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GMM - recapitulation

where

𝑝 𝑥|𝜼 = ෍
𝑐
𝒩 𝑥; 𝜇𝑐 , 𝜎𝑐

2 𝜋𝑐

𝜼 = {𝜋𝑐 , 𝜇𝑐 , 𝜎𝑐
2}

෍
𝑐
𝜋𝑐 = 1

• We can see the sum above just as a function defining 
the shape of the probability density function

• or …
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Multivariate GMM - recapitulation

where

𝑝 𝐱|𝜼 = ෍
𝑐
𝒩 𝐱; 𝝁𝑐 , 𝚺𝑐 𝜋𝑐

𝜼 = {𝜋𝑐 , 𝝁𝑐 , 𝚺𝑐}

෍
𝑐
𝜋𝑐 = 1

• We can see the sum above just as a function defining 
the shape of the probability density function

• or …



BN for GMM – recapitulation

• or we can see it as a generative probabilistic model described by 
Bayesian network with Categorical latent random variable 𝑧 identifying 
Gaussian distribution generating the observation 𝑥

•  Observations are assumed to be generated as follows:
– randomly select Gaussian component according probabilities 𝑃(𝑧)
– generate observation 𝑥 form the selected Gaussian distribution

• To evaluate 𝑝 𝑥 , we have to marginalize out 𝑧
• No close form solution for training

𝑝 𝑥 = ෍
𝑧
𝑝 𝑥 𝑧 𝑃(𝑧) = ෍

𝑐
𝒩 𝑥; 𝜇𝑐 , 𝜎𝑐

2 Cat 𝑧 = 𝑐 𝝅

𝑧

𝑥

𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑃(𝑧)



BN for GMM – recapitulation II

• Multiple observations:

z1 z2 zN-1 zN

x1 x2 xN-1 xN

𝑝 𝑥1, 𝑥2, … , 𝑥N, 𝑧1, 𝑧2, … 𝑧N = ෑ
𝑛=1

𝑁

𝑝 𝑥n 𝑧n 𝑃(𝑧𝑛)

or

zn

xn

𝑛 = 1. . 𝑁



Training GMM –Viterbi training
• Intuitive and Approximate iterative algorithm for training GMM parameters.
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Training GMM –Viterbi training
• Intuitive and Approximate iterative algorithm for training GMM parameters.

• Using current model parameters, let 

Gaussians classify data as if the 

Gaussians were different classes (Even 

though all the data corresponds to only 

one class modeled by the GMM)

• Re-estimate parameters of 

Gaussians using the data assigned 

to them in the previous step.

New weights will be proportional to 

the number of  data points assigned 

to the Gaussians.

• Repeat the previous two steps until 

the algorithm converges.



Training GMM – EM algorithm
• Expectation Maximization is a general tool applicable to different 

generative models with latent (hidden) variables.

• Here, we only see the result of its application to the problem of re-estimating 
GMM  parameters.

• It guarantees to increase the likelihood of training data in every iteration. 
However, it does not guarantee to find the global optimum.

• The algorithm is very similar to the Viterbi training presented above. 
However,  instead of hard alignments of observations to Gaussian 
components, the posterior probabilities 𝑃 𝑐|𝑥𝑖  (calculated given the old 
model) are used as soft weights. Parameters 𝜇𝑐,𝜎𝑐

2 are then calculated 
using a weighted average.

𝜇𝑐
𝑛𝑒𝑤

=
1

σ𝑛 𝛾𝑛𝑐
෍

𝑛
𝛾𝑛𝑐x𝑛

𝜎2
𝑐
𝑛𝑒𝑤

=
1

σ𝑛 𝛾𝑛𝑐
෍

𝑛
𝛾𝑛𝑐 xn − 𝜇𝑐

𝑛𝑒𝑤
2

𝜋𝑐
𝑛𝑒𝑤

=
σ𝑛 𝛾𝑛𝑐

σ𝑘 σ𝑛 𝛾𝑛𝑐
=

σ𝑛 𝛾𝑛𝑐

𝑁

𝛾𝑛𝑐 =
𝒩 𝑥𝑛|𝜇𝑐

(𝑜𝑙𝑑)
, 𝜎2

𝑐
(𝑜𝑙𝑑)

𝜋𝑐
(𝑜𝑙𝑑)

σ𝑘 𝒩 x𝑛|𝜇𝑘
(𝑜𝑙𝑑)

, 𝜎2
𝑘
(𝑜𝑙𝑑)

𝜋𝑘
(𝑜𝑙𝑑)

=
𝑝 x𝑛|𝑧𝑛 = 𝑐 𝑃(𝑧𝑛 = 𝑐) 

σ𝑘 𝑝 𝑥𝑛|𝑧𝑛 = 𝑘 𝑃(𝑧𝑛 = 𝑘)
= 𝑃 𝑧𝑛 = 𝑐|x𝑛
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Expectation maximization algorithm

• where 𝑞 𝐙  is any distribution over the latent variable

• Kullback-Leibler divergence DKL(𝑞| 𝑝  measures “unsimilarity” 

between two distributions 𝑞, 𝑝

• 𝐷𝐾𝐿(𝑞| 𝑝 ≥ 0 and 𝐷KL(𝑞| 𝑝 = 0 ⇔ 𝑞 = 𝑝

• ⇒ Evidence lower bound (ELBO) ℒ 𝑞 𝐙 , 𝜼 ≤ 𝑝(𝐗|𝜼)

• 𝐻 𝑞(𝐙)  is (non-negative) Entropy of distribution 𝑞(𝐙)

• 𝒬 𝑞 𝐙 , 𝜼  is called auxiliary function. 



Expectation maximization algorithm

• We aim to find parameters 𝜼 that maximize ln 𝑝 𝐗 𝜼  

• E-step: 𝑞 𝐙 ≔ 𝑃(𝐙|𝐗, 𝜼𝑜𝑙𝑑)
– makes the 𝐷KL(𝑞| 𝑝  term 0

– makes ℒ 𝑞 𝐙 , 𝜼 = ln 𝑝 𝐗 𝜼

• M-step: 𝜼𝑛𝑒𝑤 = arg max
𝜼

𝒬 𝑞 𝐙 , 𝜼

– 𝐷𝐾𝐿(𝑞| 𝑝  increases as 𝑃 𝐗 𝐙, 𝜼 deviates from 𝑞 𝐙

– 𝐻 𝑞 𝐙   does not change for fixed 𝑞 𝐙

– ℒ 𝑞 𝐙 , 𝜼  increases like 𝒬(𝑞 𝐙 , 𝜼) 

– ln 𝑝 𝐗 𝜼  increases more than 𝒬(𝑞 𝐙 , 𝜼)



Expectation maximization algorithm

⇩ E-step: 𝑞 𝐙 ≔ 𝑃(𝐙|𝐗, 𝜼𝑜𝑙𝑑)

M-step: ⇨
 𝜼𝑛𝑒𝑤 = arg max

𝜼
𝒬 𝑞 𝐙 , 𝜼

ln 𝑝 𝐗 𝜼newℒ 𝑞 𝐙 , 𝜼newln 𝑝 𝐗 𝜼oldℒ 𝑞 𝐙 , 𝜼old

ln 𝑝 𝐗 𝜼ℒ 𝑞 𝐙 , 𝜼



Expectation maximization algorithm
𝒬 𝑞 𝐙 , 𝜼  and ℒ 𝑞 𝐙 , 𝜼  will be easy to optimize (e.g. quadratic function) 

compared to ln 𝑝 𝐗 𝜼

𝜼𝑜𝑙𝑑  𝜼𝑛𝑒𝑤

ℒ 𝑞 𝐙 , 𝜼

ln 𝑝 𝐗 𝜼



EM for GMM
• Now, we aim to train parameters 𝜼 = 𝜇𝑧 , 𝜎𝑧

2, 𝜋𝑧  of Gaussian 

Mixture model

• Given training observations 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑁] we search for ML 

estimate of 𝜼 that maximizes log likelihood of the training data.

• Direct maximization of this objective function w.r.t. 𝜼 is intractable. 

• We will use EM algorithm, where we maximize the auxiliary function 

which is (for simplicity) sum of per-observation auxiliary functions

• Again, in M-step                    has to increase more than 



EM for GMM – E-step

• 𝛾𝑛𝑐 is the so called responsibility of Gaussian component 𝑧 for 

observation 𝑛.

• It is the probability for an observation 𝑛 being generated from 

component 𝑐



EM for GMM – M-step

• In M-step, the auxiliary function is maximized w.r.t. all GMM parameters



EM for GMM –update of means

• Update for component mean means:

• Update for variances:                                          can be derived similarly.𝜎𝑐
2 =

σ𝑛 𝛾𝑛𝑐 xn − 𝜇𝑐
2

σ𝑛 𝛾𝑛𝑐



Flashback: ML estimate for Gaussian

arg max
𝜇,𝜎2

𝑝 𝐱 𝜇, 𝜎2 = arg max
𝜇,𝜎2

ln 𝑝 𝐱 𝜇, 𝜎2 = ෍

𝑖

ln 𝒩 𝑥𝑛; 𝜇, 𝜎2

= −
1

2𝜎2
෍

𝑛

𝑥𝑛
2 +

𝜇

𝜎2
෍

𝑛

𝑥𝑛 − 𝑁
𝜇2

2𝜎2
−

ln 2𝜋

2

𝜕

𝜕𝜇
ln 𝑝 𝐱 𝜇, 𝜎2 =

𝜕

𝜕𝜇
−

1

2𝜎2
෍

𝑛

𝑥𝑛
2 +

𝜇

𝜎2
෍

𝑛

𝑥𝑛 − 𝑁
𝜇2

2𝜎2
−

ln 2𝜋

2

=
1

𝜎2
෍

𝑛

𝑥𝑛 − 𝑁𝜇 = 0 ⇒ 
ො𝜇𝑀𝐿 =

1

𝑁
෍

𝑛
𝑥𝑛

෢𝜎2
𝑀𝐿

=
1

𝑁
෍

𝑛
(𝑥𝑛−𝜇)2

and similarly:



EM for GMM –update of weights

• Weights 𝜋𝑐 need to sum up to one. When updating weights, 

Lagrange multiplier 𝜆 is used to enforce this constraint.



Factorization of the auxiliary 

function more formally
• Before, we have introduced the per-observation auxiliary functions

• We can show that such factorization comes naturally even if we directly 

write the auxiliary function as defined for the EM algorithm:

𝒬 𝑞 𝐳 , 𝜼 = ෍

𝐳

𝑞(𝐳) ln 𝑝 𝐱, 𝐳|𝜼 = ෍

𝐳

ෑ

𝑛′

𝑞(𝑧𝑛′) ෍

𝑛

ln 𝑝 𝑥𝑛, 𝑧𝑛|𝜼

= ෍

𝑐

෍

𝑛

𝑞 𝑧𝑛 = 𝑐 ln 𝑝 𝑥𝑛, 𝑧𝑛 = 𝑐|𝜼

• See the next slide for proof



Factorization over components
Example with only 3 observations (i.e., 𝐳 = [z1, z2, z3])

෍

𝐳

𝑞(𝐳) ln 𝑝 𝐱, 𝐳|𝜼 = ෍

𝐳

ෑ

𝑛′

𝑞(𝑧𝑛′) ෍

𝑛

log 𝑝 𝑥𝑛, 𝑧𝑛|𝜼 = ෍

𝐳

ෑ

𝑛′

𝑞(𝑧𝑛′) ෍

𝑛

𝑓 𝑧𝑛 = ෍

𝑛

෍

𝐳

ෑ

𝑛′

𝑞(𝑧𝑛′) 𝑓 𝑧𝑛 =

෍

𝑧1

෍

𝑧2

෍

𝑧3

𝑞 𝑧1 𝑞 𝑧2 𝑞 𝑧3 𝑓(𝑧1) + ෍

𝑧1

෍

𝑧2

෍

𝑧3

𝑞 𝑧1 𝑞 𝑧2 𝑞 𝑧3 𝑓(𝑧2) + ෍

𝑧1

෍

𝑧2

෍

𝑧3

𝑞 𝑧1 𝑞 𝑧2 𝑞 𝑧3 𝑓(𝑧3) =

෍

𝑧1

𝑞 𝑧1 𝑓 𝑧1 ෍

𝑧2

𝑞 𝑧2 ෍

𝑧3

𝑞 𝑧3 + ෍

𝑧1

𝑞 𝑧1 ෍

𝑧2

𝑞 𝑧2 𝑓 𝑧2 ෍

𝑧3

𝑞 𝑧3 + ෍

𝑧1

𝑞 𝑧1 ෍

𝑧2

𝑞 𝑧2 ෍

𝑧3

𝑞 𝑧3 𝑓 𝑧3 =

෍

𝑧1

𝑞 𝑧1 𝑓 𝑧1 + ෍

𝑧2

𝑞 𝑧2 𝑓 𝑧2 + ෍

𝑧3

𝑞 𝑧3 𝑓 𝑧3 =

෍

𝑐=1

𝐶

𝑞 𝑧1 = 𝑐 𝑓(𝑧1 = 𝑐) + ෍

𝑐=1

𝐶

𝑞 𝑧2 = 𝑐 𝑓(𝑧2 = 𝑐) + ෍

𝑐=1

𝐶

𝑞 𝑧3 = 𝑐 𝑓(𝑧3 = 𝑐) =

෍

𝑐=1

𝐶

෍

𝑛

𝑞 𝑧𝑛 = 𝑐 𝑓(𝑧𝑛 = 𝑐) = ෍

𝑐=1

𝐶

෍

𝑛

𝑞 𝑧𝑛 = 𝑐 log 𝑝 𝑥𝑛, 𝑧𝑛 = 𝑐|𝜂  



Flashback: Example: BP for HMM

z1 z2 zN-1 zN

x1 x2 xN-1 xN

• To evaluation an HMM, given a sequence of observations 𝑿 =
𝑥1, 𝑥2 … , 𝑥𝑁 , we need to infer

 𝑝 𝑿 = 𝑝 𝑥1, 𝑥2 … , 𝑥𝑁 = ෍

𝑧1

෍

𝑧2

… ෍

𝑧𝑁

𝑝 𝑥1, 𝑥2 … , 𝑥𝑁, 𝑧1, 𝑧2 … , 𝑧𝑁

• To train an HMM using an EM algorithm (see next lesson), for every 𝑡 = 1. . 𝑁, 

we need to infer

 𝑝 𝑧𝑡 𝑿 =
𝑝 𝑧𝑡, 𝑿

𝑝 𝑿
=

σ𝑧1
σ𝑧2

… σ𝑧𝑡−1
σ𝑧𝑡+1

… σ𝑧𝑁
𝑝 𝑥1, 𝑥2 … , 𝑥𝑁, 𝑧1, 𝑧2 … , 𝑧𝑁

𝑝(𝑿)

Forward-backward algorithm 

𝑠 are state ids (i.e., possible values of 𝑧𝑡)

𝛼 𝑡, 𝑠 = 𝑝 𝐱𝑡 𝑠 ෍

𝑠′

𝛼 𝑡 − 1, 𝑠′ 𝑝 𝑠 𝑠′

𝛽 𝑡, 𝑠 = ෍

𝑠′

𝛽 𝑡 + 1, 𝑠′ 𝑝 𝐱𝑡+1 𝑠′ 𝑝(𝑠′|𝑠)

𝑝 𝑿 = ෍

𝑠′∈𝐹𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒𝑠

𝛼 𝑁, 𝑠′

𝑝 𝑧𝑡 = 𝑠 𝑿 =
𝛼 𝑡, 𝑠 𝛽 𝑡, 𝑠

𝑃 𝐗



t

s

E-step:

𝛼 𝑡, 𝑠 = 𝑝 𝐱𝑡 𝑠 ෍

𝑠′

𝛼 𝑡 − 1, 𝑠′ 𝑝(𝑠|𝑠′)

𝛽 𝑡, 𝑠 = ෍

𝑠′

𝛽 𝑡 + 1, 𝑠′ 𝑝 𝐱𝑡+1 𝑠′ 𝑝(𝑠′|𝑠)

γ𝑠 𝑡 = 𝑝 𝑧𝑡 = 𝑠 𝑿 =
𝛼 𝑡, 𝑠 𝛽 𝑡, 𝑠

σ𝑠′∈𝐹𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒𝑠 𝛼 𝑁, 𝑠′

M-step:

Examples: Training HMMs using EM



EM for continuous latent variable

• Same equations, where sums over the latent variable 𝐙 

are simply replaced by integrals



Flashback: PLDA model for speaker verification
• Let each speech utterance be represented by speaker embedding vector 𝐱

• e.g. 512 dim. output of hidden layer of neural network trained for speaker classification

• We assume, that the distribution of the embeddings can be modeled as 

follows:

• We assume the same factorization as for GMM, but with continuous laten variable 𝐳

 𝑝 𝐳 = 𝓝 𝐳 𝝁, 𝚺𝑎𝑐  - distribution of speaker means

 𝑝 𝐱 𝐳 = 𝓝(𝐱|𝒛, 𝚺𝑤𝑐) - within class (channel) variability

• Observations (embeddings) are assumed to be generated as follows:
• Latent (speaker mean) vector 𝐳𝑠 is generated for each speaker s from gaussian 

distribution 𝑝 𝐳
• All embeddings of speaker s are generated

from Gaussian distribution 𝑝 𝐱si 𝐳s

𝐳1

x11 x12 x1N1
…

𝐳S

xS1 xS2 xSN1
…

…

𝐳𝑠

xSi


	Slide 30
	Slide 31: GMM - recapitulation
	Slide 32: Multivariate GMM - recapitulation
	Slide 33: BN for GMM – recapitulation
	Slide 34: BN for GMM – recapitulation II
	Slide 35: Training GMM –Viterbi training
	Slide 36: Training GMM –Viterbi training
	Slide 37: Training GMM –Viterbi training
	Slide 38: Training GMM –Viterbi training
	Slide 39: Training GMM – EM algorithm
	Slide 40: GMM to be learned
	Slide 41: EM algorithm
	Slide 42: EM algorithm
	Slide 43: EM algorithm
	Slide 44: EM algorithm
	Slide 45: EM algorithm
	Slide 46: Expectation maximization algorithm
	Slide 47: Expectation maximization algorithm
	Slide 48: Expectation maximization algorithm
	Slide 49: Expectation maximization algorithm
	Slide 50: EM for GMM
	Slide 51: EM for GMM – E-step
	Slide 52: EM for GMM – M-step
	Slide 53: EM for GMM –update of means
	Slide 54: Flashback: ML estimate for Gaussian
	Slide 55: EM for GMM –update of weights
	Slide 56: Factorization of the auxiliary function more formally
	Slide 57: Factorization over components
	Slide 58: Flashback: Example: BP for HMM
	Slide 59
	Slide 60: EM for continuous latent variable
	Slide 61: Flashback: PLDA model for speaker verification

