optimizing CLP

Summing up

The Warren Abstract Machine

First Prolog implementation in the early 70’s (by Colmerauer et
al.).

In 1983, David H. Warren creates the Warren Abstract Machine.

Remains the state of the art (for term representation, basic
instructions, . . . )

Slightly extended for CLP

(constraints instead of substitutions)

(C)SLD resolution seen as a call stack (with marks for choice
points)
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CLP implementation, the WAM
Optimizing CLP

Summing up

Optimizations from the WAM

Search for predicates should be almost in constant time

Use a hash table - indexing - for the predicate name/arity,

and the
functor of the first argument

Each call normally adds a frame to the call stack (removed on
backtracking)

As for other programming paradigms, not always necessary

Tail recursion can be optimized, when calling and called contexts
are deterministic.
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Putting it all together

Naive sum

sum([], 0).
sum([H | T], S) :-

sum(T, S1),
S is S1 + H.

Much better

sum(L, S) :-
sum_aux(L, 0, S).

sum_aux([], S, S).
sum_aux([H | T], S0, S) :-

S1 is S0 + H,
sum_aux(T, S1, S).

Sylvain.Soliman@inria.fr CLP



CLP implementation, the WAM
Optimizing CLP

Summing up

Putting it all together

Naive sum

sum([], 0).
sum([H | T], S) :-

sum(T, S1),
S is S1 + H.

Much better

sum(L, S) :-
sum_aux(L, 0, S).

sum_aux([], S, S).
sum_aux([H | T], S0, S) :-

S1 is S0 + H,
sum_aux(T, S1, S).

Sylvain.Soliman@inria.fr CLP



CLP implementation, the WAM
Optimizing CLP

Summing up

Putting it all together

If numbers are coded as the fact number(X)?

sum(S) :- findall(X, number(X), L), sum(L, S).

sum(S) :-
g_assign(sum, 0),
(

number(N),
g_read(sum, S1),
S2 is S1 + N,
g_assign(sum, S2),
fail

;
g_read(sum, S)

).
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Syntax
CC vs. CLP

The Paradigm of Constraint Programming

memory of values
programming variables

memory of constraints
mathematical variables

Xi ∈ [3, 15]

ΣaiXi ≥ b

card(1, [X ≥ Y + 5,
Y ≥ X + 3])

Xi = Xj + 2
add

Xi ≥ 5?

test

V1

Vi

Vj

Vi := Vj + 1

read

write

Sylvain.Soliman@inria.fr CLP



Introduction
Operational Semantics

Examples

Syntax
CC vs. CLP

Concurrent Constraint Programs

Class of programming languages CC(X ) introduced by Saraswat
[Sar93] as a merge of Constraint and Concurrent Logic
Programming.

Processes P ::= D.A
Declarations D ::= p(~x) = A,D | ε
Agents A ::= tell(c) |

∀~x(c → A)

| A ‖ A | A + A | ∃xA | p(~x)

Constraint Store

CC agent CC agent

tellask

+

+ +
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Syntax
CC vs. CLP

Translating CLP(X ) into CC(X ) Declarations

CLP(X ) program:

A← c |B,C
A← d |D,E
B ← e

equivalent CC(X ) declaration:

A = tell(c)||B||C + tell(d)||D||E
B = tell(e)

This is just a process calculus syntax for CLP programs. . .
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Examples

Syntax
CC vs. CLP

Translating CC(X ) without ask into CLP(X )

(CC agent)† = CLP goal

(tell(c))† =

c
(A || B)† = A†,B†

(A + B)† = p(~x) where ~x = fv(A) ∪ fv(B) and
p(~x)← A†

p(~x)← B†

(∃x A)† = q(~y) where ~y = fv(A) \ {x} and
q(~y)← A†

(p(~x))† = p(~x)

The ask operation c → A has no CLP equivalent.

It is a new synchronization primitive between agents.
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CC Computations

Concurrency = communication (shared variables)
+ synchronization (ask)

Communication channels, i.e. variables, are transmissible by agents
(like in π-calculus, unlike CCS, CSP, Occam,...)

Communication is additive (a constraint will never be removed),
monotonic accumulation of information in the store (as in CLP, as
in Scott’s information systems)

Synchronization makes computation both data-driven and
goal-directed.

No private communication, all agents sharing a variable will see a
constraint posted on that variable,

Not a parallel implementation model.
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CC(X ) Configurations

Configuration (~x ; c ; Γ): store c of constraints, multiset Γ of agents,
modulo ≡ the smallest congruence s.t.:

X -equivalence
ca`Xd

c ≡ d

α-Conversion
z 6∈ fv(A)

∃yA ≡ ∃zA[z/y ]

Parallel (~x ; c; A ‖ B, Γ) ≡ (~x ; c ; A,B, Γ)

Hiding
y 6∈ fv(c , Γ)

(~x ; c ;∃yA, Γ) ≡ (~x , y ; c ; A, Γ)

y 6∈ fv(c , Γ)

(~x , y ; c; Γ) ≡ (~x ; c ; Γ)
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CC(X ) Transitions

Interleaving semantics

Procedure call
(p(~y) = A) ∈ D

(~x ; c ; p(~y), Γ) −→ (~x ; c ; A, Γ)

Tell (~x ; c ; tell(d), Γ) −→ (~x ; c ∧ d ; Γ)

Ask

c `X d [~t/~y ]

(~x ; c ;∀~y(d → A), Γ) −→ (~x ; c ; A[~t/~y ], Γ)

Blind choice (~x ; c ; A + B, Γ) −→ (~x ; c ; A, Γ)
(local/internal) (~x ; c ; A + B, Γ) −→ (~x ; c ; B, Γ)
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CC(X ) extra rules

Guarded choice
c `X cj

(~x ; c ; Σici → Ai , Γ) −→ (~x ; c ; Aj , Γ)
(global/external)

AskNot
c `X ¬d

(~x ; c ; ∀~y(d → A), Γ) −→ (~x ; c; Γ)

Sequentiality
(~x ; c ; Γ) −→ (~x ; d ; Γ′)

(~x ; c ; (Γ; ∆),Φ) −→ (~x ; d ; (Γ′; ∆),Φ)

(~x ; c ; (∅; Γ),∆) −→ (~x ; d ; Γ,∆)
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Properties of CC Transitions (1)

Theorem 5 (Monotonicity)

If (~x ; c ; Γ)→ (~y ; d ; ∆) then (~x ; c ∧ e; Γ,Σ)→ (~y ; d ∧ e; ∆,Σ) for
every constraint e and agents Σ.

Proof.

tell and ask are monotonic (monotonic conditions in guards).

Corollary 6

Strong fairness and weak fairness are equivalent.
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Properties of CC Transitions (2)

A configuration without + is called deterministic.

Theorem 7 (Confluence)

For any deterministic configuration κ with deterministic
declarations,
if κ→ κ1 and κ→ κ2 then κ1 → κ′ and κ2 → κ′ for some κ′.

Corollary 8

Independence of the scheduling of the execution of parallel agents.
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Properties of CC Transitions (3)

Theorem 9 (Extensivity)

If (~x ; c ; Γ)→ (~y ; d ; ∆) then ∃~yd `X ∃~xc.

Proof.

For any constraint e, c ∧ e `X c.

Theorem 10 (Restartability)

If (~x ; c ; Γ)→∗ (~y ; d ; ∆) then (~x ;∃~yd ; Γ)→∗ (~y ; d ; ∆).

Proof.

By extensivity and monotonicity.

Sylvain.Soliman@inria.fr CLP



Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

Properties of CC Transitions (3)

Theorem 9 (Extensivity)

If (~x ; c ; Γ)→ (~y ; d ; ∆) then ∃~yd `X ∃~xc.

Proof.

For any constraint e, c ∧ e `X c.

Theorem 10 (Restartability)

If (~x ; c ; Γ)→∗ (~y ; d ; ∆) then (~x ;∃~yd ; Γ)→∗ (~y ; d ; ∆).

Proof.

By extensivity and monotonicity.

Sylvain.Soliman@inria.fr CLP



Introduction
Operational Semantics

Examples

Transitions
Properties
Observables

CC(X ) Operational Semanticssss

observing the set of success stores,

Oss(D.A; c) = {∃~xd ∈ X |(∅; c; A) −→∗ (~x ; d ; ε)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃~xd ∈ X |(∅; c ; A) −→∗ (~x ; d ; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃~xd ∈ X |(∅; c ; A) −→∗ (~x ; d ; B)}

observing the set of limit stores?

O∞(D.A; c0) = {t?{∃~xici}i≥0|(∅; c0; A) −→ (~x1; c1; Γ1) −→ ...}
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CC(H) ’append’ Program(s)

Undirectional CLP style

append(A,B,C ) = tell(A = [])||tell(C = B)
+tell(A = [X |L])||tell(C = [X |R])||append(L,B,R)

Directional CC success store style

append(A,B,C ) = (A = []→ tell(C = B))
+∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))

Directional CC terminal store style

append(A,B,C ) = A = []→ tell(C = B)
||∀X , L (A = [X |L]→ tell(C = [X |R])||append(L,B,R))
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CC(H) ’merge’ Program

Merging streams

merge(A,B,C ) = (A = []→ tell(C = B))
+(B = []→ tell(C = A))
+∀X , L(A = [X |L]→ tell(C = [X |R])||merge(L,B,R))
+∀X , L(B = [X |L]→ tell(C = [X |R])||merge(A, L,R))

Good for the

Oss

observable(s?)

Many-to-one communication:
client(C 1, ...)
...
client(Cn, ...)
server([C 1, ...,Cn], ...) =∑n

i=1 ∀X , L(Ci = [X |L]→ ...||server([C 1, ..., L, ...,Cn], ...)
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CC(FD) Finite Domain Constraints with indexicals

Approximating ask condition with the Elimination condition

EL: c ∧ Γ −→ Γ
if

FD |= cσ for every valuation σ of the variables in c by values of
their domain.

Suppose access to min and max indexicals:
ask(X ≥ Y + k) ∼= min(X ) ≥ max(Y ) + k

asknot(X ≥ Y + k) ∼= max(X ) < min(Y ) + k

ask(X 6= Y ) ∼= max(X ) < min(Y ) ∨min(X ) > max(Y )
a better approximation with dom:
∼= (dom(X ) ∩ dom(Y ) = ∅)
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CC(FD) Constraints as “in..”

Basic constraints
(X ≥ Y + k) =

X in min(Y ) + k .. ∞ || Y in 0 .. max(X )− k

Reified constraints
(B ⇔ X = A) = B in 0..1 ||

X = A→ B = 1 || X 6= A→ B = 0 ||
B = 1→ X = A || B = 0→ X 6= A

Higher-order constraints
card(N, L) = L = []→ N = 0 ||

L = [C |S ]→
∃B,M (B ⇔ C || N = B + M || card(M,S))
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Andora Principle

“Always execute deterministic computation first”.

Disjunctive scheduling:

deterministic propagation of the disjunctive constraints for which
one of the alternatives is dis-entailed:

card(1, [x ≥ y + dy , y ≥ x + dx ])

before creating choice points:

(x ≥ y + dy ) + (y ≥ x + dx)
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Constructive Disjunction in CC(FD) (1)

∨L
c `X e d `X e

c ∨ d `X e

Intuitionistic logic tells us we can infer the common information to
both branches of a disjunction without creating choice points!

max(X ,Y ,Z ) = (X > Y ||Z = X ) + (X <= Y ||Z = Y )
or
max(X ,Y ,Z ) = X > Y → Z = X + X <= Y → Z = Y .
or
max(X ,Y ,Z ) = X > Y → Z = X || X <= Y → Z = Y .
better? (with indexicals)

max(X ,Y ,Z ) = Z in min(X )..∞ || Z in min(Y )..∞
|| Z in dom(X ) ∪ dom(Y ) || · · ·
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Constructive Disjunction in CC(FD) (2)

Disjunctive precedence constraints

disjunctive(T 1,D1,T 2,D2) =
(T 1 >= T 2 + D2)+
(T 2 >= T 1 + D1)

Using constructive disjunction

disjunctive(T 1,D1,T 2,D2) =
T 1 in (0..max(T 2)− D1) ∪ (min(T 2) + D2..∞) ||
T 2 in (0..max(T 1)− D2) ∪ (min(T 1) + D1..∞)
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