Bayesian Models in Machine Learning

Approximate inference in Bayesian models Latent Dirichlet Allocation Model

Lukáš Burget

Latent Dirichlet Allocation Model

Set of topic (color) specific word distributions

 $\mathbf{\Phi} \boldsymbol{\theta}_d = [0.2 \quad 0.1 \quad 0.0 \quad 0.3 \quad 0.1 \quad \dots]$

 $w_d = [apple \ burger \ is \ surfing \ apple \ tenis]$

Document specific word distribution.

Mixture of Categorical distributions is again Categorical distribution.

Document, where each word is independently drawn from the document specific distribution

 $w_{jt} \sim \text{Cat}(\mathbf{\Phi} \boldsymbol{\theta}_d)$

Document specific

topic mixture weights

The Task

Given a set of documents and chosen number of topics

learn the set of topic specific word distribution

without knowing any topic labels (i.e. topics are latent)

$$\Phi^{T} = \begin{bmatrix} \varphi_{1}^{T} \\ \varphi_{2}^{T} \\ \varphi_{3}^{T} \end{bmatrix} = \begin{bmatrix} 0.4 & 0.2 & 0.0 & 0.0 & 0.0 & ... \\ 0.0 & 0.4 & 0.2 & 0.2 & 0.0 & ... \\ 0.0 & 0.0 & 0.0 & 0.6 & 0.2 & ... \end{bmatrix} \begin{bmatrix} sports \\ computers \\ 0.0 \\ 0.5 \end{bmatrix} = \Phi \theta_{d} = \begin{bmatrix} 0.2 & 0.1 & 0.0 & 0.3 & 0.1 & ... \end{bmatrix}$$

$$\mathbf{w}_{1} = \begin{bmatrix} apple & burger & is & surfing & apple & tenis \\ \mathbf{w}_{2} = \begin{bmatrix} tenis & and & surfing & but & mainly & tenis \\ \mathbf{w}_{3} = \begin{bmatrix} surfing & with & apple & sotware & about & tenis \end{bmatrix}$$

 $\mathbf{w}_D = [the best burget is appe burger]$

and, for each document, estimate the topic mixture weights.

This vector can serve as low-dimensional representation of the document (e.g. for topic clustering).

Group of documents for which the same weight dominates are probably on one and the same topic.

LDA assumed generative process

• For each document d, each word w_{dn} is independently drawn from the document specific distribution $\Phi \theta_d$:

```
for d = 1..D
for n = 1..N_d
w_{dn} \sim \text{Cat}(\mathbf{\Phi}\boldsymbol{\theta}_d)
```

• Or, like for GMM, we choose the mixture component z_{dn} (representing a topic) and sample observation w_{dn} from its distribution.

```
for d = 1..D

for n = 1..N_d

z_{dn} \sim \text{Cat}(\boldsymbol{\theta}_d)

w_{dn} \sim \text{Cat}(\boldsymbol{\varphi}_{z_{dn}})
```


Full Bayesian LDA

- Let's treat parameters of each topic specific distribution φ_k and document specific weights θ_d as random variables with Dirichlet priors: $\varphi_k \sim \text{Dir}(\beta)$ and $\theta_d \sim \text{Dir}(\alpha)$
- The generative process is now:

```
for k = 1..K

\varphi_k \sim \text{Dir}(\beta)

for d = 1..D

\theta_d \sim \text{Dir}(\alpha)

for n = 1..N_d

z_{dn} \sim \text{Cat}(\theta_d)

w_{dn} \sim \text{Cat}(\varphi_{z_{dn}})
```


Bayesian LDA model summary

Joint Probability:

$$p(\boldsymbol{W}, \boldsymbol{Z}, \boldsymbol{\Theta}, \boldsymbol{\Phi}) = \left(\prod_{k=1}^{K} p(\boldsymbol{\varphi}_k)\right) \left(\prod_{d=1}^{D} p(\boldsymbol{\theta}_d)\right) \left(\prod_{d=1}^{D} \prod_{n=1}^{N_d} P(\boldsymbol{z}_{dn} | \boldsymbol{\theta}_d)\right) \left(\prod_{d=1}^{D} \prod_{n=1}^{N_d} P(\boldsymbol{w}_{dn} | \boldsymbol{\Phi}, \boldsymbol{z}_{dn})\right)$$

Variables:

$$\Phi = [\varphi_1, \varphi_2, ..., \varphi_K]$$
 - topic specific word distributions

$$\mathbf{\Theta} = [\mathbf{\theta}_1, \mathbf{\theta}_2, ..., \mathbf{\theta}_D]$$
 - document specific topic distributions

$$z_{dn} = k$$
 - denotes that n^{th} word in document d comes from topic k

$$w_{dn} = v$$
 - denotes that n^{th} word in document d is v

Indices:

$$d = 1..D$$
 - (training) document

$$k = 1..K$$
 - topic

$$v = 1..V$$
 - unique word in the vocabulary of size V

$$n = 1..N_d$$
 - position of word in document d

$$p(\boldsymbol{\varphi}_k) = \mathrm{Dir}(\boldsymbol{\varphi}_k | \boldsymbol{\beta}) \propto \prod_{v=1}^V \varphi_{kv}^{\beta_v - 1}$$
 - prior on parameters $\boldsymbol{\varphi}_k$

$$p(\theta_d) = \text{Dir}(\theta_d | \alpha) \propto \prod_{k=1}^K \theta_{dk}^{\alpha_k - 1}$$
 - prior on document specific topic mixture weights

$$P(z_{dn} = k | \boldsymbol{\theta}_d) = \theta_{dk}$$
 - probability that a word in document d comes from topic k

$$P(w_{dn} = v | \Phi, z_{dn} = k) = \varphi_{kv}$$
 -probability of word v if we know that it comes from topic k

Using counts $C_{d,v}^k$

Joint Probability:

$$p(\boldsymbol{W}, \boldsymbol{Z}, \boldsymbol{\Theta}, \boldsymbol{\Phi}) = \left(\prod_{k=1}^{K} p(\boldsymbol{\varphi}_k)\right) \left(\prod_{d=1}^{D} p(\boldsymbol{\theta}_d)\right) \left(\prod_{d=1}^{D} \prod_{n=1}^{N_d} P(z_{dn}|\boldsymbol{\theta}_d)\right) \left(\prod_{d=1}^{D} \prod_{n=1}^{N_d} P(w_{dn}|\boldsymbol{\Phi}, z_{dn})\right)$$

Let $C_{d,v}^k$ be the count of words v generated from topic k in document d as assigned by latent variables z_{dn} .

$$C_{d,v}^k = \sum_{n=1}^{N_d} \delta(z_{dn} = k) \delta(w_{dn} = v)$$

$$\prod_{n=1}^{N_d} P(z_{dn} | \boldsymbol{\theta}_d) = \prod_{n=1}^{N_d} \theta_{dz_{dn}} = \prod_{k=1}^K \theta_{dk}^{C_{d,(\cdot)}^k},$$

where $C_{d,(\cdot)}^k = \sum_{v=1}^V C_{d,v}^k$ is the count of all words from topic k in document d

$$\prod_{d=1}^{D} \prod_{n=1}^{N_d} P(w_{dn} | \mathbf{\Phi}, z_{dn}) = \prod_{d=1}^{D} \prod_{n=1}^{N_d} \varphi_{z_{dn} w_{dn}} = \prod_{k=1}^{K} \prod_{v=1}^{V} \varphi_{kv}^{C_{(\cdot),v}^k},$$

d = 1..D θ_d α z_{dn} β φ_k $n = 1..N_d$ k = 1..K

where $C_{(\cdot),v}^k = \sum_{d=1}^D c_{d,v}^k$ is the count of words v from topic topic k in all documents.

Joint probability using the counts

$$\begin{split} p(\boldsymbol{W}, \boldsymbol{Z}, \boldsymbol{\Theta}, \boldsymbol{\Phi}) &= \left(\prod_{k=1}^K p(\boldsymbol{\varphi}_k)\right) \left(\prod_{d=1}^D p(\boldsymbol{\theta}_d)\right) \left(\prod_{d=1}^D \prod_{n=1}^{N_d} P(z_{dn}|\boldsymbol{\theta}_d)\right) \left(\prod_{d=1}^D \prod_{n=1}^{N_d} P(w_{dn}|\boldsymbol{\Phi}, z_{dn})\right) \\ &= \left(\prod_{k=1}^K \frac{\Gamma\left(\sum_{v=1}^V \beta_v\right)}{\prod_{v=1}^V \Gamma(\beta_v)} \prod_{v=1}^V \varphi_{kv}^{\beta_v-1}\right) \left(\prod_{d=1}^D \frac{\Gamma\left(\sum_{k=1}^K \alpha_k\right)}{\prod_{k=1}^K \Gamma(\alpha_k)} \prod_{k=1}^K \theta_{dk}^{\alpha_k-1}\right) \left(\prod_{d=1}^D \prod_{k=1}^K \theta_{dk}^{c_{d,(\cdot)}}\right) \left(\prod_{k=1}^K \prod_{v=1}^V \varphi_{kv}^{c_{(\cdot),v}^k}\right) \\ &\propto \left(\prod_{k=1}^K \prod_{v=1}^V \varphi_{kv}^{\beta_v-1}\right) \left(\prod_{d=1}^D \prod_{k=1}^K \theta_{dk}^{\alpha_k-1}\right) \left(\prod_{d=1}^K \prod_{k=1}^V \theta_{dk}^{c_{d,(\cdot)}}\right) \left(\prod_{k=1}^K \prod_{v=1}^V \varphi_{kv}^{c_{(\cdot),v}^k}\right) \\ &= 1 \dots D \end{split}$$

$$C_{d,v}^{k} = \sum_{n=1}^{N_d} \delta(z_{dn} = k) \delta(w_{dn} = v)$$

$$C_{d,(\cdot)}^{k} = \sum_{v=1}^{V} C_{d,v}^{k}$$
 $C_{(\cdot),v}^{k} = \sum_{d=1}^{D} c_{d,v}^{k}$

Gibbs Sampling

- Assume we cannot sample from the complex joint distribution $p(z_1, z_2)$ but it is possible to sample from the conditional distributions $p(z_1|z_2)$ and $p(z_2|z_1)$
 - 1. Initialize z_1^* to any value (i.e. chosen constant)
 - 2. Given current sample z_1^* generate $z_2^* \sim p(z_2|z_1)$
 - 3. Given current sample z_2^* generate $z_1^* \sim p(z_1|z_2)$
 - 4. Go to steps 2.
- In theory, after infinite number of iteration the final values z_1^*, z_2^* is a sample from $p(z_1, z_2)$
- Or, with increasing number of iterations, z_1^*, z_2^* converges to a valid sample from $p(z_1, z_2)$
- In practice, after several initial iterations (burn-in phase) take z_1^*, z_2^* from every N^{th} iteration and consider them samples from $p(z_1, z_2)$
 - Often N=1 is used
 - Starting from a likely value of z_1^* requires less burn-in iterations
- This can be extended to any number variables
 - always sample one given current values for others
- Works for any random variables (discrete, continuous; scalars, vectors)

Gibbs sampling for 2D Gaussian

Of course, it is possible to efficiently and exactly sample directly from a 2D Gaussian distribution. We use this toy example only to demonstrate how Gibbs sampling works.

For 2D gaussian distribution

$$p\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \mathcal{N}\left(\begin{bmatrix} x \\ y \end{bmatrix} \middle| \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{xx} \end{bmatrix}\right)$$

the conditional probability

$$p(x|y) = \mathcal{N}\left(x|\mu_{x|y}, \Lambda_{xx}^{-1}\right)$$

where

$$\mu_{x|y} = \mu_x - \Lambda_{xx}^{-1} \Lambda_{xy} (y - \mu_y)$$

and

$$\begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{xx} \end{bmatrix}^{-1} = \begin{bmatrix} \Lambda_{xx} & \Lambda_{xy} \\ \Lambda_{yx} & \Lambda_{xx} \end{bmatrix}$$

Approximate inference (for Bayesian LDA)

Gibbs sampling

- Instead of obtaining $p(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi} | \mathbf{W})$, we only generate samples from this distribution
- We alternately sample from

```
» \mathbf{Z}^* \sim P(\mathbf{Z} | \mathbf{\Theta}, \mathbf{\Phi}, \mathbf{W})
» \mathbf{\Theta}^*, \mathbf{\Phi}^* \sim P(\mathbf{\Theta}, \mathbf{\Phi} | \mathbf{Z}, \mathbf{W})
```

Variational Bayes

- Approximate intractable $p(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi} | \mathbf{W})$ with tractable $q(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi})$
- Iteratively tune parameters of $q(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi})$ to minimize $D_{KL}(q(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi})||p(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi}|\mathbf{W}))$

•

GS inference for LDA: Sampling Z

$$p(\boldsymbol{W}, \boldsymbol{Z}, \boldsymbol{\Theta}, \boldsymbol{\Phi}) = \left(\prod_{k=1}^{K} p(\boldsymbol{\varphi}_k)\right) \left(\prod_{d=1}^{D} p(\boldsymbol{\theta}_d)\right) \left(\prod_{d=1}^{D} \prod_{n=1}^{N_d} P(z_{dn} | \boldsymbol{\theta}_d)\right) \left(\prod_{d=1}^{D} \prod_{n=1}^{N_d} P(w_{dn} | \boldsymbol{\Phi}, z_{dn})\right)$$

Step 1:

- sample $Z^* \sim P(Z | \Theta, \Phi, W)$
- or equivalently for each d and n sample $z_{dn}^* \sim P(z_{dn} | \mathbf{\Theta}, \mathbf{\Phi}, \mathbf{W})$

We want posterior as a function of Z, so we select only the terms involving Z. The other terms are constant.

$$P(\boldsymbol{Z}|\boldsymbol{\Theta},\boldsymbol{\Phi},\boldsymbol{W}) \propto P(\boldsymbol{W},\boldsymbol{Z},\boldsymbol{\theta},\boldsymbol{\Phi}) \propto \prod_{d=1}^{D} \prod_{n=1}^{N_d} P(z_{dn}|\boldsymbol{\theta}_d) P(w_{dn}|\boldsymbol{\Phi},z_{dn}) \propto \prod_{d=1}^{D} \prod_{n=1}^{N_d} P(z_{dn}|\boldsymbol{\Theta},\boldsymbol{\Phi},\boldsymbol{W})$$

$$P(z_{dn}|\mathbf{\Theta},\mathbf{\Phi},\mathbf{W}) \propto P(w_{dn}|\mathbf{\Phi},z_{dn})P(z_{dn}|\mathbf{\theta}_d) = \varphi_{z_{dn}w_{dn}}\theta_{dz_{dn}}$$

$$P(z_{dn}|\mathbf{\Theta},\mathbf{\Phi},\mathbf{W}) = \frac{\varphi_{z_{dn}w_{dn}}\theta_{dz_{dn}}}{\sum_{k'=1}^{K} \varphi_{k'w_{dn}}\theta_{dk'}} = \pi_{dw_{dn}z_{dn}}$$

$$\pi_{dvk} = \frac{\varphi_{kv}\theta_{dk}}{\sum_{k'=1}^{K} \varphi_{k'v}\theta_{dk'}}$$

Factorizes into product of independent terms one for each $z_{dn} \Rightarrow \text{ each } z_{dn}$ can be sampled from independent $P(z_{dn} | \mathbf{\Theta}, \mathbf{\Phi}, \mathbf{W})$

GS inference for LDA: Sampling Θ and Φ

$$p(\boldsymbol{W}, \boldsymbol{Z}, \boldsymbol{\Theta}, \boldsymbol{\Phi}) \propto \left(\prod_{k=1}^{K} \prod_{v=1}^{V} \varphi_{kv}^{\beta_{v}-1} \right) \left(\prod_{d=1}^{D} \prod_{k=1}^{K} \theta_{dk}^{\alpha_{k}-1} \right) \left(\prod_{d=1}^{D} \prod_{k=1}^{K} \theta_{dk}^{c_{d,(\cdot)}^{k}} \right) \left(\prod_{k=1}^{K} \prod_{v=1}^{V} \varphi_{kv}^{c_{(\cdot),v}^{k}} \right)$$

Step 2:

- sample Θ^* , $\Phi^* \sim P(\Theta, \Phi | Z, W)$
- or equivalently for each d = 1..D sample $\theta_d^* \sim P(\theta_d | \mathbf{Z}, \mathbf{W})$ and for each k = 1..K sample $\varphi_k^* \sim P(\varphi_k | Z, W)$

$$P(\mathbf{\Theta}, \mathbf{\Phi} | \mathbf{Z}, \mathbf{W}) \propto P(\mathbf{W}, \mathbf{Z}, \mathbf{\theta}, \mathbf{\Phi}) \propto \left(\prod_{d=1}^{D} \prod_{k=1}^{K} \theta_{dk}^{\alpha_k + C_{d,(\cdot)}^k - 1} \right) \left(\prod_{k=1}^{K} \prod_{v=1}^{V} \varphi_{kv}^{\beta_v + C_{(\cdot),v}^k - 1} \right)$$
The dependence on \mathbf{Z} is through the counts $C_{d,v}^k$

$$P(\mathbf{\Theta}, \mathbf{\Phi} | \mathbf{Z}, \mathbf{W}) = \prod_{d=1}^{D} \text{Dir}(\boldsymbol{\theta}_{d} | \boldsymbol{\alpha} + \boldsymbol{C}_{d,(\cdot)}) \prod_{k=1}^{K} \text{Dir}(\boldsymbol{\varphi}_{k} | \boldsymbol{\beta} + \boldsymbol{C}_{(\cdot)}^{k}) = \prod_{d=1}^{D} P(\boldsymbol{\theta}_{d} | \mathbf{Z}, \mathbf{W}) \prod_{k=1}^{K} P(\boldsymbol{\varphi}_{k} | \mathbf{Z}, \mathbf{W})$$

where vectors $\mathbf{C}_{d,(\cdot)} = \left[C_{d,(\cdot)}^1, C_{d,(\cdot)}^2, \dots, C_{d,(\cdot)}^K \right]^t$ and $\mathbf{C}_{(\cdot)}^k = \left[C_{(\cdot),1}^k, C_{(\cdot),2}^k, \dots, C_{(\cdot),V}^k \right]^T$

Factorizes into product of independent terms for each θ_d and $\varphi_k \Rightarrow$ can be sampled independently.

The dependence on Z is

GS inference for LDA: Using word counts

- Until now, each training document d = 1..D was represented by a variable length sequence of N_d words w_{dn} , where $n = 1..N_d$
- More conveniently, we can represent all documents by $D \times V$ matrix M, with elements M_{dv} counting how many times document d contains word v
 - No need to know the order of the words w_{dn} in the sequence. The counts M_{dv} are enough.
 - Instead of sampling each z_{dn} , directly sample $C_{d,v}^k$

$$\pi_{dvk} = \frac{\varphi_{kv}\theta_{dk}}{\sum_{k'=1}^{K} \varphi_{k'v}\theta_{dk'}}$$

$$\boldsymbol{\pi}_{dv} = [\pi_{dv1}, \pi_{dv2}, \dots, \pi_{dvK}]^T$$

for
$$n = 1..N_d$$

 $z_{dn}^* \sim P(z_{dn} | \mathbf{\Theta}, \mathbf{\Phi}, \mathbf{W}) = \text{Cat}(\boldsymbol{\pi}_{dw_{dn}})$

$$C_{d,v}^{k} = \sum_{n=1}^{N_d} \delta(z_{dn} = k) \delta(w_{dn} = v)$$

$$\boldsymbol{C}_{d,v} = \begin{bmatrix} C_{d,v}^1 \\ C_{d,v}^2 \\ \vdots \\ C_{d,v}^K \end{bmatrix}$$

$$C_{d,v}$$
 ~ Multinomial (π_{dv}, M_{dv})

GS inference for LDA: Summary

for number of GS iterations

for
$$d = 1..D$$

for $v = 1..V$
 $C_{d,v} \sim \text{Multinomial}(\pi_{dv}, M_{dv})$

for
$$d = 1..D$$

 $\boldsymbol{\theta}_d^* \sim P(\boldsymbol{\theta}_d | \boldsymbol{Z}, \boldsymbol{W}) = \text{Dir}(\boldsymbol{\theta}_d | \boldsymbol{\alpha} + \boldsymbol{C}_{d,(\cdot)})$

for
$$k = 1..K$$

 $\boldsymbol{\varphi}_k^* \sim P(\boldsymbol{\varphi}_k | \boldsymbol{Z}, \boldsymbol{W}) = \text{Dir}\left(\boldsymbol{\varphi}_k | \boldsymbol{\beta} + \boldsymbol{C}_{(\cdot)}^k\right)$

where

$$C_{d,(\cdot)}^k = \sum_{v=1}^V C_{d,v}^k$$
, $C_{(\cdot),v}^k = \sum_{d=1}^D C_{d,v}^k$

$$C_{(\cdot),v}^k = \sum_{d=1}^D C_{d,v}^k$$

$$\boldsymbol{C}_{d,(\cdot)} = \begin{bmatrix} C_{d,(\cdot)}^1 \\ C_{d,(\cdot)}^2 \\ \vdots \\ C_{d,(\cdot)}^K \end{bmatrix}, \qquad \boldsymbol{C}_{(\cdot)}^k = \begin{bmatrix} C_{(\cdot),1}^k \\ C_{(\cdot),2}^k \\ \vdots \\ C_{(\cdot),V}^k \end{bmatrix}$$

$$\boldsymbol{C}_{(\cdot)}^{k} = \begin{vmatrix} C_{(\cdot),1}^{k} \\ C_{(\cdot),2}^{k} \\ \vdots \\ C_{(\cdot),V}^{k} \end{vmatrix}$$

Where π_{dv} is evaluated using the currently values of Θ and Φ in each iteration.

After running a number of GS iterations, we get likely samples (from the posterior $p(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi} | \mathbf{W})$) of vectors θ_d representing each document and φ_k representing latent topic distributions.

Approximate inference (for Bayesian LDA)

- Gibbs sampling
 - Instead of obtaining $p(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi} | \mathbf{W})$, we only generate samples from this distribution
- Variational Bayes
 - Approximate intractable $p(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi} | \mathbf{W})$ with tractable $q(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi})$
 - Iteratively tune parameters of $q(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi})$ to minimize $D_{KL}(q(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi}) || p(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi} || \mathbf{W}))$

•

Variational Bayes

$$\ln p(\mathbf{X}) = \underbrace{\int q(\mathbf{Y}) \ln p(\mathbf{X}, \mathbf{Y}) \, d\mathbf{Y} - \int q(\mathbf{Y}) \ln q(\mathbf{Y}) \, d\mathbf{Y}}_{\mathcal{L}(q(\mathbf{Y}))} - \underbrace{\int q(\mathbf{Y}) \ln \frac{p(\mathbf{Y}|\mathbf{X})}{q(\mathbf{Y})} \, d\mathbf{Y}}_{D_{KL}(q(\mathbf{Y})||p(\mathbf{Y}|\mathbf{X}))}$$

- Find q(Y), which is a good approximation for the true posterior p(Y|X)
- Maximize $\mathcal{L}(q(\mathbf{Y}))$ w.r.t. $q(\mathbf{Y})$, which in turn minimizes $D_{KL}(q(\mathbf{Y})||p(\mathbf{Y}|\mathbf{X}))$
 - "Handcraft" a reasonable parametric distribution $q(\mathbf{Y}|\boldsymbol{\eta})$ and optimize $\mathcal{L}(q(\mathbf{Y}|\boldsymbol{\eta}))$ w.r.t. its parameters $\boldsymbol{\eta}$.
 - Mean field approximation assuming factorized form $q(Y)=q(Y_1)q(Y_2)q(Y_3)...$

Minimizing Kullback-Leibler divergence

• We optimize parameters of (simpler) distribution q(Y) to minimize Kullback-Leibler divergence between q(Y) and p(Y|X).

- Minimizing $D_{KL}(p(Y|X)||q(Y))$.
- Not VB objective
- Expectation propagation
- Two local optima when (numerically) minimizing $D_{KL}(q(Y)||p(Y|X))$.
- VB performs this optimization

VB – Mean field approximation

- Popular Variational Bayes optimization method
- Variant of Variational Bayes, where the set of model variables Y, can be split into subsets $Y_1, Y_2, Y_3, ...,$ with conditionally conjugate priors
 - $p(Y_i|X, Y_{\forall i \neq i})$ is tractable with conjugate prior
 - E.g. for Bayesian GMM $p(\mu_c, \lambda_c | \mathbf{X}, \mathbf{z})$ has NormalGamma prior
- We assume factorized approximate posterior

$$q(\mathbf{Y}) = q(\mathbf{Y}_1)q(\mathbf{Y}_2)q(\mathbf{Y}_3) \dots = \prod_i q(\mathbf{Y}_i)$$

• This factorization dictates the optimal (conjugate) distributions for the factors $q(\mathbf{Y}_i)$ and brings well defined iterative update formulas:

$$q(\mathbf{Y}_i)^* \propto \exp\left(\int q(\mathbf{Y}_{\forall j \neq i}) \ln p(\mathbf{X}, \mathbf{Y}) d\mathbf{Y}_{\forall j \neq i}\right)$$

Mean field - update

$$\mathcal{L}(q(\mathbf{Y})) = \int q(\mathbf{Y}) \ln p(\mathbf{X}, \mathbf{Y}) \, d\mathbf{Y} - \int q(\mathbf{Y}) \ln q(\mathbf{Y}) \, d\mathbf{Y} = \int \prod_{i=1}^{M} q(\mathbf{Y}_i) \, \left[\ln p(\mathbf{X}, \mathbf{Y}) - \ln \prod_i q(\mathbf{Y}_i) \right] d\mathbf{Y}$$

$$= \int \prod_{i=1}^{M} q(\mathbf{Y}_i) \, \left[\ln p(\mathbf{X}, \mathbf{Y}) - \sum_i \ln q(\mathbf{Y}_i) \right] d\mathbf{Y}$$

- For example, let M = 3
- Now, lets optimize the lower bound $\mathcal{L}(q(\mathbf{Y}_1))$ w.r.t only one distribution $q(\mathbf{Y}_1)$

$$\mathcal{L}(q(\mathbf{Y}_1)) = \iiint q(\mathbf{Y}_1)q(\mathbf{Y}_2)q(\mathbf{Y}_3) \left[\ln p(\mathbf{X},\mathbf{Y}_1,\mathbf{Y}_2,\mathbf{Y}_3) - \ln q(\mathbf{Y}_1) - \ln q(\mathbf{Y}_2) - \ln q(\mathbf{Y}_3)\right] \,\mathrm{d}\mathbf{Y}_1 \,\,\mathrm{d}\mathbf{Y}_2 \,\,\mathrm{d}\mathbf{Y}_3 \\ = \int q(\mathbf{Y}_1) \underbrace{\iint q(\mathbf{Y}_2)q(\mathbf{Y}_3) \,\,\ln p(\mathbf{X},\mathbf{Y}_1,\mathbf{Y}_2,\mathbf{Y}_3) \,\,\mathrm{d}\mathbf{Y}_2 \,\,\mathrm{d}\mathbf{Y}_3}_{\ln \tilde{p}(\mathbf{Y}_1) + const} \,\,\mathrm{d}\mathbf{Y}_1 - \int q(\mathbf{Y}_1) \ln q(\mathbf{Y}_1) \,\,\mathrm{d}\mathbf{Y}_1 + const} \\ = \int q(\mathbf{Y}_1) \ln \tilde{p}(\mathbf{Y}_1) \,\,\mathrm{d}\mathbf{Y}_1 - \int q(\mathbf{Y}_1) \ln q(\mathbf{Y}_1) \,\,\mathrm{d}\mathbf{Y}_1 + const} = -D_{KL}(q(\mathbf{Y}_1)||\tilde{p}(\mathbf{Y}_1)) + const} \\ \text{where } \tilde{p}(\mathbf{Y}_1) \text{ is normalized to be a valid distribution (therefore + const)}$$

- $\mathcal{L}ig(q(\mathbf{Y}_1)ig)$ is maximized by setting the D_{KL} term to zero, which implies $\ln q(\mathbf{Y}_1) = \ln \tilde{p}(\mathbf{Y}_1) = \iint q(\mathbf{Y}_2)q(\mathbf{Y}_3) \; \ln p(\mathbf{X},\mathbf{Y}_1,\mathbf{Y}_2,\mathbf{Y}_3) \; \mathrm{d}\mathbf{Y}_2 \; \mathrm{d}\mathbf{Y}_3 + const$
- In general, we can iteratively update each $q(\mathbf{Y}_i)$ given the others $q(\mathbf{Y}_{i\neq j})$ as: $q(\mathbf{Y}_j) \propto \exp \int q(\mathbf{Y}_{\forall j\neq i}) \ln p(\mathbf{X},\mathbf{Y}) \; \mathrm{d}\mathbf{Y}_{\forall j\neq i}$ where each update guaranties to improve the lower bound $\mathcal{L}\big(q(\mathbf{Y})\big)$

Variational Bayes for LDA

Variational Bayes updates dictate:

$$q(\mathbf{Y}_i)^* \propto \exp \int q(\mathbf{Y}_{\forall j \neq i}) \ln p(\mathbf{X}, \mathbf{Y}) \, d\mathbf{Y}_{\forall j \neq i}$$

For the LDA model we chose to approximate the posterior using factorization

$$p(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi} | \mathbf{W}) \approx q(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi}) = q(\mathbf{Z})q(\mathbf{\Theta}, \mathbf{\Phi})$$

Therefore, we search for updates in form:

$$q(\mathbf{Z})^* \propto \exp \iint q(\mathbf{\Theta}, \mathbf{\Phi}) \ln p(\mathbf{W}, \mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi}) d\mathbf{\Theta} d\mathbf{\Phi}$$

$$q(\mathbf{\Theta}, \mathbf{\Phi})^* \propto \exp \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln p(\mathbf{W}, \mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi})$$

Or equivalently:

$$\ln q(\mathbf{Z})^* = \mathbb{E}_{q(\mathbf{O},\mathbf{\Phi})}[\ln p(\mathbf{W},\mathbf{Z},\mathbf{O},\mathbf{\Phi})] + \text{const}$$
$$\ln q(\mathbf{O},\mathbf{\Phi})^* = \mathbb{E}_{q(\mathbf{Z})}[\ln p(\mathbf{W},\mathbf{Z},\mathbf{O},\mathbf{\Phi})] + \text{const}$$

VB update for $q(\mathbf{Z})$

$$p(\boldsymbol{W}, \boldsymbol{Z}, \boldsymbol{\Theta}, \boldsymbol{\Phi}) = \left(\prod_{k=1}^{K} p(\boldsymbol{\varphi}_{k})\right) \left(\prod_{d=1}^{D} p(\boldsymbol{\theta}_{d})\right) \left(\prod_{d=1}^{D} \prod_{n=1}^{N_{d}} P(z_{dn}|\boldsymbol{\theta}_{d})\right) \left(\prod_{d=1}^{D} \prod_{n=1}^{N_{d}} P(w_{dn}|\boldsymbol{\Phi}, z_{dn})\right)$$

$$\ln p(\boldsymbol{W}, \boldsymbol{Z}, \boldsymbol{\Theta}, \boldsymbol{\Phi}) = \sum_{k=1}^{K} \ln p(\boldsymbol{\varphi}_{k}) + \sum_{d=1}^{D} \left(\ln p(\boldsymbol{\theta}_{d}) + \sum_{n=1}^{N_{d}} \ln P(z_{dn}|\boldsymbol{\theta}_{d}) + \ln P(w_{dn}|\boldsymbol{\Phi}, z_{dn})\right)$$

$$\ln q(\boldsymbol{Z})^{*} = \mathbb{E}_{q(\boldsymbol{\Theta}, \boldsymbol{\Phi})} [\ln p(\boldsymbol{W}, \boldsymbol{Z}, \boldsymbol{\Theta}, \boldsymbol{\Phi})] + \text{const}_{1}$$

$$= \sum_{d=1}^{D} \sum_{n=1}^{N_{d}} \mathbb{E}_{q(\boldsymbol{\Theta}, \boldsymbol{\Phi})} [\ln P(z_{dn}|\boldsymbol{\theta}_{d}) + \ln P(w_{dn}|\boldsymbol{\Phi}, z_{dn})] + \text{const}_{2}$$

$$= \sum_{d=1}^{D} \sum_{n=1}^{N_{d}} \ln q(z_{dn})^{*} \quad \Rightarrow \quad q(\boldsymbol{Z})^{*} = \prod_{d=1}^{D} \prod_{n=1}^{N_{d}} q(z_{dn})^{*}$$

- We only require factorization $q(\mathbf{Z})q(\mathbf{\Theta}, \mathbf{\Phi})$, but $q(\mathbf{Z})$ automatically further factorizes into a product of independent categorical distributions one for each z_{dn} so called **induced factorization**
- We will derive the update for distributions $q(z_{dn})$ later.

VB update for $q(\mathbf{\Theta}, \mathbf{\Phi})$

$$\ln p(\boldsymbol{W}, \boldsymbol{Z}, \boldsymbol{\Theta}, \boldsymbol{\Phi}) = \sum_{k=1}^{K} \ln p(\boldsymbol{\varphi}_k) + \sum_{d=1}^{D} \left(\ln p(\boldsymbol{\theta}_d) + \sum_{n=1}^{N_d} \ln \boldsymbol{\theta}_{dz_{dn}} + \ln \boldsymbol{\varphi}_{z_{dn} w_{dn}} \right) + \text{const}$$

$$\begin{split} & \ln q(\mathbf{\Theta}, \mathbf{\Phi})^* = \mathbb{E}_{q(\mathbf{Z})}[\ln p(\mathbf{W}, \mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi})] + \operatorname{const} \\ & = \mathbb{E}_{q(\mathbf{Z})} \left[\sum_{d=1}^{D} \left(\ln p(\boldsymbol{\theta}_d) + \sum_{n=1}^{N_d} \ln \boldsymbol{\theta}_{d\mathbf{Z}_{dn}} \right) + \left(\sum_{k=1}^{K} \ln p(\boldsymbol{\varphi}_k) + \sum_{d=1}^{D} \sum_{n=1}^{N_d} \ln \boldsymbol{\varphi}_{\mathbf{Z}_{dn} \mathbf{W}_{dn}} \right) \right] + \operatorname{const} \\ & = \sum_{d=1}^{D} \left(\ln p(\boldsymbol{\theta}_d) + \sum_{n=1}^{N_d} \mathbb{E}_{q(\mathbf{Z}_{dn})} \left[\ln \boldsymbol{\theta}_{d\mathbf{Z}_{dn}} \right] \right) + \sum_{k=1}^{K} \left(\ln p(\boldsymbol{\varphi}_k) + \sum_{d=1}^{D} \sum_{n=1}^{N_d} \mathbb{E}_{q(\mathbf{Z}_{dn})} \left[\delta(\mathbf{Z}_{dn} = \mathbf{k}) \ln \boldsymbol{\varphi}_{k\mathbf{W}_{dn}} \right] \right) + \operatorname{const} \\ & = \sum_{d=1}^{D} \ln q(\boldsymbol{\theta}_d)^* + \sum_{k=1}^{K} \ln q(\boldsymbol{\varphi}_k)^* \quad \Rightarrow \quad q(\mathbf{\Theta}, \mathbf{\Phi})^* = \prod_{d=1}^{D} q(\boldsymbol{\theta}_d)^* \prod_{k=1}^{K} q(\boldsymbol{\varphi}_k)^* \quad \text{induced factorization} \end{split}$$

VB update for $q(\boldsymbol{\theta}_d)$

$$\ln q(\boldsymbol{\theta}_d)^* = \ln \operatorname{Dir}(\boldsymbol{\theta}_d | \boldsymbol{\alpha}) + \sum_{n=1}^{N_d} \mathbb{E}_{q(z_{dn})} [\ln \theta_{dz_{dn}}] + \operatorname{const}$$

$$= \left(\sum_{k=1}^K \alpha_k - 1 \ln \theta_{dk}\right) + \sum_{n=1}^{N_d} \sum_{k=1}^K q(z_{dn} = k) \ln \theta_{dk} + \operatorname{const}$$

$$= \sum_{k=1}^K \left(\alpha_k - 1 + \sum_{n=1}^{N_d} q(z_{dn} = k)\right) \ln \theta_{dk} + \operatorname{const}$$

$$= \sum_{k=1}^K \left(\alpha_k + \bar{C}_{d,(\cdot)}^k - 1\right) \ln \theta_{dk} + \operatorname{const}$$

$$= \ln \operatorname{Dir}(\boldsymbol{\theta}_d | \boldsymbol{\alpha} + \bar{C}_{d,(\cdot)})$$
Practically, to

where

Expected counts similar to the hard counts $C_{d,(\cdot)}^k$ from GS

$$\bar{C}_{d,(\cdot)}^{k} = \sum_{n=1}^{N_d} q(z_{dn} = k)$$

$$\bar{C}_{d,(\cdot)} = \left[\bar{C}_{d,(\cdot)}^{1}, \bar{C}_{d,(\cdot)}^{2}, ..., \bar{C}_{d,(\cdot)}^{K}\right]$$

$$q(\boldsymbol{\theta}_d)^* = \text{Dir}(\boldsymbol{\theta}_d | \boldsymbol{\alpha} + \bar{\boldsymbol{C}}_{d,(\cdot)}) = \text{Dir}(\boldsymbol{\theta}_d | \boldsymbol{\alpha}_d^*)$$

Practically, the update means to calculate vector of parameters $\alpha^*_{a} = \alpha + \overline{C}_{a} \cap$

 $\boldsymbol{\alpha}_d^* = \boldsymbol{\alpha} + \overline{\boldsymbol{C}}_{d,(\cdot)}$ for each d

VB update for $q(\boldsymbol{\varphi}_k)$

$$\begin{split} & \ln q(\boldsymbol{\varphi}_k)^* = \ln \operatorname{Dir}(\boldsymbol{\varphi}_k|\boldsymbol{\beta}) + \sum_{d=1}^D \sum_{n=1}^{N_d} \mathbb{E}_{q(z_{dn})} \big[\delta(z_{dn} = k) \ln \varphi_{kw_{dn}} \big] + \operatorname{const} \\ & = \left(\sum_{v=1}^V \beta_v - 1 \ln \varphi_{kv} \right) + \sum_{d=1}^D \sum_{n=1}^{N_d} q(z_{dn} = k) \ln \varphi_{kw_{dn}} + \operatorname{const} \\ & = \sum_{v=1}^V \left(\beta_v - 1 + \sum_{d=1}^D \sum_{n=1}^{N_d} q(z_{dn} = k) \delta(w_{dn} = v) \right) \ln \varphi_{kv} + \operatorname{const} \\ & = \sum_{v=1}^V \left(\beta_v + \bar{C}^k_{(\cdot),v} - 1 \right) \ln \varphi_{kv} + \operatorname{const} \\ & = \ln \operatorname{Dir} \left(\boldsymbol{\varphi}_k | \boldsymbol{\beta} + \bar{\boldsymbol{C}}^k_{(\cdot)} \right) \end{split}$$

where

$$\begin{split} \bar{C}_{(\cdot),v}^k &= \sum_{d=1}^D \sum_{n=1}^{N_d} q(z_{dn} = k) \delta(w_{dn} = v) \\ \bar{\boldsymbol{C}}_{(\cdot)}^k &= \left[\bar{C}_{(\cdot),1}^k, \bar{C}_{(\cdot),2}^k, \dots, \bar{C}_{(\cdot),V}^k \right] \\ q(\boldsymbol{\varphi}_k)^* &= \operatorname{Dir} \left(\boldsymbol{\varphi}_k | \boldsymbol{\beta} + \overline{\boldsymbol{C}}_{(\cdot)}^k \right) = \operatorname{Dir} \left(\boldsymbol{\varphi}_k | \boldsymbol{\beta}_k^* \right) \end{split}$$

Practically, the update means to calculate vector of parameters

$$\boldsymbol{\beta}_k^* = \boldsymbol{\beta} + \overline{\boldsymbol{C}}_{(\cdot)}^k$$
 for each k

VB update for $q(z_{dn})$

$$\begin{split} \ln q(z_{dn})^* &= \mathbb{E}_{q(\mathbf{\Theta},\mathbf{\Phi})}[\ln P(z_{dn}|\boldsymbol{\theta}_d) + \ln P(w_{dn}|\mathbf{\Phi},z_{dn})] + \text{const} \\ &= \mathbb{E}_{q(\boldsymbol{\theta}_d)}[\ln P(z_{dn}|\boldsymbol{\theta}_d)] + \mathbb{E}_{q(\boldsymbol{\varphi}_k)}[\ln P(w_{dn}|\mathbf{\Phi},z_{dn})] + \text{const} \\ &= \mathbb{E}_{q(\boldsymbol{\theta}_d)}[\ln \theta_{dz_{dn}}] + \mathbb{E}_{q(\boldsymbol{\varphi}_k)}[\ln \varphi_{z_{dn}w_{dn}}] + \text{const} \end{split}$$

For
$$q(\boldsymbol{\theta}_d)^* = \text{Dir}(\boldsymbol{\theta}_d | \boldsymbol{\alpha}_d^*)$$
 and $q(\boldsymbol{\varphi}_k)^* = \text{Dir}(\boldsymbol{\varphi}_k | \boldsymbol{\beta}_k^*)$

$$\ln \rho_{dvk} = \mathbb{E}_{q(\theta_d)}[\ln \theta_{dk}] + \mathbb{E}_{q(\boldsymbol{\varphi}_k)}[\ln \boldsymbol{\varphi}_{kv}] + \text{const}$$

$$= \psi(\alpha_{dk}^*) - \psi\left(\sum_{k'=1}^K \alpha_{dk'}^*\right) + \psi(\beta_{kv}^*) - \psi\left(\sum_{v'=1}^V \beta_{kv'}^*\right) + \text{const}$$

Therefore, we update

$$q(z_{dn} = k)^* = \pi_{dw_{dn}k}$$

$$\pi_{dvk} = \frac{\rho_{dvk}}{\sum_{k'=1}^{K} \rho_{dvk'}}$$

Practically, the update means to evaluate 3D matrix with elements π_{dvk}

VB inference for LDA using word counts

- Again, as for the GS inference, rather than using sequence of words w_{dn} , we prefer to represent documents by $D \times V$ matrix M, with elements M_{dv} counting how many times document d contains word v
- Instead of estimating each $q(z_{dn}=k)$, we directly estimate expected counts $\bar{C}_{(\cdot),v}^k$ and $\bar{C}_{d,(\cdot)}^k$

$$q(z_{dn} = k) = \pi_{dw_{dn}k}$$

$$\bar{C}_{(\cdot),v}^{k} = \sum_{d=1}^{D} \bar{C}_{d,v}^{k} = \sum_{d=1}^{D} \sum_{n=1}^{N_{d}} q(z_{dn} = k)\delta(w_{dn} = v)$$

$$\bar{C}_{d,(\cdot)}^{k} = \sum_{v=1}^{N_{d}} \bar{C}_{d,v}^{k} = \sum_{n=1}^{N_{d}} q(z_{dn} = k)$$

$$\bar{C}_{d,v}^{k} = \sum_{n=1}^{N_{d}} q(z_{dn} = k)\delta(w_{dn} = v) = \pi_{dvk} \sum_{n=1}^{N_{d}} \delta(w_{dn} = v)$$

$$\bar{C}_{d,v}^{k} = \pi_{dvk} M_{dv}$$

ELBO objective to monitor progress

$$\begin{split} \mathcal{L}\big(q(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi})\big) &= \mathbb{E}_{q(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi})} \left[\ln \frac{p(\mathbf{W}, \mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi})}{q(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi})} \right] \\ &= \sum_{d=1}^{D} \sum_{n=1}^{N_d} \mathbb{E}_{q(z_{dn})} \big[\mathbb{E}_{q(\theta_d)} [\ln P(z_{dn} | \theta_d)] + \mathbb{E}_{q(\boldsymbol{\varphi}_k)} [\ln P(w_{dn} | \boldsymbol{\varphi}, z_{dn})] - \ln q(z_{dn}) \big] \\ &- \sum_{k=1}^{K} \mathbb{E}_{q(\boldsymbol{\varphi}_k)} \left[\ln \frac{q(\boldsymbol{\varphi}_k)}{p(\boldsymbol{\varphi}_k)} \right] - \sum_{d=1}^{D} \mathbb{E}_{q(\theta_d)} \left[\ln \frac{q(\boldsymbol{\theta}_d)}{p(\boldsymbol{\theta}_d)} \right] \\ &= \sum_{d=1}^{D} \sum_{n=1}^{N_d} \sum_{k=1}^{K} q(z_{dn} = k) [\ln \rho_{dw_{dn}k} - \ln q(z_{dn} = k)] - \sum_{d=1}^{D} KL(q(\boldsymbol{\theta}_d) || p(\boldsymbol{\theta}_d)) - \sum_{k=1}^{K} KL(q(\boldsymbol{\varphi}_k) || p(\boldsymbol{\varphi}_k)) \\ &= \sum_{d=1}^{K} \sum_{v=1}^{K} \sum_{k=1}^{K} \bar{C}_{d,v}^{k} (\ln \rho_{dvk} - \ln \pi_{dvk}) - \sum_{d=1}^{D} KL\left(\text{Dir}(\boldsymbol{\alpha}_d^*) || \text{Dir}(\boldsymbol{\alpha})\right) - \sum_{k=1}^{K} KL\left(\text{Dir}(\boldsymbol{\beta}_k^*) || \text{Dir}(\boldsymbol{\beta})\right) \end{split}$$

$$KL\left(\operatorname{Dir}(\boldsymbol{\alpha})||\operatorname{Dir}(\boldsymbol{\beta})\right) = \ln\Gamma\left(\sum_{c=1}^{C}\alpha_{c}\right) - \sum_{c=1}^{C}\ln\Gamma(\alpha_{c}) - \ln\Gamma\left(\sum_{c=1}^{C}\beta_{c}\right) + \sum_{c=1}^{C}\ln\Gamma(\beta_{c}) + \sum_{c=1}^{C}(\alpha_{c} - \beta_{c})\left(\psi(\alpha_{c}) - \psi\left(\sum_{c'=1}^{C}\alpha_{c'}\right)\right)\right)$$

Efficient ELBO calculation

$$\mathcal{L}(q(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi})) = \sum_{d=1}^{D} \sum_{v=1}^{V} \sum_{k=1}^{K} \bar{C}_{d,v}^{k} (\ln \rho_{dvk} - \ln \pi_{dvk}) - \sum_{d=1}^{D} KL(\mathrm{Dir}(\boldsymbol{\alpha}_{d}^{*})||\mathrm{Dir}(\boldsymbol{\alpha})) - \sum_{k=1}^{K} KL(\mathrm{Dir}(\boldsymbol{\beta}_{k}^{*})||\mathrm{Dir}(\boldsymbol{\beta}))$$

Right after updating $q(z_{dn})$ (i.e. evaluating the terms π_{dvk}), the red term becomes independent of k since

$$\pi_{dvk} = \frac{\rho_{dvk}}{\sum_{k'=1}^{K} \rho_{dvk'}} \Rightarrow \ln \rho_{dvk} - \ln \pi_{dvk} = \ln \sum_{k'=1}^{K} \rho_{dvk'}$$

Therefore, right after updating $q(z_{dn})$ and before updating any $q(\theta_d)$ or $q(\varphi_k)$, we efficiently calculate ELBO $\mathcal{L}(q(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi}))$ as:

$$\mathcal{L}(q(\mathbf{Z}, \mathbf{\Theta}, \mathbf{\Phi})) = \sum_{d=1}^{D} \sum_{v=1}^{V} M_{dv} \ln \sum_{k=1}^{K} \rho_{dvk} - \sum_{d=1}^{D} KL\left(\text{Dir}(\boldsymbol{\alpha}_{d}^{*})||\text{Dir}(\boldsymbol{\alpha})\right) - \sum_{k=1}^{K} KL\left(\text{Dir}(\boldsymbol{\beta}_{k}^{*})||\text{Dir}(\boldsymbol{\beta})\right)$$

where we have used $\sum_{k=1}^K \bar{C}_{d,v}^k = M_{dv}$, and where we can reuse the terms $\sum_{k'=1}^K \rho_{dvk'}$ that were just calculated for normalizing the terms π_{dvk} .

VB inference for LDA: Summary

for number of VB iterations

for every
$$d = 1..D$$
, $v = 1..V$ and $k = 1..K$

$$\ln \rho_{dvk} = \psi(\alpha_{dk}^*) - \psi\left(\sum_{k'=1}^K \alpha_{dk'}^*\right) + \psi(\beta_{kv}^*) - \psi\left(\sum_{v'=1}^V \beta_{kv'}^*\right)$$

$$\pi_{dvk} = \frac{\rho_{dvk}}{\sum_{k'=1}^{K} \rho_{dvk'}}$$

$$\bar{C}_{d,v}^k = \pi_{dvk} M_{dv}$$

for
$$d = 1...D$$

$$\boldsymbol{\alpha}_d^* = \boldsymbol{\alpha} + \overline{\boldsymbol{C}}_{d,(\cdot)}$$

for k = 1..K

$$\boldsymbol{\beta}_k^* = \boldsymbol{\beta} + \overline{\boldsymbol{C}}_{(\cdot)}^k$$

where

$$ar{C}^k_{d,(\cdot)} = \sum_{v=1}^V ar{C}^k_{d,v}$$
, $ar{C}^k_{(\cdot),v} = \sum_{d=1}^D ar{C}^k_{d,v}$

$$\bar{C}_{(\cdot),v}^k = \sum_{d=1}^D \bar{C}_{d,v}^k$$

$$\overline{\boldsymbol{C}}_{d,(\cdot)} = \begin{bmatrix} C_{d,(\cdot)}^1 \\ C_{d,(\cdot)}^2 \\ \vdots \\ C_{d,(\cdot)}^K \end{bmatrix}, \qquad \overline{\boldsymbol{C}}_{(\cdot)}^k = \begin{bmatrix} C_{(\cdot),1}^k \\ C_{(\cdot),2}^k \\ \vdots \\ C_{(\cdot),V}^k \end{bmatrix}$$

$$\overline{\boldsymbol{C}}_{(\cdot)}^{k} = \begin{bmatrix} C_{(\cdot),1}^{k} \\ C_{(\cdot),2}^{k} \\ \vdots \\ C_{(\cdot)}^{k} V \end{bmatrix}$$

Where π_{dv} is evaluated using the currently values of α_d^* and β_k^* in each iteration.

After running a number of VB iterations, $q(\theta_d)^* = \text{Dir}(\theta_d | \alpha_d^*)$ and $q(\varphi_k)^* = \text{Dir}(\varphi_k | \beta_k^*)$ are approximate posteriors for all d = 1...D and k = 1...K