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Latent Dirichlet Allocation Model
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Mixture of Categorical Document, where each word is independently | Wit~ Cat(®8q)
distributions is again drawn from the document specific distribution
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The Task

Given a set of learn the set of topic without knowing any topic
documents and specific word distribution labels (i.e. topics are latent)
chosen number ®
of topics _? S o & and, for each
2 & 32 2 document, estimate the
S 7 8 & B topic mixture weights.
1| [04 02 00 00 00 .] Sports  [0.5
T =|[pl[=100 04 02 02 0.0 ] computers [o.o] =0,
2 0.0 0.0 00 0.6 0.2 food 0.5

This vector can serve
®0,=[02 01 00 03 01 ..] aslow—d|m§n5|onal
representation of the

w, = [apple burger is surfing apple tenis] document (e.qg. for topic

w, = and surfing but mainly tenis ] clustering).
wsy = [surfing with apple sotware about tenis ] Grqup of documentg for
: which the same weight
wp = [the best burget is appe burger ] dominates are probably
on one and the same

topic.



LDA assumed generative process

* For each document d, each word w,,, Is independently drawn from the
document specific distribution ®8;:

ford =1..D
forn=1..N,4
de~Cat((DHd)

* Or, like for GMM, we choose the mixture component z , 0,
(representing a topic) and sample observation w,,,from |
its distribution.

ford =1..D @

forn=1..N,4

Zan~Cat(fy)
de~cat(¢zdn) n=1..Ny,




Full Bayesian LDA

« Let's treat parameters of each topic specific distribution ¢, and document
specific weights 8, as random variables with Dirichlet priors: ¢, ~Dir(f) and
Bd"’ DII'(C()

« The generative process is now: d

fork =1..K
@i ~Dir(B)

ford =1..D
HdN Dlr(a)
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forn=1..Ny
Zdn~Cat(9d) P
deNCat((pzdn) n=1.Ny4 k
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Bayesian LDA model summary

Joint Probability:
D Ng D Ng

p(W,Z,0,®) = ﬁzo(«pk) ﬁp(ed> [ ] [peanton )(] ][] [P0vant®. zan)
k=1 d=1

Py

==
Il

d=1n=1 d=1n=1
Variables:
D= [, @, .., Pr] -topic specific word distributions i=1.D
0 =[0,,0,..,0p] -document specific topic distributions
Zgn = k - denotes that nt"* word in document d comes from topic k
Wip =V - denotes that nt"* word in document d is v
Indices:
d=1..D - (training) document @
k=1..K - topic
v=1.V - unique word in the vocabulary of size V
n=1..N; - position of word in document d
p(@i) = Dir(@i|B) = [V -4 <p£3_1 - prior on parameters @y n=1.N,
p(8,) = Dir(8,]a) < [1X_, 9;‘,1‘_1 - prior on document specific topic mixture weights
P(zg4, = k|04) = O - probability that a word in document d comes from topic k

P(wy, = v|®,z4, = k) = @iy - probability of word v if we know that it comes from topic k




Using counts Cf,,

Joint Probability:

D Ny D Ny

p(W,2,0,0) = ﬁp(«pk) ﬁp(ed) [ ] [pCanton (][] [P0wani®. 2an)
k=1 d=1 d=1n=1

d=1 n=1

Let CC’{,v be the count of words v generated from topic k in document d as assigned by
latent variables zg,,.

Ng
Ccll(,v = Z 65(Zgn = k)5(de =)
n=1

Ng N4 K

C
np(zdnled) = Hedzdn = HHdz(),
n=1 n=1 k=1

where CO’{,(,) = Yv-1Ck, is the count of all words from topic k in document d

D Ny D Ny K Vv
ck
— — ()v
nnp(wdnld)izdn) - l_ll_l(pzdnwdn - l—Il_I(p
d=1n=1 d=1n=1 k=1 v=1

where C(’f)’v = ¥0_, ¢k, is the count of words v from topic topic k in all documents.

OO -

n = 1Nd
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==
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Joint probabillity using the counts

p(W,Z,0,®) = (1_[ p(«p,a) (1_[ pwd)) (1_[ ﬂP(zdnwd)) (]_[ ]N_[ P(Wanl®, zdn>>

d=1n=1 d=1n=1
D K K Vv
(TR T TRESe e ([0 T
- % kv K dk dk k
k=1 [ly=1T(Bv) v=1 d=1 [Tje=1 T'(ei) k=1 d=1 k=1 k=1 v=1 ’
K VvV D K D K iy K VvV iy
By—1 ap—1 Cd,) Co,
ol L] Lol UL LT Loa™ JUL LT Loae )L LT Jow™ ) Taoin
k=1 v=1 d=1 k=1 d=1 k=1 k=1 v=1 o
,4—— a
Ng
Ccll{v = Z 5(Zdn = k)5(de =v)
n=1
B
V D @ ||
Ccll{():zccllc,v C(k)vzzcélcv
v=1 d=1
“ Py
n=1. 'Nd k =




Gibbs Sampling

Assume we cannot sample from the complex joint distribution p(z,, z,) but it is possible to
sample from the conditional distributions p(z,|z,) and p(z,|z;)

1. Initialize z; to any value (i.e. chosen constant)
2. Given current sample z; generate z;~p(z,|z;)
3. Given current sample z; generate z;~p(z,|z,)
4. Go to steps 2.

In theory, after infinite number of iteration the final values z;, z; is a sample from p(z,, z,)
Or, with increasing number of iterations, z;, z, converges to a valid sample from p(z,, z,)

In practice, after several initial iterations (burn-in phase) take z3, z; from every Nt iteration and
consider them samples from p(z4, z,)

— Often N =1 is used

— Starting from a likely value of z; requires less burn-in iterations
This can be extended to any number variables

— always sample one given current values for others

Works for any random variables (discrete, continuous; scalars, vectors)



toy example only to demonstrate how Gibbs sampling works.

Gibbs sampling for 2D Gaussian

Of course, it is possible to efficiently and exactly sample directly from a 2D Gaussian distribution. We use this
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Approximate inference
(for Bayesian LDA)

» Gibbs sampling
— Instead of obtaining p(Z, ©, ®|W), we only generate samples from this distribution

— We alternately sample from
» Z*~P(Z| O, D,W)
» O, P*~P(0,P|Z,W)

 Variational Bayes
— Approximate intractable p(Z, 0, ®|W) with tractable q(Z, 0, ®)
— lteratively tune parameters ofq(Z, ®, ®) to minimize Dg; (q(Z,0,®)||p(Z, 0, P|W))



GS Inference for LDA: Sampling Z
p(W,Z,0,®) = Qip(«pk)) Qip(ed)) (ﬁ ﬁ P(zdnled)> (ﬁ ﬁ P(Wan|®, zdn)>

Step 1.

We want posterior as a function of Z,
« sample Z*~P(Z| ©, ®, W) so we select only the terms involving Z.
- or equivalently for each d and n sample z};,,~ P(z4,,|0©, ®, W) The other terms are constant.

D Ny %

P(Z| ©,®, W) « P(W,Z, 0, d) 1_[ ﬂP(zdnled) P(Wg | ®, 24,) H P(2,,|0, ®,W)
d=1n=1 d=1n=1

P(zgn|0®, ®,W) < P(Wyn|®, 24, P (240 |04) = (pzdnwdngdzdn

(pZd Wd gdZd 1 1 1
P(z4,|0, &, W) = K n%dn en = w24, Factorizes into product of independent
k'=1 Pr'w g, Yar’ terms one for each z4, = each z4, can be
T apr = PivYak sampled from independent P(z;,|0, ®, W)
Z k, Qdk,



GS Inference for LDA: Sampling ® and &
e[ (1T ) (10 101

k=1 v=1 d=1 k=1 d=1 k=1 k=1 v=1
Step 2.
Factorizes into product of
« sample @*,®*~P(0,®|Z, W) independent terms for
« or equivalently for each d = 1..D sample 6;~ P(0,|Z, W) each 6, and ¢,= can be

and for each k = 1..K sample @~ P(@i|Z, W) sampled independently.

The dependence on Z is

D K v
k k
P(O,®|ZW) x P(W,Z,0,®P) 1_[ 1_[ 6§k+cd()_1 1_[ 1_[ w+Cyp —1 through the counts Cy,

d=1 k=1 V
K

P(O, D|Z,W) = HDlr(0d|a+ Cd())l—[Dlr 0lB +CE)) = p(ed|z W)l_[P((pklz w)

d= k=1

T T
where vectors Cd,(-) = [Cé,(), Cé)(), e Cé{()] and C() = [C(If)’l, C(If)’z, e C(k),V]



GS inference for LDA: Using word counts

Until now, each training document d = 1..D was represented by a variable length sequence of

N, words wg,,, wheren = 1.. N,
More conveniently, we can represent all documents by D X V matrix M, with elements M,

counting how many times document d contains word v
* No need to know the order of the words w,,, in the sequence. The counts M, are enough.

« |Instead of sampling each z,,,, directly sample Cj{,v

Tgor = PrvOdk
vk = TK
Lpr—q Prlv0ar!
_ T Cl
gy = [ﬂdv1;7'[dv2; ---:T[de] d,v
CZ
Civ = v
forn =1.. Ny : :
* — K
Zin~P(24n|0, @, W) = Cat(Tyy,, ) Cav)

ck, = 27’;’21 §(zgn = K)6(Wg,, = V) C 4 ,~Multinomial (7, My,)



GS Inference for LDA: Summary

for number of GS iterations where
ford=1..D
forv=1..V D
C 4 ,~Multinomial(m 4, Mg,,) ck = Z ck,, ck,= Z ck
ford =1..D _ _ _ _
0;~P(641Z, W)= Dir(64|a + Cg4 ) Ca () Céa
c. . —|Co ok 1€
fork=1..K 4.) c I O :
K k
¢ ~P(@r|Z W)=Dir («pklﬁ + Cé‘.)) Ca,) Lo

Where m,, is evaluated using the currently values of ® and @ in each iteration.

After running a number of GS iterations, we get likely samples (from the posterior p(Z, 0, ®|W)) of
vectors 6, representing each document and ¢y representing latent topic distributions.



Approximate inference
(for Bayesian LDA)

* Gibbs sampling

— Instead of obtaining p(Z, O, ®|W), we only generate samples from this distribution

 Variational Bayes
— Approximate intractable p(Z, 0, ®|W) with tractable q(Z, 0, ®)
— Iteratively tune parameters ofq(Z, @, ®) to minimize Dg; (q(Z, 0, ®)||p(Z, 0, P|W))



Variational Bayes

p(Y|X
Inp(X) = /q(Y) Inp(X,Y)dY — /q(Y) Ing(Y) dY /q(Y) In il (Yl') ) dY
q
L(q(Y)) Drr(g(Y)|[p(Y[X))

* Find g(Y), which is a good approximation for the true posterior p(Y|X)
»  Maximize £(q(Y)) w.r.t. g(Y), which in turn minimizes Dy, (q(Y)||p(YIX))

— “Handcraft” a reasonable parametric distribution g(Y|n) and optimize
L(q(Y[m)) w.r.t. its parameters 7.

— Mean field approximation assuming factorized form q(Y)=q(Y;)q(Y,)q(Y3)...



Minimizing Kullback-Leibler divergence

« We optimize parameters of (simpler) distribution g(Y) to minimize
Kullback-Leibler divergence between g(Y) and p(Y|X).

)

N
\ Y J Y )
« Minimizing « Two local optima when (numerically)
DKL(P(Y|X)||CI(Y))- minimizing DKL(CI(Y)||P(Y|X))-
* Not VB objective « VB performs this optimization

« EXpectation propagation



VB — Mean field approximation

Popular Variational Bayes optimization method

Variant of Variational Bayes, where the set of model variables Y, can
be split into subsets Y;,Y,, Y5, ..., with conditionally conjugate priors

- p(YilX, Yy; +i) Is tractable with conjugate prior
— E.g. for Bayesian GMM p(u,, A.|X,z) has NormalGamma prior
We assume factorized approximate posterior

q(Y)=q(Y1)q(Y2)q(Y3) ... = [1;q(¥))

This factorization dictates the optimal (conjugate) distributions
for the factors q(Y;) and brings well defined iterative update
formulas:

q(Y;)" o exp (f q(Yyj i) Inp(X,Y) dYy; ¢i>



Mean field - update

£(q(Y)) = / (Y) Inp(X,Y) dY — [q{Yan[YJ dY — / H a(Y:) |In p(X,Y) —In[] q{‘r’ij] IY

_ [ ﬁq("’f,-} In p(X,Y) — Zln a(Y;) ]
Y oa=1

« Forexample,letM =3
»  Now, lets optimize the lower bound £(g(Y;)) w.r.t only one distribution q(Y;)

La(Yi)= [[[ a(¥1)a(¥2)a(¥s) Inp(X, Y1, Y2, ¥s) — na(¥1) — Ina(Y2) — Ina(Ys)] dYy1 dY3 dYs

= [a¥1) [[ a(Y2)a(Ys) np(X, Y1, Y2, Ya) dYs dYs dY1 — [ (Y1) Ina(Y1) dY: + const

T

In (Y1 )+const
= /q{Yl)lnﬁ(Yl} dY, — fq{‘fﬂlnq(Yﬂ dY 1 +const = =D (qg(Y1)||p(Y1)) + const

where 5(Y;) is normalized to be a valid distribution (therefore +const)

. L(q(Yl)) IS maximized by setting the Dy, term to zero, which implies
Ing(Y;)=Inp(Y,) = [/ q(Yz2)q(Yz) Inp(X,Y;.Y3.Y3) dY; dY 3 + const

* In general, we can itefétively update each q(Y;) given the others q(Y;.;) as:
a(Y;) o exp [ a(Yujzi) Inp(X, Y) dYwj

where each update guaranties to improve the lower bound L(q(Y))



Variational Bayes for LDA

Variational Bayes updates dictate:
q(Y;)" « expj q(Yyj 2i) Inp(X,Y) dYyj 2

For the LDA model we chose to approximate the posterior using factorization
p(Z,0,P|W) ~ q(Z,0,P) = q(Z)q(0, P)

Therefore, we search for updates in form:

q(Z)* o« exp H q(0,®)Inp(W,Z,0,P)dOdP

q(0,P)" < expz q(Z)Inp(W,Z,0, D)
7

Or equivalently:
Inq(Z)" = Ejoe)[Inp(W,Z,0,®)] + const
Inq(®,®)" = E;z)[Inp(W,Z,0,P)] + const



VB update for q(Z)
p(W,2,0,0) = (ljp(w)) (ﬁp(%)) (1_[ [] P(zdn|0d>> (ﬁ ﬁ P(Wan|®, zdn>>

1 n=1

K D
Inp(W,Z,0,®P) = z Inp(py) + z <1np(9d) + Z InP(z4,|04) +In P(wgy,|P, Zdn))
k=1 d=1 n=1

Thetermsinlnp(W, Z, 0, ®)
Inq(Z)* = Eye.0[Inp(W, Z, 0, ®)] + const; Independent of zg,, are
D Ny absorbed in const,
= Z z Eqeo,0)[InP(24n04) + In P(Wgy|®, z4,)] + const,
1n=1

S Ng D  Ng
=Y > nqGa)’ = a@ =] [] [aGa’
d=1n=1 d=1n=1

« \We only require factorization q(Z)q(0, ®), but g(Z) automatically further factorizes into a product of
Independent categorical distributions one for each z,4,,- so called induced factorization

« We will derive the update for distributions q(z,4,,) later.



VB update for q(0, P)

d
Inp(W,Z,0,dP) = Z Inp(ep,) + Z Inp(8,) + z In6,,, +Ing, .. |+ const

Inq(®,®)" = Eyz»[Inp(W,Z,0,®P)] + const
K D Ny

= Eq2) lz Inp(0,) + Z In6,, Z Inp(ey) + Z Z Ing,, . ||+ const
n=1 =

Ng K D Ny

Inp(6,) + 2 Eq(zg) [ln ded z Inp(ep,) + z z Eq(zgm) [6(zdn = k) Ingg,, ] + const

D

d=1 n:]_ k=1
D

d=1

Inq(6,)" +Zlnq<<pk) > q(0,®) —]_[qwd) ]_[qapk) —

Induced factorization




VB update for q(8,)

Ng
Ing(0,)* = InDir(0,|a) + Z Eq(zg) [ln Hdzdn] + const

n=1
Ng K

K
= Z ap—1In6,, |+ Z Z q(Zan = k) In By, + const

n=1k=1

k=1 n=1
K
= z (Ofk + C_'C]Z(.) — 1) In 64, + const
k=1 3
= In D1r(0d|a + Cd,())
where
Ng
C_clzc() = z q(Zgn = k)
Expected counts n=1

r R ~2 ~K
similar to the hard Ca() = [Cd,(-)'cd,(-)' Cd,(-)]

counts Cc’{(,) from GS

1
K Ng
= z ak—1+zq(zdn = k) |In8g4, + const

Practically, the update
means to calculate
vector of parameters
a2==(14-fd(9
for each d

q(04)* = Dir(04la + C4 () = Dir(04]a)




VB update for g(¢;,)

In q(@y)”

where

M= 1M
e
>
S

D Ng

In Dir(e |B) + Z Z Eq(zgm) |6(z4n = k) In gokwdn] + const

d=1n=1

M—<
A
|
—_
=3
<
P
<
+

Mb
<
N\
N
Q
S
|
=
N~
=
<
w
<
Q
_|_
(@)
o
=
9]
—t

<
Il

B, —1+ z Z q(zgn = k)6(Wg, = v) |In @4, + const
d=1n

=1

k

p+ Clyp — 1) In ¢, + const
v=1
D Ng
Clyw =) ) alan =108 (wan = v)

d=1n=1
—~k _ |-~k ~k ~k
Co= lC@,v Ciy2r s C(-),v]

q(@y)* = Dir (‘Pk|ﬁ + Z'I((.)) = Dir(¢x|B%)

Practically, the update
means to calculate
vector of parameters
* -k
B =B+ C,
for each k




VB update for q(z;,,)

Inq(zgn)" = Eqee,0)[In P(2qn|04) + In P(Wgp|®, 24y)] + const
= Eq0,)[InP(24nl04)] + Eg(p)[In P(Wgn|®, z45)] + const

= Eqo [ln dedn] + Eqepp) [ln gDZaden] T const

For q(84)" = Dir(84la;) and q(¢)* = Dir(9|67)

Inpgyi = Egee[In Ogi] + Eg(p,)[In @] + const
K

|4
= l/)(a:lk) -y Z a;k’ + lp(ﬁltv) -y Z ﬁZv’ + const
k'=1 v'=1

Therefore, we update

q(Zgn = k)* = TTaw g,k
Practically, the update
Pdvk means to evaluate 3D

Tl:d k = — . .
v K 1 Pavi’ — matrix with elements 7 ,x




VB Inference for LDA using word counts

Again, as for the GS inference, rather than using sequence of words wg,,, we prefer to represent
documents by D x V matrix M, with elements M,,, counting how many times document d contains

word v
Instead of estimating each q(z,4,, = k), we directly estimate expected counts C_(’f)v and C_é‘()

q(Zgn = k) Tawgnk
D Ng

Clyw = Z Ciy = Z Z q(Zan = k)6(Wan = V)

Nd B
Ecllc,(-) = z Ecll{v = Z Q(Zdn = k)
v=1 n=1

Ng Ng
Ecllc,v = z Q(Zdn = k)6(de =v) = Tgyk Z 5(de =v)
n=1 n=1

_—
Cav = TapkMay



ELBQO objective to monitor progress

p(W,Z,0,d)
q(Z,0, D)

L(C[(Z, @, q))) = IEC[(Z,@,‘I)) [11’1

D Ny

= ' Eqtgn [Baon 117 PCanl00)] + By [1 P(wanl®, 240)] = 1n Gz
d 1n=1

(@) )
Z [ECI(‘Pk) [ Z((pk)] Z Eq(ed) [ p(ed ]
D g
7 7 7 q(Zgn = K)[Inpgy  k —Inq(zgn = k)] —

=1 1k
D

=1

K
KL(a(8)IIP(0) - ) KL(a(@lIp(91)
k=1

IIMU

SH
3
Il

Mx

K
7 Ck (0 payi — InTgpy) — z KL Dlr(ad)HDlr(a)) KL (Dir(ﬁ;)nDir(ﬁ))

k=1 d=1 k

\4<

SH

1

<
Il
[y §

c=1 = = C’:l

C C C C C
KL(Dir(a)llDir(ﬁ)) =InT Qe | — InT(a;) —InT Be |+ InT(B.) + (ac — B | Yla) —¢ Al
(§) Soreo{§) o Sl o( 5



Efficient ELBO calculation

KL (Dir(8;)||Dir(B))

ﬂM”

L(q(Z,0,®)) = 7 7 7 Cdv(lnpdvk Inmg,,) — Z KL Dlr(ad)||D1r(a))

d=1v=1k=1

Right after updating q(z4,,) (i.e. evaluating the terms m,;,;), the red term becomes independent of k since
K

Pdvk
Tavk = SK = Inpgyx — N4y, =1n Pavk’

k'=1Pavk’ =

Therefore, right after updating g(z,4,,) and before updating any q(8,) or q(¢}), we efficiently calculate ELBO
L(q(Z,0,®)) as:

D

D |4 K K
£(q(Z,0,®)) = z z M, In z Dy — z (Dir(e)||Dir(er) ) - z KL (Dir(B;)|IDir(p))

where we have used YX_, C_C’l‘v Mg, and where W can reuse the terms Zk’—lpdvk’ that were just calculated
for normalizing the terms ;..



VB Inference for LDA: Summary

for number of VB iterations
foreveryd =1..D,v=1..Vandk =1..K

. . where
Inpgyi = P(age) — v z Agpr | + Y(Biw) — ¥ Z B
k'=1 v'=1 1% D
Tavke = e Chiy= ) Chur  Clw= ) Ch,
. k'=1Pdvk’ v=1 d=1
Cd,v = Mgy Mgy 4 k-
ford=1..D Ca COon
x 2 k
g =a+Cq Cuy = |20, ct, = €2
fork=1..K ’ : :
* -k K k
B =B+ C(.) Ca,). Coyv]

Where m;, is evaluated using the currently values of a;and g;in each iteration.

After running a number of VB iterations, q(8,)* = Dir(0,4|a;;) and q(¢;)* = Dir(¢,|B}) are
approximate posteriorsforalld =1..D and k = 1..K



