Bayesian Models in Machine Learning

Approximate inference in Bayesian models
Latent Dirichlet Allocation Model

Lukas Burget

BRNO FACULTY
UNIVERSITY OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

Latent Dirichlet Allocation Model

Set of topic (color) > 5
specific word distributions o S 3
= S
Q S O
i) ~ %] %]
1| 104 02 0.0
®T =|pl[=]00 04 02
5| Lo 00 00

®0,=[02 01 0.0

w, = [apple burger

Document specific word

5
QL
3 O
QU S
S M)
0.0 0.0
0.2 0.0
0.6 0.2
0.3 0.1

|

-

Document specific
topic mixture weights

sports 0.5
computers [0_0] =0,
food 0.5

is surfing apple tenis]

distribution.
Mixture of Categorical Document, where each word is independently | Wit~ Cat(®8q)
distributions is again drawn from the document specific distribution

Categorical distribution.

The Task

Given a set of learn the set of topic without knowing any topic
documents and specific word distribution labels (i.e. topics are latent)
chosen number ®
of topics _? S o & and, for each
2 & 32 2 document, estimate the
S 7 8 & B topic mixture weights.
1| [04 02 00 00 00 .] Sports [0.5
T =|[pl[=100 04 02 02 0.0] computers [o.o] =0,
2 0.0 0.0 00 0.6 0.2 food 0.5

This vector can serve
®0,=[02 01 00 03 01 ..] aslow—d|m§n5|onal
representation of the

w, = [apple burger is surfing apple tenis] document (e.qg. for topic

w, = and surfing but mainly tenis] clustering).
wsy = [surfing with apple sotware about tenis] Grqup of documentg for
: which the same weight
wp = [the best burget is appe burger] dominates are probably
on one and the same

topic.

LDA assumed generative process

* For each document d, each word w,,, Is independently drawn from the
document specific distribution ®8;:

ford =1..D
forn=1..N,4
de~Cat((DHd)

* Or, like for GMM, we choose the mixture component z , 0,
(representing a topic) and sample observation w,,,from |
its distribution.

ford =1..D @

forn=1..N,4

Zan~Cat(fy)
de~cat(¢zdn) n=1..Ny,

Full Bayesian LDA

« Let's treat parameters of each topic specific distribution ¢, and document
specific weights 8, as random variables with Dirichlet priors: ¢, ~Dir(f) and
Bd"’ DII'(C()

« The generative process is now: d

fork =1..K
@i ~Dir(B)

ford =1..D
HdN Dlr(a)

Il
—
S

forn=1..Ny
Zdn~Cat(9d) P
deNCat((pzdn) n=1.Ny4 k

®—O7O.

Il
=
=

Bayesian LDA model summary

Joint Probability:
D Ng D Ng

p(W,Z,0,®) = ﬁzo(«pk) ﬁp(ed> [] [peanton)(]][] [P0vant®. zan)
k=1 d=1

Py

==
Il

d=1n=1 d=1n=1
Variables:
D= [, @, .., Pr] -topic specific word distributions i=1.D
0 =[0,,0,..,0p] -document specific topic distributions
Zgn = k - denotes that nt"* word in document d comes from topic k
Wip =V - denotes that nt"* word in document d is v
Indices:
d=1..D - (training) document @
k=1..K - topic
v=1.V - unique word in the vocabulary of size V
n=1..N; - position of word in document d
p(@i) = Dir(@i|B) = [V -4 <p£3_1 - prior on parameters @y n=1.N,
p(8,) = Dir(8,]a) < [1X_, 9;‘,1‘_1 - prior on document specific topic mixture weights
P(zg4, = k|04) = O - probability that a word in document d comes from topic k

P(wy, = v|®,z4, = k) = @iy - probability of word v if we know that it comes from topic k

Using counts Cf,,

Joint Probability:

D Ny D Ny

p(W,2,0,0) = ﬁp(«pk) ﬁp(ed) [] [pCanton (][] [P0wani®. 2an)
k=1 d=1 d=1n=1

d=1 n=1

Let CC’{,v be the count of words v generated from topic k in document d as assigned by
latent variables zg,,.

Ng
Ccll(,v = Z 65(Zgn = k)5(de =)
n=1

Ng N4 K

C
np(zdnled) = Hedzdn = HHdz(),
n=1 n=1 k=1

where CO’{,(,) = Yv-1Ck, is the count of all words from topic k in document d

D Ny D Ny K Vv
ck
— — ()v
nnp(wdnld)izdn) - l_ll_l(pzdnwdn - l—Il_I(p
d=1n=1 d=1n=1 k=1 v=1

where C(’f)’v = ¥0_, ¢k, is the count of words v from topic topic k in all documents.

OO -

n = 1Nd

Py

==
Il

Joint probabillity using the counts

p(W,Z,0,®) = (1_[p(«p,a) (1_[pwd)) (1_[ﬂP(zdnwd)) (]_[]N_[P(Wanl®, zdn>>

d=1n=1 d=1n=1
D K K Vv
(TR T TRESe e ([0 T
- % kv K dk dk k
k=1 [ly=1T(Bv) v=1 d=1 [Tje=1 T'(ei) k=1 d=1 k=1 k=1 v=1 ’
K VvV D K D K iy K VvV iy
By—1 ap—1 Cd,) Co,
ol L] Lol UL LT Loa™ JUL LT Loae)L LT Jow™) Taoin
k=1 v=1 d=1 k=1 d=1 k=1 k=1 v=1 o
,4—— a
Ng
Ccll{v = Z 5(Zdn = k)5(de =v)
n=1
B
V D @ ||
Ccll{():zccllc,v C(k)vzzcélcv
v=1 d=1
“ Py
n=1. 'Nd k =

Gibbs Sampling

Assume we cannot sample from the complex joint distribution p(z,, z,) but it is possible to
sample from the conditional distributions p(z,|z,) and p(z,|z;)

1. Initialize z; to any value (i.e. chosen constant)
2. Given current sample z; generate z;~p(z,|z;)
3. Given current sample z; generate z;~p(z,|z,)
4. Go to steps 2.

In theory, after infinite number of iteration the final values z;, z; is a sample from p(z,, z,)
Or, with increasing number of iterations, z;, z, converges to a valid sample from p(z,, z,)

In practice, after several initial iterations (burn-in phase) take z3, z; from every Nt iteration and
consider them samples from p(z4, z,)

— Often N =1 is used

— Starting from a likely value of z; requires less burn-in iterations
This can be extended to any number variables

— always sample one given current values for others

Works for any random variables (discrete, continuous; scalars, vectors)

toy example only to demonstrate how Gibbs sampling works.

Gibbs sampling for 2D Gaussian

Of course, it is possible to efficiently and exactly sample directly from a 2D Gaussian distribution. We use this

15.0 +

12.5 1

10.0 -

7.5 7

5.0 1

2.5 1

0.0 A

_2.5 =}

Iterate:
x*~p(x|y*)
y ~p(ylx*)

Burn-in phase

For 2D gaussian distribution

d(

)=+l

§

|

the conditional probability

p(xly) - N (x|ﬂx|ys A;xl‘

where

Hx

)

Hy

|

Hxly = Hx — A;)%Axy(y - ﬂy)

and

ZXX

)

yx

Xy
Z"xx

)

Approximate inference
(for Bayesian LDA)

» Gibbs sampling
— Instead of obtaining p(Z, ©, ®|W), we only generate samples from this distribution

— We alternately sample from
» Z*~P(Z| O, D,W)
» O, P*~P(0,P|Z,W)

 Variational Bayes
— Approximate intractable p(Z, 0, ®|W) with tractable q(Z, 0, ®)
— lteratively tune parameters ofq(Z, ®, ®) to minimize Dg; (q(Z,0,®)||p(Z, 0, P|W))

GS Inference for LDA: Sampling Z
p(W,Z,0,®) = Qip(«pk)) Qip(ed)) (ﬁ ﬁ P(zdnled)> (ﬁ ﬁ P(Wan|®, zdn)>

Step 1.

We want posterior as a function of Z,
« sample Z*~P(Z| ©, ®, W) so we select only the terms involving Z.
- or equivalently for each d and n sample z};,,~ P(z4,,|0©, ®, W) The other terms are constant.

D Ny %

P(Z| ©,®, W) « P(W,Z, 0, d) 1_[ﬂP(zdnled) P(Wg | ®, 24,) H P(2,,|0, ®,W)
d=1n=1 d=1n=1

P(zgn|0®, ®,W) < P(Wyn|®, 24, P (240 |04) = (pzdnwdngdzdn

(pZd Wd gdZd 1 1 1
P(z4,|0, &, W) = K n%dn en = w24, Factorizes into product of independent
k'=1 Pr'w g, Yar’ terms one for each z4, = each z4, can be
T apr = PivYak sampled from independent P(z;,|0, ®, W)
Z k, Qdk,

GS Inference for LDA: Sampling ® and &
e[(1T) (10 101

k=1 v=1 d=1 k=1 d=1 k=1 k=1 v=1
Step 2.
Factorizes into product of
« sample @*,®*~P(0,®|Z, W) independent terms for
« or equivalently for each d = 1..D sample 6;~ P(0,|Z, W) each 6, and ¢,= can be

and for each k = 1..K sample @~ P(@i|Z, W) sampled independently.

The dependence on Z is

D K v
k k
P(O,®|ZW) x P(W,Z,0,®P) 1_[1_[6§k+cd()_1 1_[1_[w+Cyp —1 through the counts Cy,

d=1 k=1 V
K

P(O, D|Z,W) = HDlr(0d|a+ Cd())l—[Dlr 0lB +CE)) = p(ed|z W)l_[P((pklz w)

d= k=1

T T
where vectors Cd,(-) = [Cé,(), Cé)(), e Cé{()] and C() = [C(If)’l, C(If)’z, e C(k),V]

GS inference for LDA: Using word counts

Until now, each training document d = 1..D was represented by a variable length sequence of

N, words wg,,, wheren = 1.. N,
More conveniently, we can represent all documents by D X V matrix M, with elements M,

counting how many times document d contains word v
* No need to know the order of the words w,,, in the sequence. The counts M, are enough.

« |Instead of sampling each z,,,, directly sample Cj{,v

Tgor = PrvOdk
vk = TK
Lpr—q Prlv0ar!
_ T Cl
gy = [ﬂdv1;7'[dv2; ---:T[de] d,v
CZ
Civ = v
forn =1.. Ny : :
* — K
Zin~P(24n|0, @, W) = Cat(Tyy,,) Cav)

ck, = 27’;’21 §(zgn = K)6(Wg,, = V) C 4 ,~Multinomial (7, My,)

GS Inference for LDA: Summary

for number of GS iterations where
ford=1..D
forv=1..V D
C 4 ,~Multinomial(m 4, Mg,,) ck = Z ck,, ck,= Z ck
ford =1..D _ _ _ _
0;~P(641Z, W)= Dir(64|a + Cg4) Ca () Céa
c. . —|Co ok 1€
fork=1..K 4.) c I O :
K k
¢ ~P(@r|Z W)=Dir («pklﬁ + Cé‘.)) Ca,) Lo

Where m,, is evaluated using the currently values of ® and @ in each iteration.

After running a number of GS iterations, we get likely samples (from the posterior p(Z, 0, ®|W)) of
vectors 6, representing each document and ¢y representing latent topic distributions.

Approximate inference
(for Bayesian LDA)

* Gibbs sampling

— Instead of obtaining p(Z, O, ®|W), we only generate samples from this distribution

 Variational Bayes
— Approximate intractable p(Z, 0, ®|W) with tractable q(Z, 0, ®)
— Iteratively tune parameters ofq(Z, @, ®) to minimize Dg; (q(Z, 0, ®)||p(Z, 0, P|W))

Variational Bayes

p(Y|X
Inp(X) = /q(Y) Inp(X,Y)dY — /q(Y) Ing(Y) dY /q(Y) In il (Yl')) dY
q
L(q(Y)) Drr(g(Y)|[p(Y[X))

* Find g(Y), which is a good approximation for the true posterior p(Y|X)
» Maximize £(q(Y)) w.r.t. g(Y), which in turn minimizes Dy, (q(Y)||p(YIX))

— “Handcraft” a reasonable parametric distribution g(Y|n) and optimize
L(q(Y[m)) w.r.t. its parameters 7.

— Mean field approximation assuming factorized form q(Y)=q(Y;)q(Y,)q(Y3)...

Minimizing Kullback-Leibler divergence

« We optimize parameters of (simpler) distribution g(Y) to minimize
Kullback-Leibler divergence between g(Y) and p(Y|X).

)

N
\ Y J Y)
« Minimizing « Two local optima when (numerically)
DKL(P(Y|X)||CI(Y))- minimizing DKL(CI(Y)||P(Y|X))-
* Not VB objective « VB performs this optimization

« EXpectation propagation

VB — Mean field approximation

Popular Variational Bayes optimization method

Variant of Variational Bayes, where the set of model variables Y, can
be split into subsets Y;,Y,, Y5, ..., with conditionally conjugate priors

- p(YilX, Yy; +i) Is tractable with conjugate prior
— E.g. for Bayesian GMM p(u,, A.|X,z) has NormalGamma prior
We assume factorized approximate posterior

q(Y)=q(Y1)q(Y2)q(Y3) ... = [1;q(¥))

This factorization dictates the optimal (conjugate) distributions
for the factors q(Y;) and brings well defined iterative update
formulas:

q(Y;)" o exp (f q(Yyj i) Inp(X,Y) dYy; ¢i>

Mean field - update

£(q(Y)) = / (Y) Inp(X,Y) dY — [q{Yan[YJ dY — / H a(Y:) |In p(X,Y) —In[] q{‘r’ij] IY

_ [ﬁq("’f,-} In p(X,Y) — Zln a(Y;)]
Y oa=1

« Forexample,letM =3
» Now, lets optimize the lower bound £(g(Y;)) w.r.t only one distribution q(Y;)

La(Yi)= [[[a(¥1)a(¥2)a(¥s) Inp(X, Y1, Y2, ¥s) — na(¥1) — Ina(Y2) — Ina(Ys)] dYy1 dY3 dYs

= [a¥1) [[a(Y2)a(Ys) np(X, Y1, Y2, Ya) dYs dYs dY1 — [(Y1) Ina(Y1) dY: + const

T

In (Y1)+const
= /q{Yl)lnﬁ(Yl} dY, — fq{‘fﬂlnq(Yﬂ dY 1 +const = =D (qg(Y1)||p(Y1)) + const

where 5(Y;) is normalized to be a valid distribution (therefore +const)

. L(q(Yl)) IS maximized by setting the Dy, term to zero, which implies
Ing(Y;)=Inp(Y,) = [/ q(Yz2)q(Yz) Inp(X,Y;.Y3.Y3) dY; dY 3 + const

* In general, we can itefétively update each q(Y;) given the others q(Y;.;) as:
a(Y;) o exp [a(Yujzi) Inp(X, Y) dYwj

where each update guaranties to improve the lower bound L(q(Y))

Variational Bayes for LDA

Variational Bayes updates dictate:
q(Y;)" « expj q(Yyj 2i) Inp(X,Y) dYyj 2

For the LDA model we chose to approximate the posterior using factorization
p(Z,0,P|W) ~ q(Z,0,P) = q(Z)q(0, P)

Therefore, we search for updates in form:

q(Z)* o« exp H q(0,®)Inp(W,Z,0,P)dOdP

q(0,P)" < expz q(Z)Inp(W,Z,0, D)
7

Or equivalently:
Inq(Z)" = Ejoe)[Inp(W,Z,0,®)] + const
Inq(®,®)" = E;z)[Inp(W,Z,0,P)] + const

VB update for q(Z)
p(W,2,0,0) = (ljp(w)) (ﬁp(%)) (1_[[] P(zdn|0d>> (ﬁ ﬁ P(Wan|®, zdn>>

1 n=1

K D
Inp(W,Z,0,®P) = z Inp(py) + z <1np(9d) + Z InP(z4,|04) +In P(wgy,|P, Zdn))
k=1 d=1 n=1

Thetermsinlnp(W, Z, 0, ®)
Inq(Z)* = Eye.0[Inp(W, Z, 0, ®)] + const; Independent of zg,, are
D Ny absorbed in const,
= Z z Eqeo,0)[InP(24n04) + In P(Wgy|®, z4,)] + const,
1n=1

S Ng D Ng
=Y > nqGa)’ = a@ =] [] [aGa’
d=1n=1 d=1n=1

« \We only require factorization q(Z)q(0, ®), but g(Z) automatically further factorizes into a product of
Independent categorical distributions one for each z,4,,- so called induced factorization

« We will derive the update for distributions q(z,4,,) later.

VB update for q(0, P)

d
Inp(W,Z,0,dP) = Z Inp(ep,) + Z Inp(8,) + z In6,,, +Ing, .. |+ const

Inq(®,®)" = Eyz»[Inp(W,Z,0,®P)] + const
K D Ny

= Eq2) lz Inp(0,) + Z In6,, Z Inp(ey) + Z Z Ing,, . ||+ const
n=1 =

Ng K D Ny

Inp(6,) + 2 Eq(zg) [ln ded z Inp(ep,) + z z Eq(zgm) [6(zdn = k) Ingg,,] + const

D

d=1 n:]_ k=1
D

d=1

Inq(6,)" +Zlnq<<pk) > q(0,®) —]_[qwd)]_[qapk) —

Induced factorization

VB update for q(8,)

Ng
Ing(0,)* = InDir(0,|a) + Z Eq(zg) [ln Hdzdn] + const

n=1
Ng K

K
= Z ap—1In6,, |+ Z Z q(Zan = k) In By, + const

n=1k=1

k=1 n=1
K
= z (Ofk + C_'C]Z(.) — 1) In 64, + const
k=1 3
= In D1r(0d|a + Cd,())
where
Ng
C_clzc() = z q(Zgn = k)
Expected counts n=1

r R ~2 ~K
similar to the hard Ca() = [Cd,(-)'cd,(-)' Cd,(-)]

counts Cc’{(,) from GS

1
K Ng
= z ak—1+zq(zdn = k) |In8g4, + const

Practically, the update
means to calculate
vector of parameters
a2==(14-fd(9
for each d

q(04)* = Dir(04la + C4 () = Dir(04]a)

VB update for g(¢;,)

In q(@y)”

where

M= 1M
e
>
S

D Ng

In Dir(e |B) + Z Z Eq(zgm) |6(z4n = k) In gokwdn] + const

d=1n=1

M—<
A
|
—_
=3
<
P
<
+

Mb
<
N\
N
Q
S
|
=
N~
=
<
w
<
Q
|
(@)
o
=
9]
—t

<
Il

B, —1+ z Z q(zgn = k)6(Wg, = v) |In @4, + const
d=1n

=1

k

p+ Clyp — 1) In ¢, + const
v=1
D Ng
Clyw =)) alan =108 (wan = v)

d=1n=1
—~k _ |-~k ~k ~k
Co= lC@,v Ciy2r s C(-),v]

q(@y)* = Dir (‘Pk|ﬁ + Z'I((.)) = Dir(¢x|B%)

Practically, the update
means to calculate
vector of parameters
* -k
B =B+ C,
for each k

VB update for q(z;,,)

Inq(zgn)" = Eqee,0)[In P(2qn|04) + In P(Wgp|®, 24y)] + const
= Eq0,)[InP(24nl04)] + Eg(p)[In P(Wgn|®, z45)] + const

= Eqo [ln dedn] + Eqepp) [ln gDZaden] T const

For q(84)" = Dir(84la;) and q(¢)* = Dir(9|67)

Inpgyi = Egee[In Ogi] + Eg(p,)[In @] + const
K

|4
= l/)(a:lk) -y Z a;k’ + lp(ﬁltv) -y Z ﬁZv’ + const
k'=1 v'=1

Therefore, we update

q(Zgn = k)* = TTaw g,k
Practically, the update
Pdvk means to evaluate 3D

Tl:d k = — . .
v K 1 Pavi’ — matrix with elements 7 ,x

VB Inference for LDA using word counts

Again, as for the GS inference, rather than using sequence of words wg,,, we prefer to represent
documents by D x V matrix M, with elements M,,, counting how many times document d contains

word v
Instead of estimating each q(z,4,, = k), we directly estimate expected counts C_(’f)v and C_é‘()

q(Zgn = k) Tawgnk
D Ng

Clyw = Z Ciy = Z Z q(Zan = k)6(Wan = V)

Nd B
Ecllc,(-) = z Ecll{v = Z Q(Zdn = k)
v=1 n=1

Ng Ng
Ecllc,v = z Q(Zdn = k)6(de =v) = Tgyk Z 5(de =v)
n=1 n=1

_—
Cav = TapkMay

ELBQO objective to monitor progress

p(W,Z,0,d)
q(Z,0, D)

L(C[(Z, @, q))) = IEC[(Z,@,‘I)) [11’1

D Ny

= ' Eqtgn [Baon 117 PCanl00)] + By [1 P(wanl®, 240)] = 1n Gz
d 1n=1

(@))
Z [ECI(‘Pk) [Z((pk)] Z Eq(ed) [p(ed]
D g
7 7 7 q(Zgn = K)[Inpgy k —Inq(zgn = k)] —

=1 1k
D

=1

K
KL(a(8)IIP(0) -) KL(a(@lIp(91)
k=1

IIMU

SH
3
Il

Mx

K
7 Ck (0 payi — InTgpy) — z KL Dlr(ad)HDlr(a)) KL (Dir(ﬁ;)nDir(ﬁ))

k=1 d=1 k

\4<

SH

1

<
Il
[y §

c=1 = = C’:l

C C C C C
KL(Dir(a)llDir(ﬁ)) =InT Qe | — InT(a;) —InT Be |+ InT(B.) + (ac — B | Yla) —¢ Al
(§) Soreo{§) o Sl o(5

Efficient ELBO calculation

KL (Dir(8;)||Dir(B))

ﬂM”

L(q(Z,0,®)) = 7 7 7 Cdv(lnpdvk Inmg,,) — Z KL Dlr(ad)||D1r(a))

d=1v=1k=1

Right after updating q(z4,,) (i.e. evaluating the terms m,;,;), the red term becomes independent of k since
K

Pdvk
Tavk = SK = Inpgyx — N4y, =1n Pavk’

k'=1Pavk’ =

Therefore, right after updating g(z,4,,) and before updating any q(8,) or q(¢}), we efficiently calculate ELBO
L(q(Z,0,®)) as:

D

D |4 K K
£(q(Z,0,®)) = z z M, In z Dy — z (Dir(e)||Dir(er)) - z KL (Dir(B;)|IDir(p))

where we have used YX_, C_C’l‘v Mg, and where W can reuse the terms Zk’—lpdvk’ that were just calculated
for normalizing the terms ;..

VB Inference for LDA: Summary

for number of VB iterations
foreveryd =1..D,v=1..Vandk =1..K

. . where
Inpgyi = P(age) — v z Agpr | + Y(Biw) — ¥ Z B
k'=1 v'=1 1% D
Tavke = e Chiy=) Chur Clw=) Ch,
. k'=1Pdvk’ v=1 d=1
Cd,v = Mgy Mgy 4 k-
ford=1..D Ca COon
x 2 k
g =a+Cq Cuy = |20, ct, = €2
fork=1..K ’ : :
* -k K k
B =B+ C(.) Ca,). Coyv]

Where m;, is evaluated using the currently values of a;and g;in each iteration.

After running a number of VB iterations, q(8,)* = Dir(0,4|a;;) and q(¢;)* = Dir(¢,|B}) are
approximate posteriorsforalld =1..D and k = 1..K

