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• We assume that the observed data were 

generated as follows:

– 𝝅 ~ Dir(𝜶) 

– For Gaussian component 𝑐 = 1 … 𝐶

• 𝜇𝑐 , 𝜆𝑐 ~ NormalGamma 𝜇𝑐 , 𝜆𝑐|𝑚, 𝜅, 𝑎, b

– For each observation 𝑛 = 1 … 𝑁

• 𝑧𝑛 ~ P 𝑧𝑛 𝝅 = Cat 𝑧𝑛|𝝅

• 𝑥𝑛 ~ 𝑝 𝑥𝑛 𝑧𝑛, 𝝁, 𝝀 = 𝒩 𝑥𝑛|𝜇𝑧𝑛
, 𝜆𝑧𝑛

−1

• The task is to infer the posterior distribution of 

parameters p(𝝅, 𝜇1, 𝜆1, … 𝜇𝐶 , 𝜆𝐶|𝐱) given some 

observed data 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝑁

• Intractable: need for approximations

Bayesian Gaussian Mixture Model
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Approximate inference 
(for Bayesian GMM)

• Variational Bayes

– Approximate intractable 𝑝 𝝁, 𝝀, 𝝅, 𝐳 𝐗  with 

tractable 𝑞 𝝁, 𝝀, 𝝅, 𝐳

– Iteratively tune parameters of 𝑞 𝝅, 𝝁, 𝝀, 𝐳  minimize 

𝐷𝐾𝐿 (𝑞 𝝅, 𝝁, 𝝀, 𝐳 ||𝑝 𝝁, 𝝀, 𝝅, 𝒛 𝐗 )

• Gibbs sampling

– Instead of obtaining 𝑝 𝝅, 𝝁, 𝝀, 𝒛 𝐗 , we only generate 

samples from this distribution

– Integrating over 𝑝 𝝅, 𝝁, 𝝀, 𝒛 𝐗  (e.g. for predictive 

distribution) can be approximated with empirical 

expectations

• …



Variational Bayes

• Find 𝑞 𝐘 , which is good approximation for the true posterior 𝑝 𝐘 𝐗

• Maximize ℒ 𝑞 𝐘  w.r.t. 𝑞 𝐘 , which in turn minimizes 𝐷𝐾𝐿(𝑞(𝐘)| 𝑝 𝐘 𝐗

– “Handcraft” a reasonable parametric distribution 𝑞 𝐘|𝜼  and optimize 

ℒ 𝑞 𝐘|𝜼  w.r.t. its parameters 𝜼.

– Mean field approximation assuming factorized form 𝑞 𝐘 =𝑞 𝐘1 𝑞 𝐘2 𝑞 𝐘3 … 



Minimizing Kullback-Leibler divergence

• We optimize parameters of (simpler) distribution 𝑞 𝐘  to minimize 

Kullback-Leibler divergence between 𝑞 𝐘  and 𝑝 𝐘|𝐗 .

• Two local optima when (numerically) 

minimizing 𝐷𝐾𝐿 𝑞 𝐘 ||𝑝 𝐘|𝐗 .

• VB performs this optimization

• Minimizing 

𝐷𝐾𝐿 𝑝 𝐘|𝐗 ||𝑞 𝐘 .

• Not VB objective

• Expectation propagation



VB – Mean field approximation

• Popular Variational Bayes optimization method

• Variant of Variational Bayes, where the set of model variables 𝐘, can 

be split into subsets 𝐘1, 𝐘2 , 𝐘3, …, with conditionally conjugate priors

– 𝑝(𝐘i|𝐗, 𝐘∀j ≠i) is tractable with conjugate prior

– E.g. for Bayesian GMM 𝑝 𝜇𝑐 , 𝜆𝑐 𝐗, 𝐳  has NormalGamma prior

• We assume factorized approximate posterior

• This factorization dictates the optimal (conjugate) distributions 

for the factors 𝑞 𝐘i  and brings well defined iterative update 

formulas:

𝑞 𝐘 =𝑞 𝐘1 𝑞 𝐘2 𝑞 𝐘3 … = ς𝒊 𝑞 𝐘i

𝑞 𝐘𝑖
∗ ∝ exp න 𝑞(𝐘∀j ≠i) ln 𝑝 𝐗, 𝐘  d𝐘∀j ≠i



• For example, let 𝑀 = 3

• Now, lets optimize the lower bound  ℒ 𝑞 𝐘1  w.r.t only one distribution 𝑞 𝐘1

       where 𝑝 𝐘1  is normalized to be a valid distribution (therefore +𝑐𝑜𝑛𝑠𝑡)

•  ℒ 𝑞 𝐘1  is maximized by setting the 𝐷𝐾𝐿  term to zero, which implies

• In general, we can iteratively update each 𝑞 𝐘i  given the others 𝑞 𝐘i≠𝑗  as:

     where each update guaranties to improve the lower bound ℒ 𝑞 𝐘

Mean field - update



• Joint likelihood for Bayesian GMM

where

• Mean field approximation 𝑞 𝝁, 𝝀, 𝝅, 𝐳 = 𝑞 𝐳 𝑞 𝝁, 𝝀, 𝝅  dictates 

updates:

Variational Bayes for GMM



VBGMM – update for 𝑞 𝒛

• We see that 𝑞 𝐳  further factorizes - so called induced factorization

Similar to responsibilities from EM



VBGMM – update for 𝑞 𝝅, 𝝁, 𝝀

• Again, we obtain induced factorization for 𝑞 𝝁, 𝝀, 𝝅



Flashback - Factorization over components
Example with only 3 fames (i.e 𝐳 = [z1, z2, z3])



𝐳

ෑ

𝑛

𝑞(𝑧𝑛) 

𝑛

𝑓 𝑧𝑛 =



𝑧1



𝑧2



𝑧3

𝑞 𝑧1 𝑞 𝑧2 𝑞 𝑧3 𝑓(𝑧1) + 

𝑧1



𝑧2



𝑧3

𝑞 𝑧1 𝑞 𝑧2 𝑞 𝑧3 𝑓(𝑧2) + 

𝑧1



𝑧2



𝑧3

𝑞 𝑧1 𝑞 𝑧2 𝑞 𝑧3 𝑓(𝑧3) =



𝑧1

𝑞 𝑧1 𝑓 𝑧1 

𝑧2

𝑞 𝑧2 

𝑧3

𝑞 𝑧3 + 

𝑧1

𝑞 𝑧1 

𝑧2

𝑞 𝑧2 𝑓 𝑧2 

𝑧3

𝑞 𝑧3 + 

𝑧1

𝑞 𝑧1 

𝑧2

𝑞 𝑧2 

𝑧3

𝑞 𝑧3 𝑓 𝑧3 =



𝑧1

𝑞 𝑧1 𝑓 𝑧1 + 

𝑧2

𝑞 𝑧2 𝑓 𝑧2 + 

𝑧3

𝑞 𝑧3 𝑓 𝑧3 =



𝑐=1

𝐶

𝑞 𝑧1 = 𝑐 𝑓(𝑧1 = 𝑐) + 

𝑐=1

𝐶

𝑞 𝑧2 = 𝑐 𝑓(𝑧2 = 𝑐) + 

𝑐=1

𝐶

𝑞 𝑧3 = 𝑐 𝑓(𝑧3 = 𝑐) =



𝑐=1

𝐶



𝑛

𝑞 𝑧𝑛 = 𝑐 𝑓(𝑧𝑛 = 𝑐)



VBGMM – update for 𝑞 𝜇𝑐 , 𝜆𝑐

Updating distribution q(𝜇𝑐 , 𝜆𝑐) means updating the parameters 𝑚𝑐
∗, 𝜅𝑐

∗, 𝑎𝑐
∗, 𝑏𝑐

∗



VBGMM – update for 𝑞 𝝅

Updating distributionsq(𝝅) means updating the vector 𝜶∗ = [𝛼1
∗, 𝛼2

∗, … 𝛼𝐶
∗ ]



VBGMM – update for 𝑞 𝑧𝑛

where 𝜓(. ) is digamma function

Updating distributions q(𝑧𝑛) means computing responsibilities 𝛾𝑛𝑐



Summary of VB-GMM updates
• Update distributions q 𝑧𝑛  (i.e. the responsibilities 𝛾𝑛𝑐):

• For all 𝑐 = 1. . 𝐶, update parameters of q 𝜇𝑐 , 𝜆𝑐  and q 𝝅 :

       𝛼𝑐
∗ = 𝛼𝑐 + 𝑁𝑐  

• Iterate until convergence



VB parameter posteriors
• Priors:

– 𝑝 𝜇𝑐 , 𝜆𝑐 , = NormalGamma 𝜇𝑐 , 𝜆𝑐|0.0, 0.05, 0.05, 0.05 , 𝑐 = 1. . 𝐶 

– 𝑝 𝝅 , = Dir 𝝅|[1, 1, 1, 1, 1, 1]

• Posteriors:

– 𝜶𝑁 = 17.1 8.3 32.2 1.0 1.0 46.4  

– 𝑞 𝜇𝑐 , 𝜆𝑐  for the 6 Gaussian components

Fallback 

to prior 

Fallback 

to prior 

Fallback 

to prior 



Evaluating VB-GMM

• Lower bound ℒ 𝑞 𝐘  can be evaluated to check for the convergence

– Formula not shown here

• Posterior predictive distribution is a mixture component specific 

posterior predictive of Student’s t-distributions

𝑝 𝑥′|𝐱 = 
𝑐

St 𝑥′ 𝑚𝑐
∗ , 2ac

∗ ,
𝑎𝑐

∗𝜅𝑐
∗

𝑏𝑐
∗ 𝜅𝑐

∗ + 1
𝜋𝑐

∗

where mixture weights are give by categorical posterior predictive:

𝜋𝑐
∗ =

𝛼𝑐
∗

σ𝑐 𝛼𝑐
∗



VB predictive vs. ML solution

•  VB was initialized from ML solution – first update of  𝑞 𝜇𝑐 , 𝜆𝑐  and 

𝑞 𝝅  uses the responsibilities from last ML iteration

•  VB recovers from  ML overfitting and more robust solution closer to 

the true distribution for generating the training data



Approximate inference 
(for Bayesian GMM)

• Variational Bayes

– Approximate intractable 𝑝 𝝅, 𝝁, 𝝀, 𝐳 𝐗  with 

tractable 𝑞 𝝅, 𝝁, 𝝀, 𝐳 𝐗

– Iteratively tune parameters of 𝑞(𝝅, 𝝁, 𝝀, 𝒛) minimize 

𝐷𝐾𝐿 (𝑞(𝝅, 𝝁, 𝝀, 𝒛)||𝑝 𝝅, 𝝁, 𝝀, 𝒛 𝐗 )

• Gibbs sampling

– Instead of obtaining 𝑝 𝝅, 𝝁, 𝝀, 𝒛 𝐗 , we only generate 

samples from this distribution

– Integrating over 𝑝 𝝅, 𝝁, 𝝀, 𝒛 𝐗  (e.g. for predictive 

distribution) can be approximated with empirical 

expectations

• …



Gibbs Sampling
• Assume we cannot sample from complex joint distribution 𝑝(𝑧1, 𝑧2) 

but it is possible to sample from conditional distributions 𝑝 𝑧1 𝑧2  

and 𝑝 𝑧2 𝑧1

1. Given 𝑧1
∗ and generate z2

∗~𝑝 𝑧2 𝑧1

2. Given 𝑧2
∗ and generate z1

∗~𝑝 𝑧1 𝑧2

3. Iterate previous two steps

• After several iterations (burn-in) the algorithm starts generating 

samples from 𝑝(𝑧1, 𝑧2)

• It can be extended to more than two variables



Gibbs Sampling for Bayesian GMM

• Using sampled values of {𝜇𝑐
∗, 𝜆𝑐

∗ } and 𝝅∗ , generate new samples 

(hard assignments of observations to GMM components) from 

posterior over 𝑧𝑛
∗

– The distribution is just like the responsibilities from EM:

• Using the sampled values 𝑧𝑛
∗  , for each component 𝑐, generate new 

samples of GMM parameters 𝜇𝑐
∗, 𝜆𝑐

∗  from posteriors 𝑝 𝜇𝑐 , 𝜆𝑐 𝐱, 𝐳∗)
– Estimate sufficient statistics 𝑁𝑐

∗, ҧ𝑥𝑐
∗, 𝑠𝑐

∗ using the observations {x𝑛: 𝑧𝑛 = 𝑐} (i.e. 

those hard assigned to the component 𝑐) and calculated the posterior as:

• Sample 𝝅∗  from posterior 𝑝 𝝅 𝐳∗ = Dir 𝝅 𝜶 + 𝐍∗  where the vector 

of component occupation counts 𝐍∗ = 𝑁1
∗, 𝑁2

∗, … , 𝑁𝐶
∗  is given by  𝐳∗ 

𝑃 𝑧𝑛 = 𝑐|𝐱𝑛 =
𝑝 𝑥𝑛|𝑧𝑛 = 𝑐 𝑃(𝑧𝑛 = 𝑐) 

σ𝑘 𝑝 𝑥𝑛|𝑘 𝑃(𝑘)
=

𝒩 𝑥𝑛|𝜇𝑐
∗, 𝜆𝑐

∗−1 𝜋𝑐
∗

σ𝑘 𝒩 x𝑖|𝜇𝑘
∗ , 𝜆𝑘

∗−1 𝜋𝑘
∗

𝑝 𝜇𝑐 , 𝜆𝑐 𝐱) = NormalGamma 𝜇𝑐 , 𝜆𝑐
𝜅𝑚 + 𝑁𝑐 ҧ𝑥𝑐

𝜅 + 𝑁𝑐
, 𝜅 + 𝑁𝑐, 𝑎 +

𝑁𝑐
2 , 𝑏 +

𝑁𝑐
2 𝑠𝑐 +

𝜅 ҧ𝑥𝑐 − 𝑚 2

𝜅 + 𝑁𝑐



First 5-iterations of GS

Predictive distributions can be approximated by empirical expectations using the 

samples from the posterior distribution ෝ𝜼𝒍:

𝑝 𝑥′ 𝐗 = න 𝑝 𝑥′ 𝜼 𝑝 𝜼 𝐗 d 𝜼 ≈
𝟏

𝑳


𝒍

𝑝 𝑥′ ෝ𝜼𝒍



First 30-iterations of GS

Predictive distributions can be approximated by empirical expectations using the 

samples from the posterior distribution ෝ𝜼𝒍:

𝑝 𝑥′ 𝐗 = න 𝑝 𝑥′ 𝜼 𝑝 𝜼 𝐗 d 𝜼 ≈
𝟏

𝑳


𝒍

𝑝 𝑥′ ෝ𝜼𝒍



Collapsed GS for Bayesian GMM

• Sampling discrete latent variables like 𝑧𝑛 is fine as they have limited 

number of possible values

• For continuous latent variables like 𝝅, 𝜇𝑐 , 𝜆𝑐, however, we might 

need too many samples to get a reasonable representation of their 

posterior distributions (especially for multivariate higher dimensional 

variables).

• Collapsed Gibbs Sampling

– Iterates over (and samples only from) a subset of the latent variables in the 

model (e.g. the discrete ones)

– integrates (marginalizes) over the remaining (continuous) variables

• CBS for Bayesian GMM:

 where 

  𝐳\i is 𝐳 with 𝑧𝑖 removed

  𝐱\i is 𝐱 with 𝑥𝑖 removed



CGS for BGMM - 𝑃 𝑧𝑖 𝐳\i

• How do we obtain 𝑝(𝑧𝑖 𝐱, 𝐳\i ?

• Lets first introduce some useful distributions

• Posterior distribution of weights 𝝅 given 𝐳\i (or corresponding vector 

of component occupation counts 𝐍\i)

• Posterior predictive distribution for 𝑧𝑖 given 𝐳\i



CGS for BGMM - 𝑝 𝑥𝑖 𝑧𝑖 , 𝐱\i, 𝐳\i
• Let 𝑆𝑐\𝑖 define the subset of observations assigned by 𝐳\i to component 𝑐

• Posterior distribution of 𝜇𝑐 , 𝜆𝑐 given 𝐱\i, 𝐳\i is estimated in the usual way 

using only the observations 𝑆𝑐\𝑖

• Posterior predictive distrib. of 𝑥𝑖 for component 𝑐 given observations 𝑆𝑐\𝑖



CGS for BGMM - 𝑝 𝑥𝑖 𝐱, 𝐳\i
• Finally, using Bayes rule

• The Collapsed Gibbs sampling iterations

gives us samples from 𝐳∗~ 𝑝(𝐳 𝐱 . What can we do with that?

• GMM posterior predictive distribution for new 𝑥′ given 𝐱 and (sampled) 𝐳

• Full predictive distribution can be approximated using the samples 𝐳𝑙
∗ as



Infinite Bayesian GMM
• Let’s consider Bayesian GMM with an infinite 

number of Gaussian components 𝑐 = 1. . ∞

• The priors for 𝜇𝑐 , 𝜆𝑐 for Gaussian component 

𝑐 = 1 … ∞ can be defined as before:

– 𝑝 𝜇𝑐 , 𝜆𝑐  ~ NormalGamma 𝜇𝑐 , 𝜆𝑐| 𝑚, 𝜅, 𝑎, b

• However, we need an infinite number of 

mixture weights 𝝅 = [𝜋1, 𝜋2, … ] so that 
σ𝑐=1

∞ 𝜋𝑐 = 1

• We also need a suitable prior distribution for 𝝅
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𝜇𝑐 , 𝜆𝑐
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Stick breaking process - GEM

•  for 𝑐 = 1,2, … , ∞ 
 𝑣𝑐 ~ Beta 1, 𝛼
 𝜋𝑐 = 𝑣𝑐 ς𝑘=1

𝑐−1  (1 − 𝑣𝑘)

• Take a unit length stick

For 𝑐 = 1,2, … , ∞

– Generate 𝑣𝑐 in range 0,1  from Beta 1, 𝛼

– Break the stick into two pieces with proportions 𝑣𝑐 :  1 − 𝑣𝑐

– The length of the first piece corresponds to 𝜋𝑐

– The second piece is the stick to be broken in further iterations

• The resulting infinite dimensional vector of weights is a sample from 

 the stick breaking process 𝝅 ~ GEM(𝛼) (Griffiths, Engen and McCloskey)

•  GEM(𝛼) can be used as a prior for  infinite number of  component weights 

• With small concentration parameter 𝛼, only few weights will be non-negligable

Beta 1, 𝛼



Samples from GEM

𝛼 = 0.5

 𝛼 = 2

 𝛼 = 10



Infinite Bayesian GMM
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• We assume that the observed data were 

generated as follows:

– 𝝅 = 𝜋1, 𝜋2, … ~ GEM(𝛼) 

– For Gaussian component 𝑐 = 1 … ∞

• 𝜇𝑐 , 𝜆𝑐 ~ NormalGamma 𝜇𝑐 , 𝜆𝑐|𝑚, 𝜅, 𝑎, b

– For each observation 𝑖 = 1 … 𝑁

• 𝑧𝑛 ~ P 𝑧𝑛 𝝅 = Cat 𝑧𝑛|𝝅

• 𝑥𝑛 ~ 𝑝 𝑥𝑛 𝑧𝑛, 𝝁, 𝝀 = 𝒩 𝑥𝑛|𝜇𝑧𝑛
, 𝜆𝑧𝑛

−1

• Obviously, the observed data can be generated 

from at most 𝑁 Gaussian components.

• Again, the task is to infer the posterior 

distribution of parameters p(𝝅, 𝜇1, 𝜆1, 𝜇2, 𝜆2 … |𝐱) 

given some observed data 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝑁



CGS for infinite Bayesian GMM

• We can use the same Collapsed Gibbs sampling iterations that we 

used in the case of the BGMM with fixed number of Gaussian 

components

where again

and the component posterior predictive

• The only difference will be in 𝑃 𝑧𝑖 𝐳\i , which is evaluated using 

Chinese Restaurant Process (CRP)



Chinese Restaurant Process

• Let the prior on the infinite weight vector be 𝑝 𝝅 = GEM 𝜋 𝛼

• Let 𝑧𝑛,  𝑛 = 1. . 𝑁 be samples generated from an (unknown) “infinite 

categorical distribution” Cat 𝑧𝑛 𝝅

• The posterior 𝑝 𝝅 𝐳 ∝  ς𝑛 𝑝 𝑧𝑛|𝝅 𝑝(𝝅) is intractable

– We cannot even easily sample from it as the sample would be infinite 

vector of weights

• However, the predictive posterior 𝑃 𝑧′ 𝐳 = ∫ 𝑃 𝑧′|𝝅 𝑝 𝝅|𝐳 d𝝅 

can be evaluated as

𝑃 𝑧′ = 𝑐 𝐳 =
𝑁𝑐

𝛼 + 𝑁

𝑃 𝑧′ = 𝐶 + 1 𝐳 =
𝛼

𝛼 + 𝑁
where 𝑁𝑐 is the number of observations assigned by 𝐳 to category 𝑐 

and 𝐶 + 1 is a new so far not seen category.



Posterior predictive: Dirichlet vs GEM prior

• Posterior predictive for Categorical distribution and Dirichlet prior 

(with single concentration parameter) converges to CRP as the 

number of categories increases

– Prior: Dir 𝝅 𝛼

– Observation distribution: Cat 𝑧 𝝅

– Posterior Dir 𝝅 𝐦 + 𝜶 , where 𝐦 = [𝑁1, 𝑁2, … , 𝑁C]

– Posterior predictive 𝑝 z′ 𝐳 = ∫ Cat z′ 𝝅 Dir 𝝅 𝜶𝑁 d𝝅 = Cat z′ 𝜶+𝐦

σ𝑐 𝛼𝑐+𝑁𝑐

• For single concentration parameter 𝛼𝑐 = 𝛼 =
𝛾

𝐶

𝑝 z′ = 𝑘 𝐳 =
𝛼 + 𝑁𝑘

𝐶𝛼 + 𝑁
=

𝛾
𝐶

+ 𝑁𝑘

𝛾 + 𝑁

𝑝 z′ = 𝑘 𝐳 =
𝑁𝑘

𝛾 + 𝑁
 for C → ∞

• 𝛾 is number of prior observations that we keep constant with 

increasing 𝐶 ➔ 𝛼𝑐gets smaller with increasing 𝐶



Chinese Restaurant Process

• Imagine Chinese Restaurant with an infinite number of tables, each 

with infinite capacity

• The first customer sits at the first table

• Every new customer:

– Joins already occupied table with probability proportional to the number 

of customers sitting at that table

𝑃 𝑧′ = 𝑐 𝐳 =
𝑁𝑐

𝛼 + 𝑁

– or starts a new table with probability proportional to concentrarion 

parameter 𝛼

𝑃 𝑧′ = 𝐶 + 1 𝐳 =
𝛼

𝛼 + 𝑁



Dirichlet Process
We have defined Infinite BGMM as (for simplicity assuming the same 𝜎 for all 

Gaussian component variances 𝜎 and conjugate prior 𝑝 𝜇𝑐 = 𝒩 𝜇𝑐 𝜇0, 𝜎0)):

𝝅 = 𝜋1, 𝜋2, … ~ GEM 𝛼
𝜇𝑐  ~𝒩 𝜇𝑐 𝜇0, 𝜎0),  𝑐 = 1. . ∞
𝑧𝑖  ~𝝅,  𝑖 = 1. . 𝑁

𝑥𝑖  ~𝒩 𝑥𝑖 𝜇𝑧𝑖
, 𝜎 ,  𝑖 = 1. . 𝑁

Alternative definition using 𝛿𝜇 𝜇 = ቊ
1, 𝜇 = 𝜇
0, 𝜇 ≠ 𝜇

𝝅 = 𝜋1, 𝜋2, … ~ GEM 𝛼
𝜇𝑐 ~𝒩 𝜇𝑐 𝜇0, 𝜎0),  𝑐 = 1. . ∞

 𝜇𝑖  ~ 𝐺 = 

𝑐=1

∞

𝜋𝑐𝛿𝜇𝑐
( 𝜇𝑖) , 𝑖 = 1. . 𝑁

𝑥𝑖  ~𝒩 𝑥𝑖 𝜇𝑖 ,  𝑖 = 1. . 𝑁

or using Dirichlet Process with base distribution 𝐻 = 𝒩 𝜇0, 𝜎0 and concentration 

parameter 𝛼
𝐺 ~ 𝐷𝑃 𝐻, 𝛼
𝜇𝑖  ~ 𝐺,  𝑖 = 1. . 𝑁
𝑥𝑖  ~𝒩 𝑥𝑖 𝜇𝑖 ,  𝑖 = 1. . 𝑁



Dirichlet process
Samples G ~ DP 𝒩 0,1 , 𝛼

𝛼 = 1

 𝛼 = 10

 𝛼 = 100

 𝛼 = 1000

G is discrete distribution with continuous support

 DP 𝒩 0,1 , 𝛼  is distribution over discrete distributions with continuous support



Dirichlet process
Samples G ~ DP 𝒩 0,1 , 𝛼

𝛼 = 10

Let’s decide on arbitrary partitioning of the support (regions A, B, C, ...).

Now, for each sample from the DP, let’s integrate the probability mass 

in each partition. The resulting vectors of probabilities are samples from 

Dirichlet distribution.

When Categorical distribution is used as the base distribution DP 

degrades to Dirichlet distribution

A➔|B➔|C➔ A➔|B➔|C➔ A➔|B➔|C➔ 

0.11 0.78 0.11 0.03 0.85 0.12 0.09 0.80 0. 11

DP Cat 𝝅 , 𝛼 = Dir(𝛼𝝅) 



Pitman-Yor process
• Generalization of Dirichlet Process based on stick breaking process 

GEM 𝛼, 𝑑  with two parameters

– discount parameter 0 ≤ 𝑑 < 1

– concentration parameter 𝛼 >  −𝑑

 for 𝑐 = 1,2, … , ∞ 
  𝑣𝑐  ~ Beta 1 − d, 𝛼 + 𝑐𝑑
  𝜋𝑐 = 𝑣𝑐 ς𝑘=1

𝑐−1  (1 − 𝑣𝑘)

• For 𝑑 = 0, PY process degrades to DP

• With 𝑑 close to one, distribution of weights has long tail following 

Zipf's law: first weights is (in average) twice the second one, tree 

times the third one, ...

– In any language, the most frequent word is about 2x more frequent than the 

second most frequent and 3x more frequent than the third most frequent and …

– In English: 7% “THE”, 3.5% “OF”, 2.8%, “AND”, … 

– Largest city in a country has about twice the population of the second largest …

– Same for: corporation sizes, income rankings, ranks of number of people 

watching the same TV channel



Samples from GEM 𝛼 = 0, 𝑑 = 0.9

average over many samples

log-log scalelinear scale



Samples from GEM 𝛼 = 1, 𝑑 = 0

average over many samples

log-log scalelinear scale



CRP for GEM 𝛼, 𝑑

• Imagine Chinese Restaurant with an infinite number of tables, each 

with infinite capacity

• The first customer sits at the first table

• Every new customer:

– Joins one of 𝐶 already occupied table with probability proportional to the 

number of customers sitting at that table minus discount 𝑑

𝑃 𝑧′ = 𝑐 𝐳 =
𝑁𝑐 − 𝑑

𝛼 + 𝑁

– or starts a new 𝐶 + 1 table with probability

𝑃 𝑧′ = 𝐶 + 1 𝐳 =
𝛼 + 𝐶𝑑

𝛼 + 𝑁



Pitman-Yor Process

Sample from Pitman-Yor Process with base distribution 𝐻 and 
concentration parameter 𝛼 and discount 𝑑

𝐺 ~ PY 𝐻, 𝛼, 𝑑

can be obtained as

𝝅 ~ GEM 𝛼, 𝑑
𝜇𝑐  ~𝐻, 𝑐 = 1. . ∞

𝐺 = 

𝑐=1

∞

𝜋𝑐𝛿𝜇𝑐

• In CRP analogy, 𝜇𝑐 is a meal served at table 𝑐.

• For 𝐻 = NormalGamma (or Normal) 𝐺 again corresponds to 
(parameters of) infinite Gaussian Mixture model and PY 𝐻, 𝛼, 𝑑  can 
be seen and prior for GMM parameters.

• However, for PY process, it is interesting to consider 𝐻 = Cat



PY Process for 𝐻 = Cat 𝒓

•  𝒓 = [𝑟1, 𝑟2, … , 𝑟𝐾] are probabilities of 𝐾 categories

• 𝜇𝑐 corresponds to category associated with cluster 𝑐

• 𝛿𝜇𝑐
is distribution where P 𝜇𝑐 = 1 and P 𝜇 ≠ 𝜇𝑐 = 0 

• When sampling from 𝐺, we pick 𝛿𝜇𝑐
 with probability 

𝜋𝑐 and generated corresponding category 𝜇𝑐

• ⇒ 𝐺 is (finite) Categorical distribution where

𝑃 𝜇𝑘 = 

𝑐:𝜇𝑐=𝜇k

𝜋𝑐



PY Process for 𝐻 = Cat 𝒓
𝐺~PY Cat 𝒓 , 𝛼, 𝑑

• 𝐺 is Categorical Distribution

• We have seen that

PY Cat 𝒓 , 𝛼, 𝑑 = 0 = DP Cat 𝒓 , 𝛼 = Dir 𝛼𝒓

• But for 𝑑 ≠ 0
PY Cat 𝒓 , 𝛼, 𝑑 ≠ Dir  

• Prior for (finite) Categorical distributions imposing Zipf’s law

• Useful for modeling different phenomena e.g. in Natural 

Language Processing (NLP)



PY Cat 𝒓 , 𝛼, 𝑑  prior

• We assume (unigram) generative model, where sequence 

of categories (e.g. words 𝒙 = [𝑥1, 𝑥2,…𝑥𝑁] are generated as

𝐺~PY Cat 𝒓 , 𝛼, 𝑑
for 𝑖 = 1. . 𝑁
 𝑥𝑖~𝐺

 or equivalently

𝝅 = 𝜋1, 𝜋2, … ~ GEM 𝛼, 𝑑
𝜇𝑐  ~Cat 𝒓 , 𝑐 = 1. . ∞
𝑧𝑖  ~𝝅,  𝑖 = 1. . 𝑁
𝑥𝑖 = 𝜇𝑧𝑖

,  𝑖 = 1. . 𝑁



CGS with PY Cat 𝒓 , 𝛼, 𝑑  prior
• We use Collapsed Gibbs sampling (similar to infinite BGMM)

•  

• 𝑃 𝑧𝑖 𝐳\i  is evaluated using Chinese Restaurant Process (CRP)

  𝑃 𝑧𝑖 = 𝑐 𝐳\i =
𝑁\i

𝑐 −𝑑

𝛼+𝑁−1
 𝑃 𝑧𝑖 = 𝐶 + 1 𝐳\i =

𝛼+𝐶𝑑

𝛼+𝑁−1

• 𝑃 𝑥𝑖 𝑧𝑖 = 𝐶 + 1, 𝐱\i, 𝐳\i = Cat 𝑥𝑖|𝒓  when starting new table.

• Each table 𝑐, serves only one “meal” 𝜇𝑐, which is shared by all 

customers 𝑧𝑗 = 𝑐 sitting at that table ⇒ For already occupied table 𝑐, 

we can look at any customer sitting at the table (i.e. 𝑧𝑗 ∈ 𝐳\i ∧ 𝑧𝑗 = 𝑐) 

and his meal 𝑥𝑗 = 𝜇𝑐 and we know that a new customer 𝑧𝑖 = 𝑐 

joining the same table will eat the same meal with probability one

• 𝑃 𝑥𝑖 = 𝜇𝑐 𝑧𝑖 = 𝑐, 𝐱\i, 𝐳\i = 1 and 𝑃 𝑥𝑖 ≠ 𝜇𝑐 𝑧𝑖 = 𝑐, 𝐱\i, 𝐳\i = 0



CGS with PY Cat 𝒓 , 𝛼, 𝑑  prior-II

• Approximate posterior predictive

P 𝑥|𝐱

≈
1

𝐿


𝑙

𝑃 𝑥 𝐱, 𝐳l
∗ =

1

𝐿


𝑙



𝑐=1

𝐶𝑙+1

𝑃 𝑥 𝑧 = 𝑐, 𝐱, 𝐳𝑙
∗ 𝑃 𝑧 = 𝑐 𝐳l

∗

=
1

𝐿


𝑙



𝑐:𝜇𝑐=𝑥

𝑃 𝑧 = 𝑐 𝐳l
∗ + Cat 𝑥|𝒓 𝑃 𝑧 = 𝐶𝑙 + 1 𝐳l

∗

=
1

𝐿


𝑙



𝑐:𝜇𝑐=𝑥

𝑁𝑙
𝑐 − 𝑑

𝛼 + 𝑁
+ Cat 𝑥|𝒓

𝛼 + 𝐶𝑙𝑑

𝛼 + 𝑁



Language Modeling

• In NLP or speech processing, we often need to model 

distribution of word sequences
𝑃 𝑥1, 𝑥2, … , 𝑥𝑁 = 𝑃 𝑥1 𝑃 𝑥2 𝑥1 𝑃 𝑥3 𝑥1, 𝑥2 … 𝑃(𝑥𝑁|𝑥1, 𝑥2, … , 𝑥𝑁−1)

• This can be approximated by N-gram language model (LM)

– uni-gram: 
𝑃 𝑥1, 𝑥2, … , 𝑥𝑁 ≈ 𝑃 𝑥1 𝑃 𝑥2 𝑃 𝑥3 … 𝑃 𝑥𝑁  

– bi-gram:

𝑃 𝑥1, 𝑥2, … , 𝑥𝑁 ≈ 𝑃 𝑥1 𝑃 𝑥2 𝑥1 𝑃 𝑥3 𝑥2 … 𝑃(𝑥𝑁|𝑥𝑁−1)

– ML estimatimation of 𝑃(𝑥) or 𝑃(𝑥|ℎ) is not robust – not seeing 

certain word or word pair in training text 𝐱 does not mean that it has 

zero probability in new data.

– Smoothing techniques (Good–Turing discounting, Kneser–Ney 

smoothing, …) are typically used to get better estimates.

• Let’s use Bayesian approach …



Bayesian Language Modeling
• For unigram

– We assume that individual words are i.i.d. from 𝑥𝑛 ∼ Cat 𝑥𝑛|𝒓1

– Let’s use 𝒓1 ∼ PY 𝐻0, 𝛼, 𝑑  as a prior for the parameters 𝒓1 

– For 𝐻0, will be flat categorical distribution Cat 𝑥|𝒓0 =
1

𝐾

– We can use the CGS inference described before

– We can use the approximate posterior predictive P 𝑥|𝐱  as the unigram 

probabilities, where 𝐱 is the training text. 

• For bigram

– One Categorical distribution for each bigram history P 𝑥 ℎ = Cat 𝑥|𝒓ℎ

– 𝑟h~PY 𝐻, 𝛼, 𝑑  as a prior for parameter of each bigram distribution

– 𝐻 = Cat 𝒓1  is categorical distribution, but its parameters 𝒓1 are treated 

as random variable with prior 𝒓1~PY 𝐻0, 𝛼, 𝑑  (i.e. as for the unigram).

Y. Teh. A hierarchical Bayesian language model based on Pitman-Yor process.

In Proceedings of ACL International Conference, 2006.
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