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Frequentist vs. Bayesian

• Frequentist point of view: 
– Probability is the frequency of an event occurring in a 

large (infinite) number of trials

– E.g. When flipping a coin many times, what is the 
proportion of heads?

• Bayesian
– Inferring probabilities for events that have never 

occurred or believes which are not directly observed

– Prior believes are specified in terms of prior 
probabilities

– Taking into account uncertainty (posterior distribution) 
of the estimated parameters or hidden variables in 
our probabilistic model.



• Let’s  flip the coin N = 1000 times getting H = 750 heads and T = 250 tails. 

• What is 𝜇? Intuitive (and also ML) estimate is 750 / 1000 = 0.75.

• Given some 𝜇, we can calculate probability (likelihood) of X

• Now lets express our ignorant prior belief about 𝜇 as:

Coin flipping example

𝑃 𝑡𝑎𝑖𝑙 𝜇 = 1 − 𝜇

𝑝(𝜇) = 𝒰(0,1)

𝐱 = 𝑥1, 𝑥2, 𝑥3, … 𝑥𝑁 = 𝑡𝑎𝑖𝑙, ℎ𝑒𝑎𝑑, ℎ𝑒𝑎𝑑, … 𝑡𝑎𝑖𝑙

𝑃 𝐱 𝜇 =  ෑ

𝑖

𝑃(𝑥𝑖|𝜇) = 𝜇𝐻 1 − 𝜇 𝑇

𝑝 𝜇 𝐱 =
𝑃 𝐱 𝜇 𝑝(𝜇)

𝑃(𝐱)
=

ς𝑖 𝑃(𝑥𝑖|𝜇)∙1

𝑃(𝐱)
 ∝ 𝜇𝐻 1 − 𝜇 𝑇 

𝑃 ℎ𝑒𝑎𝑑 𝜇 = 𝜇

Then using Bayes rule, we obtain probability density function for 𝜇 :



Coin flipping example (cont.)

𝑝 𝜇 𝐱 ∝ 𝜇𝐻 1 − 𝜇 𝑇 

N = 1000, H = 750, T = 250

→ 𝜇

→
𝑝

(𝜇
|𝑋

)

• Posterior distribution is our new belief about 𝜇
• Flipping the coin once more, what is the probability of head?

𝑝 ℎ𝑒𝑎𝑑 𝐱 = න 𝑝 ℎ𝑒𝑎𝑑, 𝜇 𝐱 d𝜇 = න 𝑃 ℎ𝑒𝑎𝑑 𝜇, 𝐱 𝑝 𝜇 𝐱 d𝜇

 = Τ𝐻 + 1 𝑁 + 2  = Τ751 1002  = 0.7495

• Note that we never computed value of 𝜇
• Rule of succession used by Pierre-Simon Laplace to estimate that the 

probability of sun rising tomorrow is (5000*365.25+1)/(5000*365.25+2)



Distributions from our example

• Likelihood of observed data 𝑃 𝑋 𝜇  given a parametric model of 

probability distribution

– Bernoulli distribution with parameter 𝜇

• Prior on the parameters of the model 𝑝(𝜇)

– Uniform prior as a special case of Beta distribution

• Posterior distribution of model parameters given an observed data

𝑝 𝜇 𝑋 =
𝑃 𝑋 𝜇 𝑝(𝜇)

𝑃(𝑋)

• Posterior predictive distribution of a new observation give prior 

(training) observations

𝑝 ℎ𝑒𝑎𝑑 𝑋 = න 𝑃 ℎ𝑒𝑎𝑑 𝜇 𝑝 𝜇 𝑋 d𝜇



Bernoulli and Binomial distributions

• The “coin flipping” distribution is Bernoulli distribution

• Flipping the coin once, what is the probability of x = 1 (head) or x = 0 (tail)

Bern 𝑥 𝜇 = 𝜇𝑥 1 − 𝜇 1−𝑥 

Bin 𝑚 𝑁, 𝜇 =
𝑁
𝑚

𝜇𝑚 1 − 𝜇 𝑁−𝑚 

• Related binomial distribution is also described by single probability 𝜇 

• How many heads do I get if I flip the coin N times?

N = 10

𝜇 = 0.25

Some images taken from :

C. M. Bishop. 2006.Pattern Recognition and Machine Learning. Springer.



Beta distribution

• Beta distribution has “similar” form as Bern or Bin, but it is now function of 𝜇
• Continuous distribution for 𝜇 over the interval (0,1)

• Can be used to express our prior beliefs about the Bernoulli dist. parameter 𝜇

Uniform 

distribution over 

𝜇 as was the 

prior in our coin 

flipping example

Normalizing constant

Beta 𝜇 𝑎, 𝑏 =
Γ 𝑎 + 𝑏

Γ 𝑎 Γ 𝑏
𝜇𝑎−1 1 − 𝜇 𝑏−1



Beta as a conjugate prior

• Using Beta as a prior for Bernoulli parameter 𝜇 results in Beta posterior 

distribution ➔ Beta is conjugate prior to Bernoulli

• 𝑎 − 1 and 𝑏 − 1 can be seen as a prior counts of heads and tails.

• Continuous distribution of 𝜇 over the interval (0,1)

• Beta distribution can be used to express our prior beliefs about the Bernoulli 

distributions parameter 𝜇

Beta 𝜇 𝑎, 𝑏 =
Γ 𝑎 + 𝑏

Γ 𝑎 Γ 𝑏
𝜇𝑎−1 1 − 𝜇 𝑏−1

𝐱 = 𝑥1, 𝑥2, 𝑥3, … 𝑥𝑁 = 1,0,0,1, … , 0

𝑃 𝐱 𝜇 =  ෑ

𝑖

𝐵𝑒𝑟𝑛(𝑥𝑖|𝜇) = ෑ

𝑖

𝜇𝑥𝑖 1 − 𝜇 1−𝑥𝑖 = 𝜇𝐻 1 − 𝜇 𝑇

𝑝 𝜇 𝐱 =
𝑃 𝐱 𝜇 𝑝 𝜇

𝑃 𝐱
∝ 𝜇𝐻 1 − 𝜇 𝑇 𝜇𝑎−1 1 − 𝜇 𝑏−1 

= 𝜇𝐻+𝑎−1 1 − 𝜇 𝑇+𝑏−1 ∝ Beta 𝜇 𝐻 + 𝑎, 𝑇 + 𝑏

Sufficient 

statistics



𝐶 = 3

𝜋2

𝜋1

𝜋3

Categorical and Multinomial 

distribution

𝝅 = 𝜋1, 𝜋2, … , 𝜋𝐶

One-hot encoding of a discrete event (       on a dice)𝐱 = 0, 0, 1, 0, 0, 0 

Probabilities of  the events

(eg. 
1

6
,

1

6
,

1

6
,

1

6
,

1

6
,

1

6
 for fair dice)

• Categorical distribution simply “returns” the probability of a given event x

• Sample from the distribution is the event (or its one-hot encoding)

• Multinomial distribution is also described by single probability vector 𝝅 

• How many ones, twos, threes, … do I get if I throw the dice N times?

• Sample from the distribution is vector of numbers (e.g. 11x one, 8x two, …)



𝑐

𝜋𝑐 = 1➔ 𝝅 is a point on a simplexCat(𝐱|𝝅) = ෑ

𝑐

𝜋𝑐
𝑥𝑐

Mult(𝑚1, 𝑚2, … , 𝑚𝐶|𝝅, 𝑁) =
𝑁

𝑚1𝑚2 … 𝑚𝐶
ෑ

𝑐

𝜋𝑐
𝑚𝑐



Dirichlet distribution

• Dirichlet distribution is continuous distribution over 

the points 𝝅 on a K dimensional simplex.

• Can be used to express our prior beliefs about the 

categorical distribution parameter 𝝅

Dir 𝝅 𝜶 =
Γ σc 𝛼𝑐

Γ 𝛼1 … Γ 𝛼𝐶
ෑ

𝑐=1

𝜋𝑐
𝛼𝑐−1

𝐶 = 3

𝜋2

𝜋1

𝜋3



Dirichlet as a conjugate prior

• Using Dirichlet as a prior for Categorical parameter 𝝅 results in Dirichlet 

posterior distribution ➔ Dirichlet is conjugate prior to Categorical dist.

• 𝛼𝑐 − 1 can be seen as a prior count for the individual events.

Dir 𝝅 𝜶 =
Γ σc 𝛼𝑐

Γ 𝛼1 … Γ 𝛼𝐶
ෑ

𝑐=1

𝜋𝑐
𝛼𝑐−1

𝑃 𝐗 𝝅 = ෑ

𝑛

Cat 𝐱𝑛 𝝅 = ෑ

𝑛

ෑ

𝑐

𝜋𝑐
𝑥𝑐𝑛 = ෑ

𝑐

𝜋𝑐
𝑚𝑐

𝑝 𝝅 𝐗 =
𝑃 𝐗 𝝅 𝑝 𝝅

𝑃 𝐗
∝ ෑ

𝑐

𝜋𝑐
𝑚𝑐 ෑ

𝑐

𝜋𝑐
𝛼𝑐−1

= ෑ

𝑐=1

𝜋𝑐
𝑚𝑐+𝛼𝑐−1

∝ Dir 𝝅 𝜶 + 𝐦

Sufficient statistics

𝐦 = [𝑚1, … , 𝑚𝐶],

number of training 

observations of 

category 𝑐  



Gaussian distribution (univariate)

ML estimates of parameters

𝑝 𝑥 = 𝒩 𝑥; 𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒

−
𝑥−𝜇 2

2𝜎2  

𝜇 =
1

𝑁


𝑛
𝑥𝑛

𝜎2 =
1

𝑁


𝑛
(𝑥𝑛−𝜇)2



Gamma distribution

𝒩 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒

−
𝑥−𝜇 2

2𝜎2 =
𝜆

2𝜋
𝑒−

𝜆
2 𝑥−𝜇 2

Normal distribution can be expressed in terms of precision 𝜆 =
1

𝜎2

Gamma distribution defined for 𝜆 > 0 can be used as a prior over the precision 

Gam 𝜆|𝑎, 𝑏 =
1

Γ(𝑎)
𝑏𝑎𝜆𝑎−1𝑒−𝑏𝜆



NormalGamma distribution
NormalGama 𝜇, 𝜆|𝑚, 𝜅, 𝑎, 𝑏 = 𝒩 𝜇|𝑚, 𝜅𝜆 −1 Gam(𝜆|𝑎, 𝑏)

Joint distribution over 𝜇 and 𝜆. Note that 𝜇 and 𝜆 are not independent.

𝑚 = 0, 𝜅 = 2, 𝑎 = 5, 𝑏 = 6



NormalGamma distribution
• NormalGamma distribution is the conjugate prior for Gaussian dist.

• Given observations 𝐱 = 𝑥1, 𝑥2, 𝑥3, … 𝑥𝑁 , the posterior distribution

Defined in terms of sufficient statistics N and

𝑝 𝜇, 𝜆|𝐱 =
𝑝 𝐱 𝜇, 𝜆 𝑝 𝜇, 𝜆

𝑝 𝐱

∝ ෑ

𝑖

𝒩 𝑥𝑖; 𝜇, 𝜆−1 NormalGamma 𝜇, 𝜆|𝑚, 𝜅, 𝑎, 𝑏

ҧ𝑥 =
1

𝑁


𝑛=1

𝑁

𝑥𝑛 𝑠 =
1

𝑁


𝑛=1

𝑁

(𝑥𝑛− ҧ𝑥)2

∝ NormalGamma 𝜇, 𝜆
𝜅𝑚 + 𝑁 ҧ𝑥

𝜅 + 𝑁
, 𝜅 + 𝑁, 𝑎 +

𝑁
2

, 𝑏 +
𝑁
2

𝑠 +
𝜅 ҧ𝑥 − 𝑚 2

𝜅 + 𝑁



Gaussian distribution (multivariate)

ML estimates of parameters

𝒩 𝐱; 𝝁, 𝚺 =
1

2𝜋 𝐷|𝚺|
𝑒−

1
2 𝐱−𝝁 𝑇𝚺−1 𝐱−𝝁  

𝝁 =
1

𝑁


𝑛
𝐱𝑛

𝚺 =
1

𝑁


𝑛
𝐱n − 𝝁 𝐱n − 𝝁 𝑇

𝑝 𝑥1, … , 𝑥𝐷 =



Gaussian distribution (multivariate)

𝒩 𝐱; 𝝁, 𝚺 =
1

2𝜋 𝐷|𝚺|
𝑒−

1
2 𝐱−𝝁 𝑇𝚺−1 𝐱−𝝁  

Conjugate prior is Normal-Wishart

where

is Wishart distribution and

 𝚲 = 𝚺−1



• All the distributions described so far are distributions from the 

exponential family, which can be expressed in the following form

• For example for Gaussian distribution:

Exponential family

𝒩 𝑥; 𝜇, 𝜎2 =
1

2𝜋𝜎2
exp −

1

2𝜎2
𝑥2 +

𝜇

𝜎2
𝑥 −

𝜇2

2𝜎2

𝜼 =
𝜇/𝜎2

−1/2𝜎2 𝐮(𝑥) =
𝑥

 𝑥2 h(𝑥) = 1g 𝜼 = −
2𝜂2

2𝜋
exp

𝜂1
2

4𝜂2

ෑ

𝑛

𝒩 𝑥𝑛; 𝜇, 𝜎2 = exp −
1

2𝜎2


𝑛

𝑥𝑛
2 +

𝜇

𝜎2


𝑛

𝑥𝑛 − 𝑁
𝜇2

2𝜎2
+

log 2𝜋𝜎2

2

= g 𝜼 Nexp 𝜼𝑇 
𝑛=1

𝑁

𝐮(𝑥𝑛) ෑ

𝑛

h(𝑥𝑛)

• To evaluate likelihood of set of observations:

𝑝(𝐱|𝜼) = h(𝐱)g 𝜼 exp 𝜼𝑇𝐮(𝐱)



For any distributions from exponential family

• Likelihood 𝑝 𝐗 𝜼  of observed data 𝐗 = [𝐱1, 𝐱2, … , 𝐱𝑁] can be evaluated 

using the sufficient statistics 𝑁 and σ𝑛=1
𝑁 𝐮(𝐱𝑛):

• Conjugate prior distribution over parameter 𝜼 exists in form:

• Posterior distribution takes the same form as the conjugate prior and we 

need only the prior parameters and the sufficient stats to evaluate it:

•
𝜽

𝜈
 can be seen as prior observation and 𝜈 as prior count of observation

Exponential family

𝑝(𝐱|𝜼) = h(𝐱)g 𝜼 exp 𝜼𝑇𝐮(𝐱)

𝑝(𝐗|𝜼) = g 𝜼 Nexp 𝜼𝑇 
𝑛=1

𝑁

𝐮(𝑥𝑛) ෑ

𝑛

h(𝑥𝑛)

𝑝 𝜼 𝜽, 𝜈 = f 𝜽, 𝜈 g 𝜼 𝜈exp 𝜼𝑇𝜽 = f(𝜽, 𝜈) exp  𝜽𝑇𝐯(𝜼)

𝑝 𝜼 𝐗 = 𝑝 𝜼 𝜽 + σ𝑛=1
𝑁 𝐮 𝑥𝑛 , 𝜈 + 𝑁 ∝ g 𝜼 N+𝜈exp 𝜼𝑇 𝜽 + 

𝑛=1

𝑁

𝐮 𝑥𝑛



Parameter estimation revisited
• Let’s estimate again parameters 𝜼 of a chosen 𝑝 𝐱 𝜼  distribution  

given some of observed data 𝐗 = 𝐱1, 𝐱2, … , 𝐱𝑁

• Using the Bayes rule, we get the posterior distribution

𝑝 𝜼 𝐗 =
𝑃 𝐗 𝜼 𝑝 𝜼

𝑃 𝐗

• We can choose the most likelihood parameters: Maximum 

a-posteriori (MAP) estimate

ෝ𝜼𝑀𝐴𝑃 = arg max
𝜼

𝑝 𝜼 𝐗 = arg max
𝜼

𝑝 𝐗 𝜼 𝑝 𝜼

• Assuming flat (constant) prior 𝑝 𝜼 = 𝑐𝑜𝑛𝑠𝑡, we obtain Maximum 

likelihood (ML) estimate as a special case:

ෝ𝜼𝑀𝐿 = arg max
𝜼

𝑃 𝐗 𝜼



Posterior predictive distribution
• We do not need to obtain a point estimate of the parameters ෝ𝜼

• It is always good to postpone making hard decisions

• Instead, we can take into account the uncertainty encoded in the 

posterior distribution 𝑝 𝜼 𝐗  when evaluating posterior predictive 

probability for a new data point 𝒙′ (as we did in our coin flipping 

example)

𝑝 𝑥′ 𝐗 = න 𝑝 𝑥′, 𝜼 𝐗 d 𝜼 = න 𝑝 𝑥′ 𝜼 𝑝 𝜼 𝐗 d 𝜼

• Rather than using one most likely setting of parameters ෝ𝜼, we 

average over their different setting, which could possibly generate 

the observed data 𝐗
➔ this approach is robust to overfitting



Posterior predictive for Bernoulli
• Beta prior on parameters of Bernoulli distribution leads to Beta posterior

𝑝 𝜇 𝐱 ∝ ෑ

𝑛

Bern 𝑥𝑛 𝜇 Beta 𝜇 𝑎0, 𝑏0 ∝ Beta 𝜇 𝑎0 + 𝐻, 𝑏0 + 𝑇

= Beta 𝜇 𝑎𝑁, 𝑏𝑁

• The posterior predictive distribution is again Bernoulli

𝑝 𝑥′ 𝐱 = න 𝑝 𝑥′ 𝜇 𝑝 𝜇 𝐱 d𝜇 = න Bern(𝑥′|𝜇)Beta 𝜇 𝑎𝑁, 𝑏𝑁 d𝜇

= Bern 𝑥′ 𝑎𝑁
𝑎𝑁 + 𝑏𝑁

= Bern 𝑥′ 𝑎0 + 𝐻
𝑎0 + 𝑏0 + 𝑁

• In our coin flipping example:

 𝑝 𝜇  = 𝒰 0,1 = Beta 𝜇 𝑎0, 𝑏0 =  Beta 𝜇 1,1

 𝑝 𝜇 𝐱  = Beta 𝜇 𝑎𝑁, 𝑏𝑁 = Beta 𝜇 𝑎0 + 𝐻, 𝑏0 + 𝑇 = Beta 𝜇 1 + 750,1 + 250

 𝑝 𝑥′ 𝐱 = Bern 𝑥′ 𝑎𝑁

𝑎𝑁+𝑏𝑁
= Τ751 1002  = 0.7495



Posterior predictive for Categorical

• Dirichlet prior on parameters of Categorical distribution leads to 

Dirichlet posterior

𝑝 𝝅 𝐗 ∝ ෑ

𝑛

Cat 𝐱𝑛 𝝅 Dir 𝝅 𝜶0 ∝ Dir 𝝅 𝜶0 + 𝐦 = Dir 𝝅 𝜶𝑁

 

• The posterior predictive distribution is again Categorical

𝑝 𝐱′ 𝐗 = න 𝑝 𝐱′ 𝝅 𝑝 𝝅 𝐗 d𝝅 = න Cat 𝐱′ 𝝅 Dir 𝝅 𝜶𝑁 d𝝅

= Cat 𝐱′ 𝜶𝑁
σ𝑐 𝛼𝑁𝑐

= Cat 𝐱′ 𝜶0 + 𝐦
σ𝑐 𝛼0𝑐 + 𝑚𝑐



Student’s t-distribution
• NormalGamma prior on parameters of Gaussian distribution leads to 

NormalGamma  posterior

𝑝 𝜇, 𝜆|𝐱 ∝ ෑ

𝑖

𝒩 𝑥𝑖; 𝜇, 𝜎2 NormalGamma 𝜇, 𝜆|𝑚0, 𝜅0, 𝑎0, 𝑏0

∝ NormalGamma 𝜇, 𝜆
𝜅0𝑚0 + 𝑁 ҧ𝑥

𝜅0 + 𝑁
, 𝜅0 + 𝑁, 𝑎0 +

𝑁
2

, 𝑏0 +
𝑁
2

𝑠 +
𝜅0 ҧ𝑥 − 𝑚0

2

𝜅0 + 𝑁

= NormalGamma 𝜇, 𝜆|𝑚𝑁, 𝜅𝑁, 𝑎𝑁, 𝑏𝑁

• The posterior predictive distribution is Student’s t-distribution

p x′ 𝐱 = ඵ 𝑝 𝑥′ 𝜇, 𝜆 p 𝜇, 𝜆 𝐱  d𝜇 d𝜆

= ඵ 𝒩 𝑥′|𝜇, 𝜆−1 NormalGamma 𝜇, 𝜆|𝑚𝑁, 𝜅𝑁, 𝑎𝑁, 𝑏𝑁  d𝜇 d𝜆

= St 𝑥′|𝑚𝑁, 2𝑎𝑁,
𝑎𝑁𝜅𝑁

𝑏𝑁(𝜅𝑁 + 1)



Student’s t-distribution

• Gaussian distribution is a special case of Student’s with degree of freedom 𝜈 → ∞ 

• For the posterior 𝑝 𝜇, 𝜆 𝐱), 𝜈 = 2𝑎𝑁 = 2𝑎0 + 𝑁

St 𝑥 | 𝜇, 𝜈, 𝛾 =
Γ

𝜈
2 +

1
2

Γ
𝜈
2

𝛾

𝜋𝜈

1
2

1 +
𝛾 𝑥 − 𝜇 2

𝜈

−
𝜈
2

 −
1
2
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