Bayesian Models in Machine Learning

Graphical Models and Inference

Lukas Burget

- BRNO FACULTY
r UNIVERSITY OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

BAYa lectures, October 2023

Bayesian Networks (BN)

 The graph corresponds to a particular
factorization of a joint probability distribution
over a set of random variables

* Nodes are random variables, but the graph
does not say what are the distributions of the
variables

« The graph represents a set of distributions that
conform to the factorization

» |tis recipe for building more complex models
out of simpler probability distributions

 Describes the generative process

— To generate a sample form the joint distribution,
sample variables for the nodes with no mcommq_arcs
first and then continue sampling variables conditioned
on already sampled values.

 Generally no closed form solutions for
Inferences in such models (see later)

plry,...,T7) =

play)pla)plas)plzy|ay, 2o, x3)p(as

1, x3)p(xelry)plar|ey, xs)

We follow (and use examples from) Chapter 8. of C.M.Bishop: Pattern Recognition and Machine Learning

Simple BN example

P(C,S,R, W) = P(C)P(S|C)P(R|C)P(W|S,R)

Cloudy P(C=T)

0.5

Sprinkler Rain
PS=T| 0 PR=T| O PR=F | 0)
0.1 T 0.8 T = 0.2 T
0.5 F 0.2 F 0.8 F

Wet grass

PW =T | S, R) ° Simple example with discrete binary
random variable

099 N - Distributions can be described by tables
0.9 T F with (conditional) probabilities

0.9 For " More practical examples will come later
0.0 F F Example from: Russel, Norvig: Al —A modern approach

Example 2:

p(G=1B=1
p(G=1B=1
p(G=1B=0
p(G=1|B=0
p(B=1) =
p(f'=1) =

and hence
p(F'=0) =

0.9
0.9

0.1

Am | out of fuel?

0.8
0.2
0.2
0.1

B

F

B- Battery (O=flat, 1=fully charged)
F - Fuel Tank (O=empty, 1=full)
G - Fuel Gauge Reading (0O=empty, 1=full)

Note that p(B) and p(F) are independent = p(B,F) = p(B)p(F)

Example 2: Am | out of fuel?

Let us make some simple
Inference with this probabilistic
model:

[Bayes Q

p(F=0/G=0) =

p(G =0|F = 0)p(F = 0)
p(G =0)

~ (0.257

where

p(GIF) =) p(G,BIF) =) p(GIB, F)p(B)
B B

Probability of an empty tank increased by observing ¢ = 0.

Example 2: Am | out of fuel?

Probability of an empty tank
reduced by observing B = 0.
This referred to as “explaining
away”.

p(G=0|B=0,F=0)p(f =0)
ZFE{O,l}p(G =0[B =0, F)p(F)
~ (.111

p(F =0|G =0,B =0)

F is not conditionally independent of B given G
P(F|G,B) + P(F|G)

P(F,B|G) = P(F|G)P(B|G)

Conditional independence

e q Is statistically independent of b =
P(a,b) = P(a)P(b)
e a Is (conditionally) independent of b given ¢ =

P(a|b,c) = P(alc)
or equivalently
P(a,b|c) = P(al|b,c)P(b|c)
= P(al|c)P(b|c)

Conditional independence

« Bayesian Networks allow us to see conditional independence
properties.

« Blue nodes corresponds to observed random variables and empty
nodes to latent (or hidden) random variables

a C b

O—@—0

P(a,b) # P(a)P(b)
P(a,blc) = P(alc)P(blc) But the opposite is true for:
[

Naturaly also
P(a|b,c) = P(alc)
P(bla,c) = P(b|c)

Conditional independence - proof

For example, Bayesian Network:
a & b

O—@—0

corresponds to factorization:
P(a,b,c) = P(b|c)P(c|la)P(a)

—

Using product rule P(alc) by
P(a,b,c) = P(a,b|c)P(c) Bayes rule
therefore
_ P(a,b,c) P(cla)P(blc)P(a) P(cla)P(a)
Pla,ble) =—pr3—= (o) = p 09
= P(alc)P(b|c)
But

P(a,b) = P(a) Z P(c|la)P(b|c) = P(a)P(bla) + P(a)P(b)

"Explaining away” effect

But the opposite is true in this case: . .

C

P(a,b,c) = P(a)P(b)P(c|a,b)
P(a,b) = Z P(a,b,c) = P(a)P(b) Z P(cla,b) = P(a)P(b)

—

1
but
P(a,b,c) P(b)P(a)P(c|a,b)

Pla.ble) = =55 PO

+ P(al|c)P(b|c)

d-separation

 Let A, B and C be disjoint subsets of nodes

* Any path from a node in Ato anode in B is
blocked by C if there are arrows on the path
meeting

— head-to-tail or tail-to-tail at a node from C, or

— head-to-head at a node not from C that also
does not have any descendants from C

 If all the path are blocked this way, A and B

are said to be d-separated by € which
Implies conditional independence:

p(4,B|C) = p(4|C) p(BI|C)

d-separation: Examples

All path between nodes x,, x, are blocked Path between nodes x4, x; IS
by observed nodes x4, x5 = unblocked by observing node x-, =
P(x1,x7|x4,x5) = P(x1[x4, x5) P(x7]%4, x5) P(xy,x3]x7) # P(xq[x7) P(x3]x7)

d-separation: Examples II.

C C C

W %4 w

e Sand R are not independent
- P(S,R) # P(S) P(R)

« ... but are conditionally independent given (observed) C
- P(S,R|C) = P(S|C) P(R|C)

— Therefore, also P(R|S,C) = PSRIC)

P(S|C)
* ... but become again dependent when observing also W
- P(S,R|C,W) # P(S|C,W) P(R|C,W)

= P(R|C)

Example of inference in BN

What is the probability that it rains given that sprinklerison P(R=T|S=T)?
We know how to evaluate joint distribution

P(C,S,R, W) = P(C)P(S|C)P(R|C)P(W|S,R)

Using Bayes rule:

P(R=TS=T) P(R=TS=T)
P(S=T) P(R=TS=T)+P(R=FS=T)

P(R=T|IS =T) =

To calculate P(R,S) we use sum rule to marginalize out (sum over all
values of) variables W and C =» brute force marginalization.

PR=TS=T)=P(C=T)P(S=T|C=T)P(R=T|C=T)P(W =T|R=T,S=T)
+P(C=T)P(S=T|C=T)P(R=T|C=T)P(W =F|[R=T,S=T)
+P(C=F)PS=T|IC=F)PR=T|C=F)P(W=T|IR=T,S=T)
+P(C=F)P(S=T|C=F)P(R=T|C=F)P(W =F|[R=T,S=T)

P(R =F,S=T) can bye calculated similarly

Brute force inference in BN

« What is the probability that it rains given that sprinklerison P(R=T|S=T)?

PR=TS=T)=P(C=T)P(S=T|C=T)P(R=T|C =T)P(W =T|R=T,S=T)
+P(C=T)P(S=T|IC=T)P(R=T|C=T)P(W =FIR=T.S=T)
+P(C=FPS=T|C=F)PR=T|C=F)P(W =T|R=T.S=T)

P(C=T) Pl =1 | o +P(C=F)P(S=T|C=F)P(R=T|C=F)P(W =FR=TS=T)
0.5 C 0.8 T =0.5-0.1-0.8-0.99
' +0.5-0.1-0.8-0.01
0.2 F +0.5-0.5- 0.2 - 0.99
+0.5-0.5-0.2-0.01 = 0.09
S R
P(R=FES=T) =P(C=T)P(S=T|C=T)P(R=F|C=T)P(W =T|[R=ES=T)
P(S=T | 0) +P(C=T)P(S=T|C=T)P(R=F|C=T)P(W =FIR=FS=T)
+P(C=F)P(S=T|C=F)P(R=F|C=F)P(W =T|[R=ES=T)
0.1 T +P(C=F)P(S=T|C=F)P(R=F|C=F)P(W =F[R=FS=T)
w ~=0.5-0.1-0.2-0.9
0.5 F +0.5-0.1-0.2-0.1
+0.5-0.5-0.8-0.9
PW=T|S R +0.5-0.5-0.8-0.1 = 0.21
0.99 T T
P(R=TIS = T) = PIR=T5=1) =2 g3
0.9 T F T T P(R=TS=T)+P(R=FS=T) 0.09+021

0.9 /B T
0.0 /B /B

Optimized inference in BN

* What is the probability of rain given a known state of the sprinkler P(R|S)?
« Using a more general and compact notation in terms of random variables:

P(R.S) = ZZ P(C) P(S|C) P(R|C) P(WIR, S)
c w

« This can be simplified using distributive property of multiplication:

P(R.S) = z P(C) P(S|C) P(R|C)
C

Summing over all
possible values of C

(i.e. True, False)

P(R,S) 2.c P(C) P(S|C) P(R|C) 2.c P(C) P(S|C) P(R|C)

P(R|S) = Y P(R,S) Sx2:P(C)PGSIC)P(RIC) %, P(C)P(SIC)

« To evaluate P(R|S), we need only 6 multiplication, 2 additions and 1 division
as compared to brute force 24 multiplications, 7 additions and 1 division

« We do not need table P(W|R, S) at all to infer P(R|S)

Example Il.

* Probability of rain given that it is cloudy, and sprinkler is on P(R|C, S)?

P(R,S,C) = z P(C) P(S|C) P(R|C) P(WIR,S)
w

= P(C) P(S|C) P(R|C)

P(R,S,C) P(RS,C P(C) P(S|C) P(RIC
PRIS, €)= IE(S,C))=ZR§3(R,S,)C)=P(C§);(S(|C|)) S PRI
C
S PR=T | C)
0.8 T
R 0.2 F
w

R and S are conditionally independent given C and therefore P(R|S,C) = P(R|C)
as analyzed on slide d-separation: Examples II.

Example Ill.

Probability of rain given being cloudy, sprinkler on and wet grass P(R|C,S,W)?
C

PR=T | ¢
0.8 T
S R o2 F

PW |s, B
099 T T

0.9 T F
0.9 F T

P(C,S,R,W) = P(C)P(S|IC)P(R|C)P(W|S,R)
0.0 F

P(R,S,C,W) P(R,S,C,W)
P(s,c,Ww) Y.P(R,S,C,W)
_ P(OPSIOPRICPWIS,R) P(RIOP(WI|S,R)
~ P(C) P(SIC) Xr P(RIC)P(WIS,R) Yz P(RIC)P(WIS,R)

P(R|S,C, W) =

As analyzed before, variables R and S are conditionally dependent given C and W/,
and therefore P(R|S, C,W) depends on all the other variables

Examples of Bayesian Networks

« Some practical examples of BN (see the following slides)
— Gaussian Mixture Model
« Simple probability density model with discrete latent variable
— Hidden Markov Model
« Dynamic BN (DBN) modeling distribution of sequences

— Probabilistic Linear Discriminant Analysis
« Example of BN with continuous latent variables

Gaussian Mixture Model (GMM)

- - p=-4.000*=1.00
- - p=0.00,0>=2.00
- - ;1:4.00,02:]_40
| — cmMm

> p(x)

g ~ 4 h
- ~ . P ~ .
H-HHH- IR R - HH —

p(x|n) = Z N (x; e, 02)7c
C

2> X

where

n = {T[c» He) O-cz}

ch=1
C

« We can see the sum above just as a function defining
the shape of the probability density function

* Or...

Multivariate GMM

p(x|n) = ECN(X; P, 2T

0.45 —
04—
0.35 —
0.3 — /
7
_ Wz 2
<026 R ez s
X L AT e
2 02 S EE T T] e
.2 — XA PE LTI 77
S /ity S
015 :::”;7;7//4’[ey EBLELL, 2
: - Cer q LA
o ',::5:2;:;;2’,;;;7/[1””' N
01— g, Nz
i, s
005 £ 77
Y 77
0 :::’.:::::'::.'::i"::::l':::':l""':. :.:. %
R
4 3 R R

where

n = {T[c: K, Zc}

T, =1
C

« We can see the sum above just as a function defining
the shape of the probability density function

* Or...

Bayesian Networks for GMM

p() =) p(IDP(2) =) (% e, 0)Cat(z = clm)

* Orwe can see it as a generative probabilistic model described by
Bayesian network with Categorical latent random variable z identifying
Gaussian distribution generating the observation x

Z

@ -

« Observations are assumed to be generated as follows:
— randomly select Gaussian component according probabilities P(z)
— generate observation x form the selected Gaussian distribution

« To evaluate p(x), we marginalize out z
 No close form solution for training parameters u., 62,

p(x,z) = p(x|2)P(z)

Bayesian Networks for GMM - |

* Multiple observations:

Z1 Z) - VAN Z;
or
X1 Xy i XN-1 i XN X
i=1..N

N
P(xbxz: ey XN» 215 22, "'ZN) — 1_[1p(xi|Zi)P(Zi)
1=

(Dynamic) BN for HMM

For each time frame, Hidden Markov Model moves from state j to state
k according to a transition probability a;, = p(k|j) and generates observation

x from probability distribution by (x) = p(x|k) associated with the entered
state. More details on this model for modeling sequences are in SUR class.

b, (x) b, (x) b3 (%)

In BN, z; nodes are not “HMM states”, these are random variables (one for

each frame) with values saying which state we are in for a particular frame i
Z Z3 IN-1 ZN

; X1 ; Xy XN-1 XN

N N
pOcs, Xy 21,72) = P | | _plailan) | | pala)
l= 1=

PLDA model for speaker verification

Let each speech utterance be represented by speaker embedding vector x
* e.g. 512 dim. output of hidden layer of neural network trained for speaker classification
We assume, that the distribution of the embeddings can be modeled as
follows:
We assume the same factorization as for GMM, but with continuous laten variable z
p(z) = N(z|u, Z4.) - distribution of speaker means
p(x|z) = N(X|z,X,,.) - within class (channel) variability

Observations (embeddings) are assumed to be generated as follows:

« Latent (speaker mean) vector z, is generated for each speaker S from gaussian
distribution p(z) -

 All embeddings of speaker s are generated \
from Gaussian distribution p(x4;|zs) Zg

Z Zg

X1N, Xg1 Xs2

PLDA model for speaker verification |

Z

Same speaker hypothesis model:
p(Xq1, X2 |H) = fP(X1|Z)P(X2|Z)p(Z)dZ

Different speaker hypothesis model:
(X1, x| Hy) = p(x1)p(X3)
= fP(X1|Z1)P(Z1)dz1fP(X2|ZZ)P(Zz)dzz

Probability that x,, x, comes from the same speaker:
p(Xq, X, |H) P (H)
p(Hs|Xq,X5) =
p (X1, X2 |H)P(Hs) + p(Xq, X2 | H) P(Hy)

where P(H,) = 1 — P(Hy) is prior probability same speaker hypothesis

p(xl) X7 |‘7-[S)

Usually, log likelihood ratio verification scoreisused s = lo
V: 09 M AD

* More positive more likely x,,x, are from the same speaker

« Undirected graphical model

Markov Random Fields

» Directly describe the conditional independence property
— Onthe example P(xl,X4|xZ,x3) = P(xlle, x3) P(x4|x2,X3)

- x,and x, are independent given x, and x5 as there is no path
from x, to x, not leading through either x, or xs.

Subsets of nodes where all nodes are
connected with each other are called
cligues (see green and blue examples)

The outline in blue is Maximal clique,
where no more nodes can be added

When factorizing distribution described
by MRF, variables not

connected by link must not appear in the
same factor = lets make factors
corresponding to (Maximal) cliques.

MRF - factorization

« Joint probability distribution over all random variables x can be
expressed as normalized product of potential functions ¥ .(x.),
which are positive valued functions of subsets of variables x.
corresponding to maximal cliques C

 Itis useful to express the potential functions in terms of energy
functions E (x.) =» sum of E(x.) terms instead of product of y-(x,)
terms.

1
pe0 =~ | [weexo

c 7 //\
2= | [weexo) />>

Ye(x,) = expl—E(x0)}

For our example:

1
P(x1,x3,%3,X4) = 7 = W1,2,3(%1, X2, X3)15 3 4 (2, X3, %4) @ /954/

= Zexp{ E(xl,xz,xg) E(XZ,X3,X4)}

Checking the conditional
Independence

P(x1,x3,Xx3,X4) = Elp1,2,3(x1,x2,x3)¢2,3,4(x2,x3,x4)

1
P(x3,x3) = Z Elp1,2,3(x1,xz,x3)lp2,314(x2,x3,x4)

X1,X4
P(Xl, X2, X3, X4)
P(x;, x3)

1
7 1/)1,2,3 (x1; X2, x3)l/)2,3,4 (x2; X3, x4)

N)
GD/ @ 2y x4 %¢1,2,3 (1, %2, X3)W2,3.4 (X2, X3, X4)

P(xq,x4]x3,x3) =

Y123 (x1, %2, x3) Y2,3.4(x2, X3, %4)
/ Dixy W1,2,3(x1, X2, X3) 2ix, W2,3,4(%2, X3, X4)
@ C

X4
\ J)= P(x11x5, X3) P (4127, %3)

BN vs MRF

Some of the probabillity distributions that can be represented using
Bayesian Network cannot be fully represented as Markov Random
Field and vice versa

But often we can convert one to the other — see next side

We mainly introduce MRF (and later Factor Graph) to present more
general class of inference algorithm (see later)

MRF whose statistical BN whose (explain away)
Independence property statistical independence property
cannot be represented by BN cannot be represented by MRF
a b
)=

(D)—(n |

Example: HMM as MRF

7 =
~1/J~(Zz:Z1) = p(2;1|z1)p(21)

Y(zy, zi-1) = p(zilzi-1)
Y(xi,zi) = p(xilz)

We recover the factorization for HMM:

N N
pOct, vt 21 20 2) = P | | plalao) | | el
l= 1=

Flashback: (Dynamic) BN for HMM

* For each time frame, Hidden Markov Model moves from state j to state
k according to a transition probability a;, = p(k|j) and generates observation

x from probability distribution by (x) = p(x|k) associated with the entered
state. More details on this model for modeling sequences are in SUR class.

b, (%) b, (%) b3 (x)

* In BN, z; nodes are not “HMM states”, these are random variables (one for

each frame) with values saying which state we are in for a particular frame i
Z1 Z; IN-1 ZN

; X1 ; Xy XN-1 XN

N N
pOcs, Xy 21,72) = P | | _plailan) | | pala)
1= 1=

Inference on a chain

* Now, we will be interested in carrying out efficient inference in MRFs
« As a first example, we consider simple MRF with chain topology

X1 X2 XN-1

1
P(x) = P(xq,x2, .., Xy) = E¢1,2(x1:x2)1/)2,3(x2;x3) ---1/JN—1,N(xN—1:xN)

« Letall N variables x; are discrete with K states
- Each y; ;(x;,x;) is represented by K x K table = (N — 1)K? parameters

« We would like to find marginal probability of variable x,,

P(xn>—7 D). ZP(x)

Xn—1 Xn+1

Brute force marginalization has complexity 0(K™)

Inference on a chain Il.

P(x")_z 7 7 7 Y1201, X2) P2 3(x2, %3) . Yy v (Xn—1, XN)

Xn—-1 Xn+1 XN

.]]]
P(x,) = Z 2 ¢n—1,n(xn—1»xn) 2 l/)2,3(x2,x3) lz 1,01,2(x1,x2)]

Xn—1
Z l/)n,n+1(xn: Xnt1) o Z l/}N—l,N(xN—lr XN)]]
[Xn+1 | XN

Complexity can be reduced to O(NK?) by rearranging the sums using
distributive property of multiplication.

Inference on a chain Ill.

a({cn)

7~

a’({%)

a(gcz)

P(x,) = z 1/Jn—1,n(xn—1»xn) ... z Yy 3 (x2,x3) lz Y12 (x1,x2)[] -

z lpn,n+1(xn; Xn41) - z 1/JN—1,N(XN—1;XN)]

B(xn—1)

N -

B (xn)

: 1
Recursive formulas: P(x,) = Ea(xn)ﬁ(xn)

a(x,) = 2 lpn—l,n(xn—l:xn Ja(xy—1)

Xn—-1

BG) =) Ynnra G 1 JBCons)

a(x1) = Blxy) =1

Inference on a chain V.

« Marginals for ALL variables can be obtained at once with the
same O(NK?) complexity, by recursively calculating all a(x,,) and
B (x,,) for all the nodes (i.e. for all n = 1.. N) and then calculating

1
P(xn) = Ea(xn),g(xn)

« Vectors a(x,) and B(x,) can be thought as messages passed
from node to node. We will use this abstraction later

X1 Xn-1 Xn Xn+1 XN
O OO0 O
a(xn—l) a(xn) ,B(xn) ,B(xn+1)

« Same inference could be done for continuous random variables
just by replacing sums with integrals (if the integrals are tractable).

Factor graphs (FG)

« Bipartite graph, with variable nodes x; connected only to factor
nodes f; and vice versa.

« Like MRF, but with explicitly specified factors (or potential functions)

Peo =] [A

L1 L2 I3

fa- fb fc fd

1
P(X) — P(x11x21x3) = Efa(xlixZ)fb(xler)fc(xZ'xB)fd(XS)

MRF to FG

L1 Lo 1 Lo L £
f fa
fo
L3 I3 I
1 1 1
p(x) = E P(xq,x2,x3) p(x) = E f (x4, %2, %3) p(x) = Efa(x1»x2»x3)fb(x1:x2)
« MRF can be converted to FG . Ja 2

« Since FG is more explicate, different factor
graphs can correspond to the same MRF

fo

1
p(x) = Efa(xpxz)fb (x1, %3) fe (X2, %3) T3

fe

BN to FG

« BN can be also converted to FG, but such graph does not
necessarily describe all the conditional independence properties
* e.g. the explain away property of the BN from this example is
not directly seen from the resulting factor graphs
« Again, different FGs can be constructed for the same BN to
capturing more or less details about the original factorization.

o) fulxy) = p(xy)
P(x) =)P (x)PCrslx, %2) (e)p(e)p (s [x1, x2) f”((ff,)x:, ,’35‘) p(xs |1, %)

L Lo 1 Lo £q L9

FG with Tree topology

Efficient inference algorithms exists for FG with tree topology
Even if the original BN or MRF is not tree, it can be often
represented by FG with tree topology

T L2

E.g. FG for HMM is tree

Belief Propagation

« Also known as sum-product message passing algorithm
« Algorithm for exact inference in FG (or MRF) with (poly)tree topology

« We already know that joint probability

1
PG = Py a) = 7 | [i)

X, - Set of variables nodes that are
neighbors of factor node f;

« We are interested in obtaining the marginal probability of some x,,

We will assume only

P(x,) = 2 P(x) < discrete variables. For
x\ X, continuous, sum would
be replaced by integral

x\x, - setofall variables excluding variable x,,

Belief Propagation - algorithm

The marginal probability for x,, can be efficiently Hayapy (Ya) =1

calculated as

1
P(x,) = 7 1_[Mfsexn(xn)

sene(xy)
where ne(x,,) is a set of factor nodes neighboring
with variable node x, and pg _,, (x;) is so-called
message send from factor node f; to variable node
Xn. Like P(x,), each uy _,, (x,) is function of
variable x,, and can be recursively evaluated as

Mf,—xq (x1)

B « We choose x,, as a tree root
Hfymrn (Xn) = z fs(xs) 1_[Ham=fsm) o \We start from the leaves

o menelv Hrox () = FX) pp() = 1
where x; Is set of variables that are neighbors of — —_—
factor node £, ne(f,)\x, is set of variable nodes ._O O_. ______
neighboring with factor f, node excluding x,, and f X X f
Uy, —f.(xyy) IS MeEssage send from variable node « Once a node obtains messages
x, to factor node f;. from all its children, it sends

message to its parent.
M= fs(em) = K1 (Xm) « When root obtains all the

lene(xm)\fs messages, P(x,,) is evaluated

Belief Propagation — derivation |

Let’s consider node x,, as a root node

P =2 (£ =5 [] FGaxa

sene(xyn)

ne(x,) - set of factor nodes that are neighbors
of variable node x,,

X5 - variables in the subtree connected
to x,, via the factor node f;

F.(x,, X,) - product of all the factors in the
group associated with factor f;

For our example:
1
P(x) = Efa(xp X2, %3) fp (X2, X4, X5) fe (X5)fg (x2) fe(x3) fa(xq, x6)

Fa(xlv,Xla) Fa(x1,X1a)

Belief Propagation — derivation |l
PCe) =) P(X)

X\ Xn

=23] Atk

x\X,, SEne(x,)

= [D At

sene(xn) Xns

sene(x,)

Mfaﬁxl (xl)
fe

X6

Product of all the factors in the subtree
connected to x, through factor node f;
with all the variables other than x,,

For our example: marginalized (summed) out

p(x;) = ZZ zF (%1, X14) Fa(x1,X14)

X6
Factors in F,(xq, X14) only Z r z
: X1, X Fi(xq, X
depend on variables a(*1, X10) a(x1,X14)
X2,X3,X4,X5

Xp,X3,X4, X5

Belief Propagation — derivation Il

Hfo—x, (xn) = Z Fs(xp, Xns)

XTLS
= 2 fS(XS) l_[Gm (xm; Xsm)
Xns mene(fs)\xn
= 2 f:g(Xs) 1_[Z Gm(xmixsm)
Mml) Xs\Xn xmene(fs)\xn Xom
¢ sV CO NN [TSI
X6 Xs\Xn mene(fs)\xn

X,,s - variables in the subtree connected to x,, via the factor node f;
Xm - variables in the subtree connected to f; via the variable node x,, (excluding x,,)

Hfa—>x1(x1) = z fa(x1,x2,x3) 7 fb(x2»x4:x5)fe(x5)fg(x2) fe(x3)
X2,X3 X4,X5 Gy (%2, Xq2) G3(x3,Xqa3)

My f o (¥2) | Hxgopq(x3)

Belief Propagation — derivation 1V

X4 .ufb—>x2 (Xz)
M= fo(m) = Z G (X Xsm)

Xsm

z 1_[Fy (¢ Xmt)

Xsm l€Ene(xm)\fs

= Z Fy (¢ Xmt)

lene(xm)\fs Xmi

— .ufl—>xm (xm)
lene(xm)\fs

#x2—>fa(x2) = lz fb(xz;xzpvxs)fe(xs)] fg(xz)
Lxa,xs Fp(x2,X2p) Fg(x2,X2g)

ﬂfb—>x2 (xZ) H’fg—>x2 (.X'z)

-

Belief Propagation - algorithm

The marginal probability for x,, can be efficiently
calculated as

1
P(x,) = 7 1_[Mfsexn(xn)

sene(xy)
where ne(x,,) is a set of factor nodes neighboring
with variable node x, and pg _,, (x;) is so-called
message send from factor node f; to variable node
Xn. Like P(x,), each uy _,, (x,) is function of
variable x,, and can be recursively evaluated as

B « We choose x,, as a tree root
Hfymrn (Xn) = z fs(xs) 1_[Ham=fsm) o \We start from the leaves

wevem o menelin Hpox () = () e () = 1
where x; Is set of variables that are neighbors of — —_—
factor node £, ne(f,)\x, is set of variable nodes ._O O_. ______
neighboring with factor f; node excluding x,, and f X X f
Uy, —f.(xyy) IS MeEssage send from variable node « Once a node obtains messages
x, to factor node f;. from all its children, it sends

message to its parent.
M= fs(em) = K1 (Xm) « When root obtains all the

lene(xm)\fs messages, P(x,,) is evaluated

Belief Propagation - algorithm

The marginal probability for x,, can be efficiently
calculated as

1
P(x,) = 7 1_[Mfsexn(xn)

sene(xy)
where ne(x,,) is a set of factor nodes neighboring
with variable node x, and pg _,, (x;) is so-called
message send from factor node f; to variable node
Xn. Like P(x,), each uy _,, (x,) is function of
variable x,, and can be recursively evaluated as

B « We choose x,, as a tree root
Hfymrn (Xn) = z fs(xs) 1_[Ham=fsm) o \We start from the leaves

wevem o menelin Hpox () = () e () = 1
where x; Is set of variables that are neighbors of — —_—
factor node £, ne(f,)\x, is set of variable nodes ._O O_. ______
neighboring with factor f; node excluding x,, and f X X f
Uy, —f.(xyy) IS MeEssage send from variable node « Once a node obtains messages
x, to factor node f;. from all its children, it sends

message to its parent.
M= fs(em) = K1 (Xm) « When root obtains all the

lene(xm)\fs messages, P(x,,) is evaluated

Belief Propagatlon algorithm

The marginal probability for x,, can be efficiently
calculated as

1
P(x,) = 7 1_[Mfsexn(xn)

sene(xy)
where ne(x,,) is a set of factor nodes neighboring
with variable node x, and pg _,, (x;) is so-called
message send from factor node f; to variable node
Xn. Like P(x,), each uy _,, (x,) is function of
variable x,, and can be recursively evaluated as

M.X4_—)fb (x4) =1

B « We choose x,, as a tree root
Hfymrn (Xn) = z fs(xs) 1_[Ham=fsm) o \We start from the leaves

wevem o menelin Hpox () = () e () = 1
where x; Is set of variables that are neighbors of — —_—
factor node £, ne(f,)\x, is set of variable nodes ._O O_. ______
neighboring with factor f; node excluding x,, and f X X f
Uy, —f.(xyy) IS MeEssage send from variable node « Once a node obtains messages
x, to factor node f;. from all its children, it sends

message to its parent.
Hom=fsGem) =] Hf 1o (Xm) « When root obtains all the

lene(xm)\fs messages, P(x,,) is evaluated

Belief Propagatlon algorithm

The marginal probability for x,, can be efficiently
calculated as

1
P(x,) = 7 1_[Mfsexn(xn)

sene(xy)
where ne(x,,) is a set of factor nodes neighboring
with variable node x, and pg _,, (x;) is so-called
message send from factor node f; to variable node
Xn. Like P(x,), each uy _,, (x,) is function of
variable x,, and can be recursively evaluated as

M.X4_—)fb (x4) =1

fo—>x;

B « We choose x,, as a tree root
Hfymrn (Xn) = z fs(xs) 1_[Ham=fsm) o \We start from the leaves

wevem o menelin Hpox () = () e () = 1
where x; Is set of variables that are neighbors of — —_—
factor node £, ne(f,)\x, is set of variable nodes ._O O_. ______
neighboring with factor f; node excluding x,, and f X X f
Uy, —f.(xyy) IS MeEssage send from variable node « Once a node obtains messages
x, to factor node f;. from all its children, it sends

message to its parent.
Hom=fsGem) =] Hf 1o (Xm) « When root obtains all the

lene(xm)\fs messages, P(x,,) is evaluated

Belief Propagatlon algorithm

The marginal probability for x,, can be efficiently
calculated as

1
P(x,) = 7 1_[Mfsexn(xn)

sene(xy)
where ne(x,,) is a set of factor nodes neighboring
with variable node x, and pg _,, (x;) is so-called
message send from factor node f; to variable node
Xn. Like P(x,), each uy _,, (x,) is function of
variable x,, and can be recursively evaluated as

M.X4_—)fb (x4) =1

MxZﬁfa(xZ)

fo—™> %1 %

fo—>x;

B « We choose x,, as a tree root
Hfymrn (Xn) = z fs(xs) 1_[Ham=fsm) o \We start from the leaves

wevem o menelin Hpox () = () e () = 1
where x; Is set of variables that are neighbors of — —_—
factor node £, ne(f,)\x, is set of variable nodes ._O O_. ______
neighboring with factor f; node excluding x,, and f X X f
Uy, —f.(xyy) IS MeEssage send from variable node « Once a node obtains messages
x, to factor node f;. from all its children, it sends

message to its parent.
Hom=fsGem) =] Hf 1o (Xm) « When root obtains all the

lene(xm)\fs messages, P(x,,) is evaluated

BP solving all marginals at once

« Once root obtains all the messages, we can keep sending messages from the
root towards to the leaves
« This way, all variable nodes obtain messages from the neighboring factor nodes
= we can efficiently calculate marginals P(x,,) for all the variables
« It takes only 2x more time than calculating marginal for one node
=» the same computational complexity
It does not matter which node is selected as the root

BP solving all marginals at once

« Once root obtains all the messages, we can keep sending messages from the
root towards to the leaves
« This way, all variable nodes obtain messages from the neighboring factor nodes
= we can efficiently calculate marginals P(x,,) for all the variables
« It takes only 2x more time than calculating marginal for one node
=» the same computational complexity
It does not matter which node is selected as the root

BP solving all marginals at once

« Once root obtains all the messages, we can keep sending messages from the
root towards to the leaves
« This way, all variable nodes obtain messages from the neighboring factor nodes
= we can efficiently calculate marginals P(x,,) for all the variables
« It takes only 2x more time than calculating marginal for one node
=» the same computational complexity
It does not matter which node is selected as the root

BP solving all marginals at once

« Once root obtains all the messages, we can keep sending messages from the
root towards to the leaves
« This way, all variable nodes obtain messages from the neighboring factor nodes
= we can efficiently calculate marginals P(x,,) for all the variables
« It takes only 2x more time than calculating marginal for one node
=» the same computational complexity
It does not matter which node is selected as the root

BP solving all marginals at once

« Once root obtains all the messages, we can keep sending messages from the
root towards to the leaves
« This way, all variable nodes obtain messages from the neighboring factor nodes
= we can efficiently calculate marginals P(x,,) for all the variables
« It takes only 2x more time than calculating marginal for one node
=» the same computational complexity
It does not matter which node is selected as the root

BP solving all marginals at once

« Once root obtains all the messages, we can keep sending messages from the
root towards to the leaves
« This way, all variable nodes obtain messages from the neighboring factor nodes
= we can efficiently calculate marginals P(x,,) for all the variables
« It takes only 2x more time than calculating marginal for one node
=» the same computational complexity
It does not matter which node is selected as the root

BP with observed variables

So far, we have assumed that all the variables are unobserved.
We can also calculate marginal probability of any x,, given a set observed of
variables x:

PUnlxe) % Pl X0) =) P(®)

X\{anXC}

In our example with 6 random variables, we may wish to evaluate:

P(x1|x3»x4) X P(x1;x3;x4) = ;: ;: y P(x1;x2;x3;x4,x5,x6)

X2 X5 Xg

where the observed variables x;, x, have known fixed values.

We solve the same problem as before for marginals P(x,,), except that we
do not sum over the observed variables = We can use the same efficient
BP algorithm except that the sums are removed for the observed variables
and the factors are evaluated with the given values of the observed variables
Make sure that the resulting P(x4|x3, x,) IS properly normalized distribution!

I\/Iargmal distribution of set of variables

We can also easily calculate joint marginal distribution for subset of variables x belonging
to one factor f; (e.g. P(xq, x,, x3) in our example):

1
PO = 2 fik) | | memn G
i€ne(fs)
» We cannot easily obtain joint marginal distribution for variables x. not belonging to one
factor (e.g. P(x4, x5, x¢) in our example).
« But we can use BP to efficiently evaluate such distribution for particular (observed) values
of the variables x. (i.e. we can evaluate P (x4, x5, x¢) for particular given values of
X4, X5, Xg).
» Here, we require that the factor graph is created from a Bayesian Network = the factors
corresponds to well normalized distributions and therefore Z = 1
« See the slide “Example: HMM as MRF” as an example

P =) Po= > | [£&x0

x\Xc x\Xc S

« BP algorithm can be used to efficiently evaluate the right
hand side for fixed values of x.. Again, we do not sum
over possible values of x¢ in BP. Instead, we directly use the
given fixed values of xc, when evaluating the factors.

« Choosing any x, € x¢ as the “root” for BP, we can calculate
P(xc) as the product of the incoming messages evaluated at x,,

PO = || g, G

sene(xy)

Most likely values

Belief Propagation allows us to calculate the marginals p(x,,), so for each
variable x,,, we can find the value that is individually the most probable
X = arg max p(x,)
Xn
Instead, we may want to know what are values of all the variables
X = [xq, x5, ... x5] that have jointly the largest probability
x"M3 = arg max p(x)
X
An example where individually and jointly most probable values are different:

— Individually, the most likely values are x =1 and y = 1 as P(x) = P(y) = 0.38 are the largest
marginal probabilities

— Butitisimpossiblethatx =1 andy =1 atthe sametimeas P(x =1,y=1)=0
— Jointly, the most likely values are x =4 and y = 4 as P(x = 4,y = 4) = 0.24 is the largest joint

probability
Plx,y)|x=1|x=2|x=3|x=4 P(y)
y=110.0 0.19 |(0.19 |0.0 0.38
y=210.19 |0.0 0.0 0.0 0.19
y=31(0.19 |0.0 0.0 0.0 0.19
y =4 10.0 0.0 0.0 0.24 0.24
P(x) 10.38 [0.19 (0.19 |0.24

Max-product algorithm

Sum-product algorithm (or Belief Propagation) allowed us to find marginals

Pa)= Y PO =5 | [

x\Xn xX\Xn, S
efficiently by re-arranging the order of sums and products using the distributive
property of multiplication over addition: ab + ac = a(b + ¢)

Similar distributive property holds also max operator: max(ab, ac) = a max(b, c¢)
which allows for the same efficient calculation of the largest joint probability

P(x™Max) = max P(x) = m)?xl_[fs(xs)

We use the same BP where sum is replaced with max in the messages from
factor nodes to variable nodes

Hfo—x, (xp) =)En\%cx fs(Xs) 1_[Mo, fs (Xm)
o mene(fs)\xn
The solution is the maximum of the product of the messages arriving to the
root node evaluated for the possible values of the “root” variable x,,

P(x™M3X) = max 1_[Wt (Xn)
Xn

sene(xy)

Max-product algorithm |

The solution on the previous slide is the (unnormalized unless)
maximum of the joint distribution P(x™2%)

However, we usually need the most likely values

xMaX = arg max P(x)
X

Solution: whenever max operator is applied during the max-product algorithm,
remember the variable values giving the maximum

— When calculating message from factor node to variable node

Hf—x, (xn) =)En\ay‘cx fs(Xs) 1_[K= fo (xXm)
o mene(fs)\xn
for each x,, remember the most likely values of the other factor’s variables x,\x,,

e = agmaxfic) [| sl
Xs\tn mene(fs)\xn

— When calculating

P(x™3%) = max 1_[.ufs—>xn(xn)
* sene(xy,)
obtain also the most likely setting of the “root” variable

xrrzqax = arg max 1_[I’tfs—”fn(xn)

X
n sene(xy)

Max-product algorithm - backtracking

* Now, we have the most likely value for the root x;'#*

« We back-propagate x;;*®* to each neighboring factor node f;
- Here, we evaluate the stored ¢y, (x,,) for x3'®, which gives us the most likely
values of the other factor’s variables x \x,

« We back-propagate these new “most likely values” to the next factor nodes f;
further away from the root to evaluate their functions ¢, (x,)

« This is repeated until we obtain the most likely values for all the variables x™a*

Example: BP for HMM

» To evaluation an HMM, given a sequence of observations X =
[x1, %5 ..., xy], we need to infer

p(X) =p(xq, x5 ..., xy) = S: S: y p(X1, X3 o) XN, 21, Z3 vy Zy)
ZN

Z1 Zp

« To train an HMM using an EM algorithm (see next lesson), for every t = 1.. N,
we need to infer
p(z¢, X) _ Zzl ZZZ ---Zzt_l ZzHl "'ZZN (X1, X3 o) XN, Z1, Z2 vy Z)

z.|X) =
Pl =700 p(X)
Forward-backward algorithm
s are state ids (i.e., possible values of z;)
b NI a(es) = pels)) alt—1,50p(sls)
~
Bts) =) Bt + 1,5 (el I (s']s)
S,
vl) P = D als)
1 2 N-1 N s'eFinalStates

a(t,s)B(t,s)
P(X)

p(z; = s|X) =

(Dynamlc) BN for HMM - flashback

For each time frame, Hidden Markov Model moves from state j to state
k according to a transition probability a;, = p(k|j) and generates observation

x from probability distribution by (x) = p(xlk) associated with the entered
state. More details on this model for modeling sequences are in SUR class.

b, (%) b, (%) b3 (x)

* In BN, z; nodes are not “HMM states”, these are random variables (one for

each frame) with values saying which state we are in for a particular frame i
Z1 Z; IN-1 N

N N
pCcs, e, 21,72 2) = P | |l | | pala)
l= 1=

Inference In non-tree graphs

e Junction tree algorithm
— Exact inference in general graphs (not only trees or polytrees)

— Belief propagation on a modified graph where cycles are eliminated by
merging nodes into single nodes

— Usually too computationally expensive and impractical

* Loopy Belief Propagation
— Initialize Sum-Product algorithm so that each node has already
“messages from all neighbors”

» these are only randomly initialized vectors, not real messages sent from the
neighbors

— Start sending messages like in the Sum-Product algorithm
» Choose some message passing schedule

« Send messages from pending nodes that received new messages and
updated their states

— Approximate inference, no guarantee to converge

	Slide 59
	Slide 60: Bayesian Networks (BN)
	Slide 61: Simple BN example
	Slide 62: Example 2: Am I out of fuel?
	Slide 63: Example 2: Am I out of fuel?
	Slide 64: Example 2: Am I out of fuel?
	Slide 65: Conditional independence
	Slide 66: Conditional independence
	Slide 67: Conditional independence - proof
	Slide 68: “Explaining away” effect
	Slide 69: d-separation
	Slide 70: d-separation: Examples
	Slide 71: d-separation: Examples II.
	Slide 72: Example of inference in BN
	Slide 73: Brute force inference in BN
	Slide 74: Optimized inference in BN
	Slide 75: Example II.
	Slide 76: Example III.
	Slide 77: Examples of Bayesian Networks
	Slide 78: Gaussian Mixture Model (GMM)
	Slide 79: Multivariate GMM
	Slide 80: Bayesian Networks for GMM
	Slide 81: Bayesian Networks for GMM - II
	Slide 82: (Dynamic) BN for HMM
	Slide 83: PLDA model for speaker verification
	Slide 84: PLDA model for speaker verification II
	Slide 85: Markov Random Fields
	Slide 86: MRF - factorization
	Slide 87: Checking the conditional independence
	Slide 88: BN vs MRF
	Slide 89: Example: HMM as MRF
	Slide 90: Flashback: (Dynamic) BN for HMM
	Slide 91: Inference on a chain
	Slide 92: Inference on a chain II.
	Slide 93: Inference on a chain III.
	Slide 94: Inference on a chain IV.
	Slide 95: Factor graphs (FG)
	Slide 96: MRF to FG
	Slide 97: BN to FG
	Slide 98: FG with Tree topology
	Slide 99: Belief Propagation
	Slide 100
	Slide 101: Belief Propagation – derivation I
	Slide 102: Belief Propagation – derivation II
	Slide 103: Belief Propagation – derivation III
	Slide 104: Belief Propagation – derivation IV
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110: BP solving all marginals at once
	Slide 111: BP solving all marginals at once
	Slide 112: BP solving all marginals at once
	Slide 113: BP solving all marginals at once
	Slide 114: BP solving all marginals at once
	Slide 115: BP solving all marginals at once
	Slide 116: BP with observed variables
	Slide 117: Marginal distribution of set of variables
	Slide 118: Most likely values
	Slide 119: Max-product algorithm
	Slide 120: Max-product algorithm II
	Slide 121: Max-product algorithm - backtracking
	Slide 122: Example: BP for HMM
	Slide 123: (Dynamic) BN for HMM - flashback
	Slide 124: Inference in non-tree graphs

