{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# BAYa class Assignment 2023\n", "\n", "In this assignment, your task will be to implement and analyze inference for the Probabilistic linear discriminant analysis (PLDA) model. This model was described in the corresponding [slides from BAYa class](http://www.fit.vutbr.cz/study/courses/BAYa/public/slides/2-Graphical%20Models.pdf). You will accomplish this task by completing this Jupyter Notebook, which already comes with a code generating the training data and some plotting functions for presenting the results. If you do not have any experience with Jupyter Notebook, the easiest way to start is to install Anaconda3, run Jupyter Notebook, and open this notebook downloaded from [BAYa_Assignment2023.ipynb](http://www.fit.vutbr.cz/study/courses/BAYa/public/notebooks/BAYa_Assignment2023.ipynb). You can also find some inspiration and pieces of code to reuse in the other [Jupyter Notebooks provided for this class](http://www.fit.vutbr.cz/study/courses/BAYa/public/notebooks).\n", "\n", "The Notebook is organized as follows:\n", "1. First comes a cell with a code of functions that will be later used for presenting the results and the learned models. You can skip this cell first as the use of the functions will be demonstrated later.\n", "2. Next comes a code that \"handcrafts\" some parameters of the PLDA model and implements the generative process assumed by the PLDA model. The code generates some artificial training data that you will use for PLDA model training. Please carefully read this code and the comments around it.\n", "3. Through this notebook, there are cells with instructions to fill in your implementations around the PLDA model. There are also fields with other tasks to accomplish and questions to answer. \n", "\n", "**Do not edit the code in the following cell for generating and presenting the training data!**\n", " $$\n", " \\DeclareMathOperator{\\E}{\\mathbb{E}}\n", "\\DeclareMathOperator{\\aalpha}{\\boldsymbol{\\alpha}}\n", "\\DeclareMathOperator{\\bbeta}{\\boldsymbol{\\beta}}\n", "\\DeclareMathOperator{\\NN}{\\mathbf{N}}\n", "\\DeclareMathOperator{\\ppi}{\\boldsymbol{\\pi}}\n", "\\DeclareMathOperator{\\mmu}{\\boldsymbol{\\mu}}\n", "\\DeclareMathOperator{\\SSigma}{\\boldsymbol{\\Sigma}}\n", "\\DeclareMathOperator{\\llambda}{\\boldsymbol{\\lambda}}\n", "\\DeclareMathOperator{\\diff}{\\mathop{}\\!\\mathrm{d}}\n", "\\DeclareMathOperator{\\zz}{\\mathbf{z}}\n", "\\DeclareMathOperator{\\ZZ}{\\mathbf{Z}}\n", "\\DeclareMathOperator{\\XX}{\\mathbf{X}}\n", "\\DeclareMathOperator{\\xx}{\\mathbf{x}}\n", "\\DeclareMathOperator{\\YY}{\\mathbf{Y}}\n", "\\DeclareMathOperator{\\NormalGamma}{\\mathcal{NG}}\n", "\\DeclareMathOperator{\\Tr}{Tr}\n", "$$" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Run this code! But there is no need to pay much attention to this cell at the first pass through the notebook\n", "\n", "%matplotlib inline \n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import scipy.stats as sps\n", "\n", "\n", "def rand_gauss(n, mu, cov):\n", " \"\"\"\n", " Sample n data points from multivariate Gaussian distribution with mean mu and covariance cov\n", " \"\"\"\n", " return np.atleast_2d(sps.multivariate_normal.rvs(mu, cov, n))\n", "\n", "def logpdf_gauss(x, mu, cov):\n", " \"\"\"\n", " Evaluation of the log probability density function for multivariate Gaussian with mean mu and covariance cov\n", " \"\"\"\n", " return sps.multivariate_normal.logpdf(x, mu, cov)\n", " \n", "def gellipse(mu, cov, n=100, *args, **kwargs):\n", " \"\"\"\n", " Contour plot of 2D Multivariate Gaussian distribution.\n", "\n", " gellipse(mu, cov, n) plots ellipse given by mean vector MU and\n", " covariance matrix COV. Ellipse is plotted using N (default is 100)\n", " points. Additional parameters can specify various line types and\n", " properties. See description of matplotlib.pyplot.plot for more details.\n", " \"\"\"\n", " if mu.shape != (2,) or cov.shape != (2, 2):\n", " raise RuntimeError('mu must be a two element vector and cov must be 2 x 2 matrix')\n", "\n", " d, v = np.linalg.eigh(4 * cov)\n", " d = np.diag(d)\n", " t = np.linspace(0, 2 * np.pi, n)\n", " x = v @ np.sign(d) @ np.sqrt(np.abs(d)) @ np.array([np.cos(t), np.sin(t)]) + mu[:,np.newaxis]\n", " return plt.plot(x[0], x[1], *args, **kwargs)\n", "\n", "def probit(a):\n", " from scipy.special import erfinv\n", " return np.sqrt(2.0) * erfinv(2.0 * a - 1.0)\n", "\n", "def plot_det(tar, non, label=\"\",\n", " axis = [0.2, 40, 0.2, 80],\n", " xticks = [0.2, 0.5, 1, 2, 5, 10, 20, 35, 50, 65, 80],\n", " yticks = [0.2, 0.5, 1, 2, 5, 10, 20, 35, 50, 65, 80],\n", " **kwargs):\n", " \"\"\"\n", " plots DET curve \n", " \"\"\"\n", " tar = np.array(tar)\n", " non = np.array(non)\n", " ntrue=len(tar)\n", " nfalse=len(non)\n", " ntotal=ntrue+nfalse\n", "\n", " Pmiss=np.zeros(ntotal+1,np.float32) # 1 more for the boundaries\n", " Pfa=np.zeros_like(Pmiss)\n", "\n", " scores=np.zeros((ntotal,2),np.float32)\n", " scores[0:nfalse,0]=non\n", " scores[0:nfalse,1]=0\n", " scores[nfalse:ntotal,0]=tar\n", " scores[nfalse:ntotal,1]=1\n", " scores=scores[scores[:,0].argsort(),]\n", "\n", " sumtrue=np.cumsum(scores[:,1])\n", " sumfalse=nfalse - (np.arange(1,ntotal+1)-sumtrue)\n", "\n", " Pmiss[0]=float(ntrue-ntrue) / ntrue\n", " Pfa[0]=float(nfalse) / nfalse\n", " Pmiss[1:]=(sumtrue+ntrue-ntrue) / ntrue\n", " Pfa[1:]=sumfalse / nfalse\n", " \n", " idxeer=np.argmin(np.abs(Pfa-Pmiss))\n", " EER = 0.5*(Pfa[idxeer]+Pmiss[idxeer])*100\n", "\n", " plt.plot(probit(Pfa), probit(Pmiss), label=label + ' EER=%.2f%%' % EER, **kwargs)\n", " plt.xticks(probit(np.array(xticks)/100), xticks)\n", " plt.yticks(probit(np.array(yticks)/100), yticks)\n", " plt.axis(probit(np.array(axis)/100))\n", "\n", " plt.xlabel(\"FA [%]\", fontsize = 12)\n", " plt.ylabel(\"Miss [%]\", fontsize = 12)\n", " plt.grid(True)\n", " plt.legend(loc='upper left', bbox_to_anchor=(1, 1))\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PLDA generative process\n", "\n", "A PLDA model is often used to model speaker embeddings in the speaker verification context.\n", "Such embeddings are obtained by means of a neural network (i.e. ResNet, TDNN, etc.) which is trained for speaker classification.\n", "The neural network transforms variable-length input speech utterances into some fixed-length low-dimensional (i.e. 512, 1024) vector representations (e.g. the embeddings are the output of a hidden layer of the neural network).\n", "\n", "The PLDA model assumes the following two-step generative process for the embeddings (our observations):\n", "\n", "1.\n", "\\begin{equation}\n", "{\\mathbf{z}_s} \\sim \\mathcal{N}(\\mathbf{z}_s;\\boldsymbol{\\mu},\\boldsymbol{\\Sigma}_{ac}) \\quad \\text{for } s=1, \\dots, S\n", "\\end{equation}\n", "\n", "where, $\\mathbf{z}_s$ is the continuous latent random variable representing the speaker-specific mean for speaker $s$, $\\boldsymbol{\\mu}$ is the global speaker mean, $\\boldsymbol{\\Sigma}_{ac}$ is the across-class (across-speaker) covariance matrix.\n", "\n", "\n", "2.\n", "\\begin{equation}\n", "{\\mathbf{x}_{sn}} \\sim \\mathcal{N}(\\mathbf{x}_{sn};\\mathbf{z}_{s},\\boldsymbol{\\Sigma}_{wc}) \\quad \\text{for } n=1, \\dots, N_s\n", "\\end{equation}\n", "\n", "where, $\\mathbf{x}_{sn}$ is the continuous random variable representing observations specific to speaker $s$ (per-speaker embeddings), $N_s$ is the number of observations (embeddings) for spearker $s$, $\\mathbf{z}_s$ is the mean for speaker $s$, and $\\boldsymbol{\\Sigma}_{wc}$ is the within-class (within-speaker) covariance matrix, which is shared among (the same for) all speakers.\n", "\n", "\n", "Therefore, we assume that $S$ speaker means were generated from a Gaussian distribution $\\mathcal{N}(\\mathbf{z}_s;\\boldsymbol{\\mu},\\boldsymbol{\\Sigma}_{ac})$, and then $N_s$ embeddings were generated for each of such speakers from the Gaussian distribution $\\mathcal{N}(\\mathbf{x}_{sn};\\mathbf{z}_{s},\\boldsymbol{\\Sigma}_{wc})$. This process can also be visulized in the Bayesian Network shown below.\n", "\n", "Obviously, this assumption is something we make up when defining our model, as the embeddings were generated by the neural network, and not by such PLDA model." ] }, { "attachments": { "PLDA_BN_2.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABEQAAAFYCAYAAABaqSlkAAAMPmlDQ1BJQ0MgUHJvZmlsZQAASMetV2dYU8kanlOSkJDQAhGQEnoTRHqREkILICBVsBGSAKHEGAgidmRRwbWLKNjQFRFF1wLIWhCxuwj2frEgoKyLutiw3EkBXffeH/d57jzPnHnPO9+83zffmXPODADqLVyxOBvVACBHlCeJCQlgTkpKZpJ6AAlgQANoATMuL1fMio6OALAMt38vb28CRNZes5dpgf+taPIFuTwAkGiIU/m5vByIDwOAV/HEkjwAiDLebFaeWIZhBdoSGCDES2U4XYGrZDhVgQ/IbeJi2BC3AaBC5XIl6QCodUCemc9LhxpqAxA7ivhCEQDqTIh9c3Jm8CFOgdga2oghlul7pH6nk/43zdQRTS43fQQr5iIvKoHCXHE2dzb4f5ecbOmwD0tYqRmS0BjZnGHebmfNCJdhKsT9otTIKIi1IH4v5MvtIUYpGdLQeIU9asDLZcOcAQbEjnxuYDjEBhAHi7IjI5R8apowmAMxXCFogTCPEwexLsRLBblBsUqbbZIZMUpfaEOahM1S8ue5Erlfma+H0qx4llL/dYaAo9TH1Aoz4hIhpkBsni9MiIRYDWKH3KzYcKXN+MIMduSwjUQaI4vfHOIYgSgkQKGP5adJgmOU9qU5ucPzxbZlCDmRSnwwLyMuVJEfrI3HlccP54J1CESs+GEdQe6kiOG58AWBQYq5Y70CUXysUue9OC8gRjEWp4izo5X2uKkgO0TGm0LskpsfqxyLJ+TBBanQx9PEedFxijjxwkxuWLQiHnwViABsEAiYQAprKpgBMoGwvb+xH94peoIBF0hAOhAAeyUzPCJR3iOC11hQCP6ASAByR8YFyHsFIB/yn0dYxdUepMl78+UjssAziHNAOMiG91L5KNGItwTwFDLCf3jnwsqD8WbDKuv/z/ww+41hQSZCyUiHPTLVhy2JQcRAYigxmGiD6+O+uDceAa/+sDrhHrjn8Dy+2ROeEToJjwk3CF2EO9OFRZIfopwAuqB+sDIXqd/nAreEmq54AO4D1aEyzsD1gT3uAv2wcD/o2RWybGXcsqwwf9D+2wy+expKO7IjGSWPIvuTrX8cqWar5jqiIsv19/lRxJo6km/2SM+P/tnfZZ8P2/AfLbGl2CHsHHYKu4AdwxoBEzuJNWGXseMyPLK6nspX17C3GHk8WVBH+A9/w09WlslcxzrHPsdPir48QYHsGw3YM8SzJcL0jDwmC/4RBEyOiOcwhunk6OQMgOz/ovh8vWHI/xsI4+I3bmYLAJ6lkEz/xnHNADj6DAD622+c2Wv42qwC4HgHTyrJV3C47EKAXwl1+KbpASNgBqzhfJyAG/AG/iAIhIEoEAeSwDQYfQZc5xIwC8wFi0AJKAOrwHqwCWwFO8BusA8cBI3gGDgFzoJLoAPcAPfg6ukGL8AAeAuGEAQhITSEjughxogFYoc4IR6ILxKERCAxSBKSgqQjIkSKzEUWI2XIGmQTsh2pRX5FjiKnkAtIJ3IHeYT0Ia+RjyiGUlFt1BC1RMeiHigLDUfj0KloOjoTLUSL0RVoBVqN7kUb0FPoJfQG2oW+QAcxgKliDMwEs8c8MDYWhSVjaZgEm4+VYuVYNVaPNcPnfA3rwvqxDzgRp+NM3B6u4FA8HufhM/H5+HJ8E74bb8Db8Gv4I3wA/0KgEQwIdgQvAocwiZBOmEUoIZQTdhGOEM7Ad6mb8JZIJDKIVkR3+C4mETOJc4jLiZuJ+4ktxE7iE+IgiUTSI9mRfEhRJC4pj1RC2kjaSzpJukrqJr1XUVUxVnFSCVZJVhGpFKmUq+xROaFyVaVHZYisQbYge5GjyHzybPJK8k5yM/kKuZs8RNGkWFF8KHGUTMoiSgWlnnKGcp/yRlVV1VTVU3WiqlB1oWqF6gHV86qPVD9Qtai2VDZ1ClVKXUGtobZQ71Df0Gg0S5o/LZmWR1tBq6Wdpj2kvVejqzmocdT4agvUKtUa1K6qvVQnq1uos9SnqReql6sfUr+i3q9B1rDUYGtwNeZrVGoc1bilMahJ1xynGaWZo7lcc4/mBc1eLZKWpVaQFl+rWGuH1mmtJ3SMbkZn03n0xfSd9DP0bm2itpU2RztTu0x7n3a79oCOlo6LToJOgU6lznGdLgbGsGRwGNmMlYyDjJuMj6MMR7FGCUYtG1U/6uqod7qjdf11Bbqluvt1b+h+1GPqBell6a3Wa9R7oI/r2+pP1J+lv0X/jH7/aO3R3qN5o0tHHxx91wA1sDWIMZhjsMPgssGgoZFhiKHYcKPhacN+I4aRv1Gm0TqjE0Z9xnRjX2Oh8Trjk8bPmTpMFjObWcFsYw6YGJiEmkhNtpu0mwyZWpnGmxaZ7jd9YEYx8zBLM1tn1mo2YG5sPsF8rnmd+V0LsoWHRYbFBotzFu8srSwTLZdYNlr2WulacawKreqs7lvTrP2sZ1pXW1+3Idp42GTZbLbpsEVtXW0zbCttr9ihdm52QrvNdp1jCGM8x4jGVI+5ZU+1Z9nn29fZP3JgOEQ4FDk0Orwcaz42eezqsefGfnF0dcx23Ol4b5zWuLBxReOax712snXiOVU6XXemOQc7L3Bucn7lYucicNnictuV7jrBdYlrq+tnN3c3iVu9W5+7uXuKe5X7LQ9tj2iP5R7nPQmeAZ4LPI95fvBy88rzOuj1p7e9d5b3Hu/e8VbjBeN3jn/iY+rD9dnu0+XL9E3x3ebb5Wfix/Wr9nvsb+bP99/l38OyYWWy9rJeBjgGSAKOBLxje7HnsVsCscCQwNLA9iCtoPigTUEPg02D04PrggdCXEPmhLSEEkLDQ1eH3uIYcnicWs5AmHvYvLC2cGp4bPim8McRthGSiOYJ6ISwCWsn3I+0iBRFNkaBKE7U2qgH0VbRM6N/m0icGD2xcuKzmHExc2POxdJjp8fuiX0bFxC3Mu5evHW8NL41QT1hSkJtwrvEwMQ1iV2Txk6aN+lSkn6SMKkpmZSckLwreXBy0OT1k7unuE4pmXJzqtXUgqkXpulPy552fLr6dO70QymElMSUPSmfuFHcau5gKie1KnWAx+Zt4L3g+/PX8fsEPoI1gp40n7Q1ab3pPulr0/sy/DLKM/qFbOEm4avM0Mytme+yorJqsr5mJ2bvz1HJSck5KtISZYnaZhjNKJjRKbYTl4i7ZnrNXD9zQBIu2ZWL5E7NbcrThhv5y1Jr6U/SR/m++ZX572clzDpUoFkgKrg823b2stk9hcGFv8zB5/DmtM41mbto7qN5rHnb5yPzU+e3LjBbULyge2HIwt2LKIuyFv1e5Fi0puivxYmLm4sNixcWP/kp5Ke6ErUSScmtJd5Lti7FlwqXti9zXrZx2ZdSfunFMsey8rJPy3nLL/487ueKn7+uSFvRvtJt5ZZVxFWiVTdX+63evUZzTeGaJ2snrG1Yx1xXuu6v9dPXXyh3Kd+6gbJBuqGrIqKiaaP5xlUbP23K2HSjMqByf5VB1bKqd5v5m69u8d9Sv9Vwa9nWj9uE225vD9neUG1ZXb6DuCN/x7OdCTvP/eLxS+0u/V1luz7XiGq6dsfsbqt1r63dY7BnZR1aJ63r2ztlb8e+wH1N9fb12/cz9pcdAAekB57/mvLrzYPhB1sPeRyqP2xxuOoI/UhpA9Iwu2GgMaOxqympqfNo2NHWZu/mI785/FZzzORY5XGd4ytPUE4Un/h6svDkYIu4pf9U+qknrdNb752edPp628S29jPhZ86fDT57+hzr3MnzPuePXfC6cPSix8XGS26XGi67Xj7yu+vvR9rd2huuuF9p6vDsaO4c33niqt/VU9cCr529zrl+6Ubkjc6b8Tdv35pyq+s2/3bvnew7r+7m3x26t/A+4X7pA40H5Q8NHlb/y+Zf+7vcuo4/Cnx0+XHs43tPeE9ePM19+qm7+BntWXmPcU9tr1Pvsb7gvo7nk593vxC/GOov+UPzj6qX1i8P/+n/5+WBSQPdrySvvr5e/kbvTc1fLn+1DkYPPnyb83boXel7vfe7P3h8OPcx8WPP0KxPpE8Vn20+N38J/3L/a87Xr2KuhCvfCmCwomlpALyuAYCWBPcO8HxGmaw4/8kLojizyhH4b1hxRpQXNwBq/AGIXwhABNyjbIHVAmIqbGVb+Dh/gDo7j9Ths5r8XCkrRHgO2GYrQ1fG6y388UynOHN+F/ePLZCpuoAf238DVMx5mA6rtJUAAAAGYktHRAD/AP8A/6C9p5MAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAAHdElNRQfnCwcKNgpJzHWPAAAgAElEQVR42uzde5xU1Znv/686iRNNK9618IaSdKuBZoyNIuKxAC/8zESbJnIcDRcbfgmG0GLzO+TIANK8NOEcELol4hxAaOJlcKDbTOJRI03niIpSJqFFCZUoMGqXtwTRUjMTxsPvj2VJQ629a1d3ddW+fN6vFy+TXdW3vWvvtfbzPOvZh+3fv3+/AAAAAAAASmH/fun//l/pP/5DOuqoov3Yw9nzAAAAAACgZA47TDr8cOlv/kb67LOi/VgCIgAAAAAAoLQOO8wERIrob9jrAAAAAACg5A4/3CyfKdaPY48DAAAAAADfKFJQhAoR+FMqJXV2Sps3S2+8Ie3ebbavX5/93spKqX9/878vv1w69ljp/POlqir2IwAAQDElk9L27dKbb0ovvyzt3Svt2SO1t2e/t6bG/LdPH2ngQOmCC6TzzpNiMfYjEGWHHVa0gMhhPGUGvpBOS1u2SE88IW3YIHV0FOb7xuPS9ddLV18tlZeznwEAAAoplZKeflr6xS/siavuiMWkUaOka6+VLr6YAAkQVfv3m+BILyIggtJqa5MeeURaubL3f1ZlpclE1NYysAIAAHRXJgjS3Gyv/Ci0mhrpppukkSOlsjL2P4CCISCC4kunpVWrpAceKFwlSHcG1pkzWVYDAADgVTIpLV8uLVpUmp8fi0nf/z7JLQAFQ0AExZMJhCxYYDILfkBgBAAAwF0yKc2aVbglMYVQXy/NnUvFCIAeISCC4mhtlebNy78iJB6XLrxQOvNM6YwzpNNPt79v+3bpww9N866XXsr/59TUSE1NZBsAAAAy0mkzf8u3IiQWk4YMMc3uJfO/bT76SHr1VTOH6+jIP+ASi5nE1rRpHCsA3UJABL0rlTKDlNcBLh43/665pmdVG+m0ac763HOmR4nXipTGRgZVAACAtjZp3Djvc6ja2sI0QU0mpRdeyK8/STwuLVtGA30AeSMggtIPpMVYD5pP89Z4XHrwQapFAABA9KTT0vTp3uZMvd3sNNO8dfFib9W/JLYA5ImACHrHjBm5yysrK83az+rq4v1eqZQZ4O+/3z1QE4tJa9ZII0ZwLAEAQDQkk9LYsbmDD/X10uTJxa3IaGszVSC5qo5rakzPOnqLAPCAgAgKK52WrrvOvcQxFpOWLi1uIORQqZR0zz25gzarV0vjx3NcAQBAuHmp7K2pke66q7RLUxIJE4xxC9pUVkpr17KEBkBOBERQOF6CIQ0N0m23+Sdqn0xKU6a4/8719dLChRxfAAAQTq2t0ujRzq/7sXK2qcn9yYWxmLRxI0ERAK4IiKAwcgVDYjHpscf8+3jbpiaprs75dYIiAAAgjHIFQ2prTQ8PPy5BSaWkm292n38SFAHggoAIei5XMCQoazkTCen6650zDQRFAABAmOQKhgRl6bBb7zqCIgBcEBBBz+QKhgQtiJAr00D3cgAAEAZtbebpMDZBDCK4BXcIigBwQEAEPTNpkvNj2YLakDRXkKelpbQNYQEAAHoimZSGD7dXxQY5eOAWFInHpZ//nKfPADjI4ewCdFtTk3MwpKUluE9nKSszA2Y8bn996lQzkQAAAAiadNo0lA9bMEQyCauWFvtr7e3S9OkcfwAHISCC7kkknJuQNjQEv4LCLSiSSpmJBAAAQNDMm2evgg3LshK3oMjKlVJzM58BAF9gyQzyl05Lw4bZn/8etsaj6bRUUWHPojQ0SLNn83kAAADB4NY3ZMsW/z4NsDuam6UJE7K3x2ImsReL8XkAQIUIumHJEnswJB6X5s4N199aVmayJTZz5rB0BgAABEM6LY0bZ39t9epwBUMks3S7vj57eypFg3wAXyAggvykUiYQcKhYTFq2LJyNqsrLzdNlbGbN4jMBAAD8b8kSe8VrbW1w+77lMneuVFmZvX39etOAFUDksWQG+RkzxgwihwrqE2UK8bfz1BkAAOBnqZTUt2/29lhM2rEj3E9eSSbN8udDVVZKmzbx1Bkg4qgQgXeJhD0gUFMT/mCIZJ6qYzNvHp8NAADgX/fcY9++Zk34AwLl5abv26E6OqRVq/hsABFHhQi8c6qQ2LEj+B3JvWpqsj9dhyoRAADgR07VITU10rp10dgHTk3yYzGps5PPCBBhVIjAm2TSHgypr49OMESSJk60dyWnSgQAAPiRU3XIzJnR2QdlZdLSpdnbUyl6iQARR0AE3ixfbt9+++3R2g9lZfYJREeHWVIEAADgF+m0tGhR9vaamvA9VSaX6mp7g1WSWkCkERCBt8H0kUeyt9fXR/MZ7k5VImvX8lkBAAD+0dJi3x6l6pCupk/P3tbRYSqhAUQSARHktmGD/TFtY8dGc3+UlUk33pi9/ZFHTPAIAADAD5qbs7fF49GrDskYPdqe1Hr0UT4rQEQREEFujz+eva2yMrqDqSRNnpy9LZWStmzh8wIAAEovlZLa27O3//CH0d0nTkktW588AJFAQAS5rVyZvc1Wchgl5eX2dahPPMHnBQAAlN7TT9u3jxwZ7f0yalT2NpbNAJFFQATunBqFXnkl+6amJnvbhg3sFwAAUHqbNmVvq601VRJRNmKEfdnMCy/wmQEiiIAI3G3enL2tsjKazVQPdc012ds6Ouz9VgAAAIrJVrU6bBj7RbIvm/nFL9gvQAQREIG7Z57J3hb1UssMpx4qL77IvgEAAKWTStkTNJdcwr6RpKFDs7fZkoAAQo+ACNzZBgfbIBJVtmUzb76Z//f561O69djDdNhhhfp3rm596gOODwAAUfT739u3l5ezbyTp/POztzkFkZjDAaFGQATubAPD6aezXzJsjVVtVTVFd5xOOv7LHB8AAKLo1Vezt9mSOFHlFBjq7GQOB0QMARE4c2qoGuXH7R7qzDOzt+3ZU6jRWmPm/VKv/ed+7d9/8L//TDbqiq84fd1XdM6Uebqt6miODwAAUfTGG9nbzj6b/dJVPJ69bft25nBAxPwNuwB5oZnqwWwll+3tBfjGJ+qKxnX652nf0BFZr72rDUv+l379F6ex9Nua33CNjuPoAAAQTbt3Z2+zJXGi7Pjjs7d9+CFzOCBiqBCBs7feyt42ZAj7pRjOuVE/+u55loH0M33w1F26ddmrzoPwT/5RY088gn0IAAAOOOMM9kFXl1/OHA4AARG46E5z0KjpleVDX1H5zf+gkcdZBsTPElpSt0I7nb7yitn6px/YMhIAACAybMt36QGXW4/7wDGHA4KGgAjgO+dr7LcGWAbEv+gPP52n/5l0qrO8QBN+NFZfZyQFACDaCrJ8F8zhgPCjhwjgB1++Wvd9uF/3ubzlsz8s1/d+9KTsQ+lXdM6UBbrr6lPYlwAAAMzhAHhAhQgQCG9q7ayf0IQLAACAORyAAiEgAvREOl2EH/KZPnjqf2r2urcdXqcJFwAA6KKmhn3QHX36MIcDIoaACJxdcAH7IJcdO3r/Z3zwpGbdShMuAADQA9u3sw+6euON7G0DBwZiDvfZ60/pvqYlmvudCh122GHZ/879juY2Nampaa0SH3zGsQZc0EMEzo45Jnvb+vXsl1xisQJ+s7/oDz9bqtU7e7MJ12f6IPEzzbr9/9Oy92/VllfnqYroCgAA4fLhh+yDrnbv7uUf0AtzuA8S+tms2/W9Zc/qL27v27lODXXrJB2jyzRQm6adx/EGHFAhAme2gIhUpGUiAbF5c/a2IUMK9u17uwnXZ68/robvXKDjB0/Usmf/JJ10go4nGAIAQLBVVmZve/ll9ktXr72Wve2MM/w7h/vgGc399v+jcZ8HQ75y2RQtfmiL9uzfr/2f//vP155U45TL9BWOLuAZFSJwVl5u375jh1RVxf6R7OWWBVt/2otNuLxmGAAAQPAce2z2tp072S9ddXRkbzv9dJ/O4d7VU7NuVcOzfzJffkWjtm6YllVdcsS5V2vafYNUrhG6ZtmrHGPAAypE4C4ez95mq4qIqt/+NntbQdaf9lITrs9e11NNt2pY38FfZBgAAEDI2KpV29vZLxmJhH17QRJ+vTCH+1ObVqzOBDhO07WTq12W2pyiqxvu0BjKRABPCIjA3YUXZm+j5NJIp+2Ti0IsmSl4E64/KfHwXH3n6wN0Td0y/eabn5dZ/uc2NV5xIscSAIAwqajILxAQNbbknm2ZkS/mcNJnu5La9kUW6ys66YSvun/BiaM0acI5HGfAAwIicDdgQPa2J55gv0jSli35TUI8624Trjf18Hdin3cYP1e3PvVBl9eOUz8l9fjb39SUNVvUuek+3fYPVTruiK/r2uq/41gCABAmZWX2G/wnn2TfSNIzz2RvGzmyAN+4N+Zw0md73tfbXX7G+3/+OMfvcZyuvu917d//IQ1VgRwIiMDdJZdkb0ulpLY29o0tMBSPm0lID3S7CdefNqn1cafyzCN04th/Uufbv9Z9363qXt8RAAAQHLYbfJbNmApf21MThw7t8bfunTmc9OX+FTqwIPttrZv9j3r4dRY+A4VAQATuysvtGQaqRKRHHsneZuu5kpfuNuH6TH/61b/qcbex8YhjddyxPEIGAIBIGDUqe1t7u0lsRdmGDfbtF1/s3znc2cP1na5LnHeu0U1XjVPDU6/rMz7pQI8QEEFutgyDLRgQJW1t9gnFDTf04Jv2pAlXSr9qfYYmqQAAwBg82L595cpo75eHHsreFo9LsZh/53BHnKfv/viHuqxro9Sd6zT3mv4qG3arljyc0Ad84oFuISCC3MaOtVy7U1Jra3T3ybJl2dsqK50fVexFt5tw5RqEAQBA5JSVSbW12dvvvz+6+ySVsi+XGT++Z9+31+dwR+i4S2bpXzfOOzgoIukvzy7T9JsG6/hzv6O5BEaAvBEQQW5VVfZlM/fey2DaVU1ND75pd5tw/UWvP/UT/b8ugzAAAIioG2+0z2OimtS65x779iuvDMAc7ggdd8kc/Xrbk2qccpmynqq7c50aPg+MsJQG8I6ACLy55Zbsbe3t0Xx8m9NgasvCePWnVs1ybMIlSa9q2TWnft59vOu/o9T/mn/Uup0slgEAAIcYMcKe1Jo3L3r7IpWSFi2yz996slymyHO4I869WtPu+7U6t/yzFjsERuZeM0Bf/68/0+tERYCcCIjAm4kT7dsXLGAwLcRg+uGf9A4xDQAAUGi2pFZHR/SqRJwSWt/7Xs++b0nmcEfouKqxuu2+Tfp0zxY9NGeMzjno9b9o59rv6aqbCIoAuRy2f//+/ewGeDJjhj0Y0NIiVVdHYx+MGWNfLrNli1laFDh/1etN31L/uqfN/72sUa9tmqZz+bQDABAO6bRUUZHdDL6yUtq0yfQaCbtk0uyDQ9XUSOvWheJP/Oz1x3XXj+o1d12yy9bTNOahF/Uv/3AG5wHggAoReHf77fbtU6eawTbs2tqce4cEMhgCAABCr6xMmjkze3tHh7RkSTT2waxZ9u22/RJQR5x7reb8y//Rk1Mu6LL1bT3eukl/4iwAHBEQgXexmNTYmL09lZKmTw/3355OS+PG2V+76y4+GwAAwL8mTrQv7Z0zJ/z94JqbI5TQOkVX37VAU8450FnkL796Vr/5K6cA4ISACAozoK5caSoowmr69OxSU0mqr+/Zo3YBAAB6W1mZtHSp/bXJk8Nb6ZtMSnfcYX8trAmt4y7VdVefxmce8IiACPIfUNessb82bpwZeMKmudkEfA4Vi0lz5/KZAAAA/lddbaoiDtXREc5K33RamjLFntBqaAhQQusDPXXruTrssKNUMfeF/B+ne9pJOv4IPv6AEwIiyN+IEfZHzKZSZuAJU5ahrU2aMMH+2po1IWhEtk97/ryHzzQAAFHQ1ORc6dvUFK6/dfp0qb09e3tlpXTbbQH8g/6i5IMPa8MHuUIi7yi57UDXkGOGX6pKAiKAIwIi6J7Fi+0Danu7dN114QiKJJPOfUPq601gKPD26I/bu2ROfvO8XvwTz2cDACCUYjHp7rvtr9XVhedRvDNm2Kt7JWnt2uAmtHau0K2zntQHjm/4TB88tUyNz370+f//pm6beJm+zCcfcERABN1TViY99pj9tTAERZJJafhwe5llPB6CpTKf6YPEWi259R80ad3bBzb/5V81e8pc3ffU6yIsAgBACI0fbxI7NqNHBz8oMmOGtGiR/bXVqwPe++0v2rnsO7roO/+YPVf7IKGH5/5XXXTNvdopSTpRl825R7dVHc1nHnBx2P79+/ezG9Btra1m8LSJx6Wf/zx4UXi3YMjxx0vbttmrY3zv92oadonqvsgaeHWlGl/7paadS34BAIBQSKdN8sq2pESSWlpMz5GgcQuG3HST9OCDATxYH+ipWy/SNct25vE15RrTuFr/a9olOo5PO+CKChH0THW1dM019tcylSJBarTa2ipVVNiDIZK0Z480bVr4H1EHAADCq6zMJK2OPNL++ujR0vz5wfl70mlpzBjnYIgkPfSQeY/THM+3jtPV9/1Be7b8sxobG9XYOEtjujxW94ATddmUn6jxp0/qtf/coX8hGAJ4QoUIesatmiIjFjMNSP3ec2P+fGnOHO/vr6+Xbr89oNUiAAAg0rzMe2pqpFWr/F3tm0yapv5O1S42DQ2msWrgm+MD6CkCIui+XOWWQRl8ujOQdtXYKE2cyKAKAACCIZGQBg/29l4/J7aam52fBujl75o501T+Aogslsyg+5YsyS+IMGeONGyYeZStH6TT5hFzFRXOf8fxx0snneT+ferqzPcIS2d2AAAQXum0dP313t+fSkkjR0qTJvlnuUkyaZa/uAVDvvY16bTT3P+uujpp0CD/zE0BFB0BEXRPW5tzmeWPf+z8dR0dZlAdM6a0fThaW01wpq7O+T2xmPT889Lrr5sqkFyThdGjzfIh+osAAAC/mj7dHtj49rdNQ3wnK1dKVVUmmVSqJwmmUqZxakWFtH698/vq66U//MEETpyeqGObmwap7x2AgmDJDPKXTjs3Hl292jzOLZEw2YdcmYSaGlOuWFVVnN97wwZp3jwz+OX6vQ5dM5tKSffc496wK6O21iwRor8IAADwC6clJrGYtGOHmfe4Paml6/tnzjRBhGLMdZJJaflyb3OwzFz00K+fNcs9iJJRXy/NnctSaCAiCIggf2PG2AeUmhpp3bqDAxATJ3obfCorTcbiyisLP7C2tUlPPCE98oi3Us/GRvf1pImEtGCBt7+Lpl0AAMAPkkmT0LLZsOHgHiFtbdK4cd7mTbW10rXXmiqLQs53Momse+/1tkQ7HpeWLZPKy93ncJMn506MZQI+9IgDQo+ACPLjJbNg+5o77vC+7rSy0gRXLr1UOu+8/AMkiYS0fbu0aZMJhHj9uV4G0q5aW71Vm8Ri0t13Z2crAAAAisGtEX5DgzR7tv1rpk83S2W8qqmRLr9cGjIk/+rfdNrMJTdvlh57LL8+dfk2uPc6N62sNNUi1dV8hoCQIiAC79wyC1u2uA986bQJHngpdXQaYDMD07HHHvzaG29Iu3dLe/Z070kxsZi0dGn3Brt02iytWbDA26C6fHlxlgcBAABkOD1iNx6XNm50/1qvVRVOc5/+/aU+faSBA7Nff+YZ89/Nm7vXsLWmxvQ06U51cTptHhCQ69HDmZ9TrCXeAIqKgAi8Dxr5ZhZs8unD0dsKWQ6Zz99VUyPddZf3ShQAAIDuamszy1ls86CNGwtfGVsMhQxQpFJmqbTX/iK3306POCBECIjAG6cGW14yC24BBK99PQopU/5Y6LWuEk27AACAf3hphJ+v1lbpoYe8zXUKrb5eGju2dyo1EgkTZMlVbUx/ESBUCIggt0JlFtwG1scfz2+Nar4yfUluuKE4lRltbWbQ9tq0y62JKwAAQHc4NcKvrZVWrOjZ906lTDP9fPt95CseN4Gb0aOLE4BobZWmTs2dsOvJkmsAvkFABLkHu6qqwmYWcgUSnn/eBBJ6knmIxaRRo6Rhw6RLLind8pSmJu/9RRYtOrjDOwAAQHd1pxF+T+aLL74oPfeceTJMT5bVxOPShRdKQ4f2TjWvF5kecXV13n7fBQvoLwIEFAERuOvNzILXAbaz0zw15sMPpQceyB5kMx3NzzhDOv10UxrqpxLGfBrK0rQLAAD0VE8a4RdKIiF99JH06qumAb5tHtTYaP47ZIh0zDH+66+WT4+42lrTV4/+IkCgEBCBs6Yme2S8NzILXtkCNI2NwVhyQtMuAL7xezUNu0R1z36U/dIxU/Tk+/fp6i+7ff1f9XrTt9S/7mnLa+doypMv6b6rj3P/FV5v0rD+dXo2+xfQZY0vaNO08zhMQHek06ZC1lalkU8j/EJKJKTBg7O3B+U2JJEwVSBe5nD5PgIYQEkdzi6AVTLpXCb42GNc5LsjFjNrbbdsMUtk3CxaZLI3TU1mYgMAAOCF05Ng4vHSBEPCoKrKzOFaWnLP4erqTHVOczP7DQgAAiLIlk6bDt42jY0s5yjEoLp1q+nB4lYBkkqZQXXYMNPgCwAAwE1bm315RywmPfgg+6enqqulTZvMfDjXHG7CBGnQIFNdAsC3CIggm1tmgaehFM748WbpUUOD+/s6Okxn9TFjGFQBAIDzTfi4cfbXli5lGW6hlJWZ+XAiYZY455rDDR5s5nC5GuwDKAkCIjgYmYXiD6qzZ5vGsbW17u9dv94MqpMmMagCAICDTZtmnx/U1vJo2N4Qi0kLF5rkVk1N7jlc377SjBkshQZ8hoAIDiCzUNpBdcUK018kHnd/78qVZlClvwgAAJDMnMDW8LOyUlq8mP3Tm8rLTX+RDRu89YirqDDHC4AvEBDBATffTGah1KqqpI0bTdOuXAGoTNMu+osAABBdbo3wly+nEX6xjBhhesR56S9SV2f6i7S1sd+AEiMgAqOpSWpvz95OZqE0qqtNCaaXQXX0aGn4cPqLAAAQNTTC959p08wczkt/kZEjTX+RZJL9BpTIYfv3B+UB4Og1Ts+Gl8wSDj8NpmPGZJeENjaGu9lrKiXdc4+9t8uhampMcIvlTQAAhN+kSWYp7aHicVNx6ve5ZthvQ1IpM0e1LWc6VH29dPvtzOGAIqNCJOrSaWnyZPtrZBb8IdO0a8sW70275s+nvwgAAGHW2moPhtAI319zuHXrzBzOS3+Rqip6xAFFRkAk6qZPtz9it6aGR+z6TVWVGVRbWnIPqnPmmP4izc3sNwAAwiaVkqZOtb+2Zg1VBn6cw23dKq1e7a2/yLBh9IgDioSASJS5ZRbofu1f1dXSpk3e+otMmEDTLgAAwsapEX59vWnuCX8aP970F2locH9fR4fpETdmDD3igF5GQCSqyCwEW1kZTbsAAIgit0b4c+eyf4Iwh5s9W+rsNE9ydLN+vem9MmOGPQAGoMcIiEQVmYXwDKoLF5rAiJf+IhUVZlBlbSoAAMGTSDg/YnftWh6xGySxmLRihekvEo+7v3fRItMjjv4iQMEREImi+fPJLIRNebnpL7Jhg7emXRUVLIsCACBIcjXCLy9nHwVRVZV5IlBLS+4K7bo6M4ejvwhQMAREoiaRMA03bcgsBN+IEaZpl5f+InV1pr8IgyoAAP5HI/xwq642Fb+Nje7vS6VMf5Hhw+kvAhQAAZEoSael66+3v0ZmIVwy/UVo2gUAQPA1N9MIPwoyPeI6O3P3iGtvN/1FJk2ivwjQAwREomT6dPsFk8xCeAfVTNMuL/1FaNoFAID/JJPSHXfYX6MRfjjFYqZH3JYtuedwK1ea/iLz59NfBOgGAiJR4ZZZWLWK/RP2QXXdOjOoeukvUlVF0y4AAPxiyhR7sqKhgUb4YVdVZeZwLS2553Bz5pj+Is3N7DcgDwREoiBXZoG+IdEZVLdulVav9tZfZNgw+osAAFBKTo3w43HpttvYP1FRXS1t2uStR9yECaZHHEuhAU8IiEQBmQV0NX68t6Zdmf4iNO0CAKD43BrhL1tGQitqMv1FEonc/UU6OsxS6DFjTGIUgCMCImFHZgFug2pnp1Rb6/5emnYBAFBcbo3wV6+mEX6UZfqL7NjhrUdcRYXpEcdSaMCKgEiYtbWRWUDuQXXFCtNfJB53f2+maRf9RQAA6F1ujfDHj2f/wATF1q2TNmzw1iOuooInEgEWBETCKp2Wxo2zv0ZmAYeqqpI2bjRNu3J1q6+rM4Mq/UUAACg8GuEjHyNGmB5xXvqL1NWZ/iJtbew34HMERMJq4kQyC8hfdfWB/iK5BtXRo2naBQBAISWTpimmDY3w4WbaNDOHa2hwf19HhzRypOkvwhwOICASSs3NZs3gocgswIvuNu2ivwgAAN2XTptG+DY0wofXOdzs2aZHnJf+IoMHm/4izOEQYQREwobMAgol07RryxZvg2rfvqaJL/1FAADI35Ilzo3wZ89m/yC/Ody6dWYO56W/SFUVPeIQWQREwoTMAnpDVZUZVFtacg+qc+bQtAsAgHw5NcKPxUwjfKC7c7itW03/QC/9RYYNo0ccIoeASJiQWUBvqq6maRcAAIXm1gj/7rtphI+eGz/+QI84Nx0dpkcc/UUQIQREwoLMAool07TLS3+RTNOuZJL9BgCAjVMj/NpaGuGjcDI94jo7zWfLTaa/yKRJ9BdB6BEQCYNUiswCij+oLlxoAiNe+otUVJimXaxNBQDgALdG+IsXs39QeLGYtGKF6S8Sj7u/d+VK0yOO/iIIMQIiYTBtGpkFlEZ5uekvsmGDt6Zdmf4iDKoAgKhza4T/2GM0wkfvqqqSNm40PeLclkJLZil0RQX9RRBKBESCrqmJzAJKb8QImnYBAOBVOi2NHWt/raHB3KwCxVBdfaC/SK453OjR0vDh9BdBqBAQCbJk0txc2pBZQClkmnY1NLi/j6ZdAIAomzfPjIWHohE+SiHTXySRyN0jrr3d9BcZM4b+IggFAiJBRWYBfh5UZ882Tbu89BcZPNj0F2FQBQBEQVubWUZ6KBrho9RiMdMjbssWb3O4vn2l+fNZCo1AIyASVGQWEIRBdd06M6h66S9SVURiEiwAACAASURBVEV/EQBAuLk1wl+6lEb48IeqKjOHa2nJPYebM8f0F2luZr8hkAiIBJFbZuHBB9k/8N+gunVr7qZdmf4iNO0CAISVWyP86mr2D/ylulratMlbf5EJE6RBg8x9ChAgBESCJldmIVeXaKCUg2qmaVeuzzhNuwAAYePUCL+ykkb48K9Mf5EdO3L3F+nokEaONP1Fkkn2HQKBgEjQ3HwzmQUEf1Dt7DSfWTeZpl2TJtFfBAAQbG6N8JcvpxE+gjGHW7jQBEa89BepqDA94lgKDZ8jIBIkTU3mJvFQZBYQNLGYtGKF6S8Sj7u/d+VK07SL/iIAgCBya4Tf2EgjfARLebnpL7Jhg7cecRUVZg4H+BQBkaBIJMgsIHyqqqSNG7017cr0F6FpFwAgSKZPd26EP20a+wfBNGKE6RHnpb9IXZ3pL0KPOPgQAZEgSKelyZPtr5FZQBh0p2kX/UUAAH7X2moqHQ9FI3yERaa/SEOD+/s6OkyPuDFjmMPBVwiIBAGZBURBpr9IIuGtadfgwWZQpb8IAMCPUilp6lT7azTCR9jmcLNnmx5xXvqLDB5s+oswh4MPEBDxOzILiJpYzDTt2rLF26Daty9NuwAA/uPUCL++nkb4CO8cbt06M4fz0l+kqooecSg5AiJ+5pZZWLOGzALCraqKpl0AgGBya4Q/dy77B+Gfw23danrEeekvMmwY/UVQMgRE/MwtszBiBPsH0dCdpl1tbew3AEBpuDXCX7uWRviIjupq01+ksdH9fZn+IsOH018ERUdAxK/mzyezAHSVadrlpb/IyJGmv0gyyX4DABRPrkb45eXsI0RLpkdcZ6dUW+v+3vZ2019k0iT6i6BoCIj4USIhzZljf43MAqI+qC5caAIjXvqLVFTQtAsAUDxOjfBramiEj2iLxaQVK0x/kXjc/b0rV5oecfQXQREQEPGbdFq6/nr7a2QWAKO8nKZdAAB/aW52boRPjyvAqKqSNm40/UVyzeHq6kxyq7mZ/YZeQ0DEb6ZPt2ezySwA9kF161Zp9WqadgEASieZlO64w/4ajfCBbNXV0qZN3nrETZhgesTRXwS9gICIn5BZALpn/HizjKahwf19maZdY8YwqAIACmfKFBrhA/nK9BdJJLz1iBs82MzhWAqNAiIg4hdkFoCeD6qzZ5umXV76iwweTH8RAEDPOTXCj8dphA94EYuZHnFbtnibw/Xta847lkKjAAiI+IVTZqGhgcwCkO+gmukvkqtp16JFNO0CAHSfWyP8ZctohA/ko6rKzOG89BeZM8f0F6GKHj1EQMQP3DILt93G/gG6O6hmmnblqrDKNO2ivwgAwCu3RvirV9MIH+iu6mrTI85Lf5G6OtNfpK2N/YZuISBSam1tZBaA3h5Ud+wwg6qbVMr0Fxk+nP4iAIDc3Brhjx/P/gF6ato0M4fz0l9k5EjTXySZZL8hLwRESimdlsaNs79GZgEonEzTrs5OqbbW/b3t7aa/yKRJ9BcBANi5NcJftYr9AxRyDrdwoQmMeOkvUlFhesSxFBoeERAppYkTySwAxRSLSStWeGvatXIlTbsAANmSSfMYUJs1a6juBXpDebnpL7JhQ+7+IosWHegvwhwOORAQKZXmZhPFtN2wkVkAeld3mnY1N7PfACDq0mnTCN+GRvhA7xsxwvQXWb3aW3+RYcPoEQdXBERKgcwC4A/V1dKmTd6adk2YYJp20V8EAKJryRIa4QN+MH68WUbT0OD+vo4O0yNuzBjmcLAiIFJsZBYAf8n0F0kkvDXtGjyYpl0AEEVOjfBjMRrhA6Waw82ebXrEeekvMniw6S9Cjzh0QUCk2MgsAP4Ui5mmXV76i9C0CwCixa0R/t130wgfKPUcbt06M4fz0l+kqor+IvgCAZFiIrMA+F+mv0i+TbsAAOHl1Ai/tpZG+ICf5nBbt5oecV76i1RU0F8EBESKJpUiswAESaZpl5f+InV1pr9IWxv7DQDCxq0R/uLF7B/Ab6qrTX+Rxsbc92ejR0vDh9NfJMIIiBTLtGlkFoCgnrs7dnjrLzJyJE27ACBM3BrhP/YY1b2AX2V6xHV2mvstN+3tpr/IpEn0F4kgAiLF0NREZgEI+qC6cCFNuwAgStJpaexY+2sNDaY8H4C/xWLSihXeesStXCn17SvNn09/kQghINLbkklTTm9DZgEI3qBK0y4AiIZ580z136HicfNkCwDBkekR19KSew43Z47pL9LczH6LAAIivYnMAhDeQXXrVmn1am/9RYYNo2kXAARJW5sJbB8q0wgfQDBVV0ubNnnrETdhgukRx1LoUCMg0pvILADhNn686S/S0OD+vo4O07SL/iIA4H9ujfCXLqURPhB0mf4iiYS3HnGDB5s5HEuhQ4mASG8hswBEZ1CdPdtb065MfxGadgGAf7k1wq+uZv8AYRGLmR5xXvqLrF9v+ovMmMFS6JAhINIbyCwA0RxUM0274nH392aadtFfBAD8xakRfmUljfCBsMr0F9mwwVuPuIoKc61AKBAQ6Q0330xmAYjyoLpxo2na5bY2VTL9RSoq6C8CAH7g1gh/+XIa4QNhN2KE6RHnpb9IXZ3pL9LWxn4LOAIihdbUZJ5lfSgyC0C0VFeb/iKNje7vS6VMf5Hhw+kvAgCl4tYIv7GRRvhAlEybZuZwXvqLjBxp+oskk+y3gCIg4iaZzC/ql0iQWQBwQKZpV2dn7kG1vZ2mXQBQKM3N+S1JnD7duRH+tGnsTyCKc7iFC01gxEt/kYoK01+EOVzgEBBxs327ifrNn597UE2npcmT7a+RWQCirTtNu7xcdwAAdr/4hblB8ZLYam01vZ1s1+4HH2RfAlFWXm76i2zZ4q2/SFUVPeIChoCImzffNP+dM0e67jr3UigyCwByyTTtamnJPajOmWMm883N7DcAyNf69SZTmyuxlUpJU6faX1u6NHcvKADRmcNt3SqtXu2tv8iwYfSIC4jD9u/fv5/d4GDMmOxO46tXS+PHH7yttdX0ADhULGaW0TCY5tbW5u1xxJs3Z5eiVVZK/fvn/tqmJo4F/COdllatkhYsyF1eWVlpsg4jRrDfACCXVMpU2nUVj5t5xqFP+hs+3N77rb7eVPYht0mTpL173d+zZ499P+eqmpSkyy8nuQj/zeGWLDHJq1xqaqSZM1kt4GMERNw4DZI1NeZGpqzMDLpVVfYbmpYWniqTz4WloqL31t3V1JjMPODHifs995iAh5fP8V138ehuAHCTSJieTIeKxaS77z6Q2Gpqsvd+q6yUNm2i95tXTvuxULZs4WYS/p3DTZtmf1T3oerrpdtvJznrQwREXPfOYc6vxWLSmjXm5oTMgv8HVAZT+F0yKc2a5X1QnTuXyToA2DQ3SxMmOL9eWyvdeKNZTmOzYweB53z0ZlKLhBaCIJEwVSC2e8JDNTZKEycyh/MReoi43Zy4yaxLdXrE7ty57MN8TZzYO1HTmhqCIfC/TNOuDRu8Ne2qqDBBxEIP6AAQdG+84f76ypXOwZDGRoIh+SorMzeDvaG3vi9QSFVV0saNZnVArnuZujozhytkf5F0msf+9gABESdvvdX9r127lqifnwZUBlMEyYgRpmlXY6O3pl2DBhVmUG1qkq6/nq7oAILP1uTei5oaelV0V28ktUhoIWiqq02FWWOj+/tSKdN/cvjwwiSj5s2TpkxhDtdNBEScvPpq976OzIK/BlQGUwTVtGlmUK2vzz3xHz3aNIHu7qCaTh9o7jp9OvseQLBt3pz/18Riha+6i5LeSGqR0EJQz4Vp06TOTrM8z017u+l3NGZM95ecpVKmcri93TR6Rd4IiDh5+eXufx3ROf8MqAymCPr5sHChGVRzdeJfv94MqjNm5D+ozpt34GtWrjRPfQKAIEqnu39j8eKL7L+eKGRSi4QWgi4Wk1asMH0Mvczh+vZ1f0S4k65VbXPmsPy5G2iq6sTpCTNeT4DHHuNC3pPJTCGac9GIC2GTSEiTJ+cuB4/FTDDQS9Mu2+MpYzFTncLSPwBBvE7anjDjVW2ttHgx17/uKlSDfJrhI2xaW00CysscruvTsPK93vGUrLxRIeKku8GQzA3G4MEmyof8FapKhOoQhE1Vlekvsnq1t/4iw4bl7i9iWy/P0hkAQbV9e8++fuVKc+0ky9o9hagSoToEYVRdbQIVXnrETZhgesTlug5Nnpy9raODpTN5IiDi9EEshDlzTKVJbzyGjAGVwRTRNX68t6Zdmf4iTk27Egnnx/yuXFnYDugAUAwfftjz79HRYRJb9BTJXyGSWiS0EObzY9o0M//y0iMu01/E9gSZ5mbnahOWzuSFgIhNZ2fhvld7u7kx58aiuAMqgymiMqjm07Rr0qSDA7S2zEJXU6cS0AUQLM88U7jvVVdHYqs7epLUIqGFKIjFTI+4HTu89RepqDA94jL9RdJp6Y473L9u8mT6WnpEQMSmO93J3WQerTRpEvu2GAMqgymiNqhmmnbF4+7vXbnS9AtpajL/cq1jTaV4BCWAYHnttcJ+v0xii2bT3vUkqUVCC1FSXm76HW7YYHp/uFm0yARGmprMkphcgVqWznhGU1WbGTPMh66Q6uul228v/DPaw647zbloxIUoa20tfGXH6tXemnsBQMlntocV9vtlmlQTHM5Pdxrk0wwf3PdICxYUdg7HfVFOVIjY7N5duO9VU2M+iAsXEgzpjnyrRKgOQdRVVx/oL1Koa84dd1AyDsD/CrlmPhYz19EdOwiGdEd3qkSoDkHUTZtmrjm5+ovkg6UzOREQsXFqMpiPTCBk3Tpu0Is5oDKYAvk17fKCpTMAguCttwrzfboGQnh0Zfflk9QioQUcmMMtXGh6xOXqL+IFS2dyIiByqJ5G0OJxAiGlGlAZTIGDZZp2bdnS80F1/XrT0RwA/OrNN3v29fX15iaEQEjhbuy8JqpIaAHZc7h168wcLld/kVx46owrAiKH2rGje19XWSm1tEgbN3JTXqoBlcEUsKuqMoNqQ0PPvg9LZwD4WXefMJMJhLC8ufC8JLVIaAHuc7itW3te8cvSGUcERA61fXt+788EQrZuNWv3UZoBlcEUyK29vWdfz9IZAH62Z09+76+pIRDS27wktUhoAe7SaemRR3r2PVg644iAyKHeeMPb+zLNtgiE+GNAZTAF3LW29jwgIrF0BoB/eb3Gde3zRiCk97kltUhoAbmtWlWYCt05c3iEuAWP3T3UmDHuTVUzj1+bOJH1pcXm9Ag3HtMGdO/c6a5YzKxF5UYCgF8kk+Y656amxszhuAEvvqYmqa4uezuPBAXcpVJS376F+36xmGkRwX3sF6gQOdTmzc6v0XW8tJyqRKgOAdwVKrPQdXBm6QwAP3F7wkxmeTMN70vHViVCdQiQ2z33FPb7pVLS9Ons1y4IiHSVTttvGug67t8BlcEUyD3w2bJyPcXSGQB+8uqr2dvo8+YftqQWCS3AXSIhLVpU+O+7ciVLZ7r4m0j9tcmkaZr65psHOpG/9pppMmPzta+Zf2eeKT39tHT++dx8l+JC8NFHByY6b7whnXTSgcDVBx9I8+dLxx5r/v+QIaasjFJ+wCh0ZqGrO+6QrryS8w1A70qnTYXu5s3Shx8emLc5LXE+8khpwADpv/wXM+dra5POO49rVTGlUiaZuH27OWaSeRLj3/6t9O//buZq//RPByqzzzhDOv10s+yJ5CNgLFjQe9973DiWznwu3D1EUikTyNi0SXriicKVjNfUSH//99Ill0jl5ZyshZzwbNggPfec9Nvf9rwBZE2NdPnlJkhCIAtRlEhIgwf37s+Ix7MHbIKSAApx/XrySTMXKERDaMlUjIwcKQ0dav7LjUDhJJPSCy8UZs5dWSlddJF07bXSxRczniCaWlul0aN792dcd500a9bB2yIYlAxfQCRzU33vvYUbQHNdtG+5xTRj5YLt3+MVi0k33iiNGiWNGMF+RzTkahJdDDU1Up8+0sCBBCcB5L6pXr7cPF6ykH2PnNTWmrkB84LuH69HHzXjjFO1dSHE49L48VQkIloGDerd88rLPW7//ua/3/hGqIOT4QmIpFKmNLxYg6hNfb00diwT/nwmPb2xLs7LCX7LLTwpCNGQSGRvO7R5dNcSdEnat0965RVp587e+Z0yVXZMbgFIJhP60EOlC+AyL8j/eBUr8WgbP3hSEKI6h+vaRiDjjTek3bsP/P+//EXats0sF+yNa+XIkaFLMAc/IJIJhJTixpqLdfdO7AULSp+1lniEMmA7P9euLW5guaZGuukmGh4CUdTWZpJJpcyCMi/wrrlZWrzYH8erslKaO5exA5CKv0Iic7288UZp8uTAt5AIbkAknTaPkszz6QmfHBXTzlOGaOtpl0uSXjpliON7yz/YrrK/fqhBbz+jUz56TSf/Oc8BoL7eXKwZVM3N1Zw5pqtxnt47oVLvHtNf75SdrXe+eqb1PYPeNk1yB+xa370TeuZMHiOK6Cp1dpYbESBakkmzbj3Pa86uWFzvHHOOXjt+oN7+6hnqPPp06/uO+etH+voHr+qrf/1Q/f/ckf/cIBaTli7lZjujB4GrXbG4Pj7yeL12QqU+/vKxWa9njlG35tkSSUgQCFm1yiSbS7VCIgTnYTADIomEiUZ5vDBvrqjV704dpsTJl2hbn+5HsM76NKWL33tRw954XAPfeEJHf+rhgxeLSWvWRHt9alNTXifqrlhcz559vV46ZYhe7VOhvV8q69Zx+rt3nlNl5wbvA2xlpVnGw6CKqMjzWkpgBEBB5gQek1nvnVCpjr4j9cwZo7T55MF5zwe6Gvp+Qhe9u1mX7X5M/VIeM6g1Neb3jerSvlTKJIs8Bq4+OSqml88c1aM599D3Eyr/YLv+7p1NGrIjjyRaQ4N0222MGyAQUkoBDYwELyAyf76pNPBwU/0v3/ihftV3ZI8GUDc37G7VqD8+5C3zUFtrygyjdKFOpaSbb/ZUurUrFtcTXx+vttOv1L8dVdiJx4C9SX1756O6avv93oJYDQ3S7NlcbMEk95CJbqa67g/HXaCPvnyMnjupyvW8O2bfR7ro3c069eM38gtOSiZAuWgRzQ6BsEgmpSlTPM0Jnh5Yr1+eO9b1GtMTZ32a0vU71+nq5AO5r0tRrRZpbZWmTvV0s/X0wHo9c8YoPdG3sNfrPvvSuqpzg4a98bi34AiJLURBW5t5ZG4egZBdsbheO/FC/fH4AUoed74++tIxjgHLPvvSumDvji8q7Qa9/Uz+VXYBu+8NTkAknTaPBsoxkG7rV6MVg2b22iDqNLB+/+V7dOXLi3JfqNeujcajej2erE8PrNfDFZN7VLmTjxt2t2rCb+blngDF49KDD9LwEeHT3CzdcYengfS9Eyr1XL8a/es5NxTkHO1aZec58xfFYDIQwZvrT46KqWXQTDWXT+y1RFaP5gX19dLCheE/Vum0NG9ezt58751QqafKbyna8Trr05Ru3rHSW3KrsZFl0AjnuTlxoudk1uaKWm0681q9ePLFBUk2D30/oSvefFJDd633luAKUDA5GAGRZFIaPtx1IN0Vi2vJxQuKGgixXazvfG6aexQtCpkGD+WwmytqtfCihoJXgxR0AhSLSRs3RiOABQbSLooRqMw7Q/vYY2T9gJDOCVovatBPB9xW1ECIbV7wg2enut9sx+PSz38e3gCth8reTOCq8RulCTj02ZfW+OQqfff5HMuu6OOHMPGYaH7vhEqtGzBdLf1G9+r1dOj7CX3r9bW5iwGkQCS2/B8QyREM+eSomJoH360Hvj7eN7/yqM42/fCFevdJfktLOIMiM2a4ZhX8ELjqqu6VJo3eusB9AhTWY4XoSCbNI8FdeoWUKjubuRHxlKFdvVoaP57jCYRkTrCtX43uqbqraFWiXm62f7BtiapfmhO9oIiH5KMfAlcZnpKQYQ9gIRo8BJXfO6FSq785V4+eXV3089DTKol4XFq2zLdJZn8HRHJcnLf1q9GdQ5tKVmWQa1Cdv3m6e1l42G60c0x8fnZpY8kyCj0eVAmKIKg8lKo/PbBe9w+8veTX0lv+0KzxW+5wD1BGpWwdYE5QMkPfT2jWM5Odg7Rhu9HOMd9+74RK3XX5ct8ks/IaNwiKIKg8LF/75KiYfnrZ0qIHQmz3UjNemuN+3+vjynv/BkRyXJxbL2rQXRf6v/HlDbtb9d9+NTr8N9ouE59Pjorpjqsf8+VA2lXdK03uJZgERRDEYMho5+uPHye5noLJBEWAQM8Jpn5ro2+qQtyuRYt/PdE5WRKWG+0c8+3NFbWaPWSxL6pC3G7GFm682fnpQQRFEMRgSI7emX6q2MrIGUz26f2UPwMiOS7O/+OqlpJHwvIxYG9SS3853Dl6vWFDsJ+k4DLx2RWLa/LVP/f1QNrVqM42/ah9nPOx2rKFPgYIRTDk6YH1WvDNub49N3OeiwRFAH9yeRpg0OYEkvTjF2Y4l4MH/UY7lTJzGof5tp+reA7VZ19aM38zL7zHCtGRIxjyyVEx/SS+puBPdSrkuRi0VRL+C4ik09KwYda17kGpNLBxDYoEuXlnc7M0YYL1pW39ajT9ilWBmviE+liBYMjnghJUHrA3qTnPTnHO+hEUAQJz7QliMCTjlj8069Zf2+c6qq2VVqwI3U1X0JKPGa4BLMYMBMHw4Y7n5a5YXDOGP+jLdhF5XTclXyWZj7jzzjvv9NXeu+km64cgU2L50gkDA/nZfu9vT9RvzvyWrtzVoi/vS2cPSps2mb/9yCOD80e1tTlOfJ4eWK8f/pcV+vcjjuRYAcWUTJqgssUnR8X0veqE2k+9LDDn4tP9RmvYey/ouPTu7Dds3ix9/LF01VUcd8AP156xY804GaJgiCT97oRB2ntCpYa+vtby4u+k44+XLr44WH/UD35gsrQhCoZIUtvpV6nfvo917rub7WNGEI8VomPGDOnhhx3vrWYOu1/v/u2JgbluvnnqMF3cuSH7fkqSHn9c+ta3pBNL//f4q0LEpYvu7Gs3+LY0KB+u1QdByjKk01JFhbXMclcsru98ayPHCig2l/LnoKzbd+Ka9aO/D1D6OYFDtUHQgyFdzfrtfOcn0ARpSa1LdW+QgyGexwyWP8OPXO6Dnx5Yr/9+STCrm1zvpyorTaK5xEvZ/BMQSSbNDXaIL85dPxirHrX/rYHpJzJmjLR+fagnPpJpDtTYOjjYxwrR4VBmGfRgiKcJ7o4dLGUDSsWhb8gnR8V03dgdoZkTuF6HfDKx78l8+74rVuuBr4/nWAHFlkhIg+33G0EOhnS993UMitTUSOvWlfT3O9w3e2rKFMcPQZiCIZK0rU+57rtitf3FceOs5aa+0tpqDYZ8clRMM4Y/GKqJz3MnVQX7WCFaNyQhDoZI0oJvztWuWNz+okOpPoAiTOQdmqhO/dbGUM0JXK9DHR3SkiX+/wNc5tthCoaE4lghGtJp6frrrS9trqgNfDAkc+871Wn1wPr1pjqmhPwREGltdSyzXPDNuaH87D/w9fHaXFGb/UIq5e+LdDotTZ1qfekn8TWBaPJT0GM1bx4Xcvj6huQn8TWhCIZI0t4vlWny1T/XeydUMsEF/GLmTOvm+65YHZprz6HXoYbLlukT23xnzhzHJ7b4QnNzpObbe79UphnDH3Q+VokE5y9Kb/p0xxYEs4csDs2fua1Puf7HVfa+RaqrM9VrJVL6gIjLDXbDZctCl1noavaQxcEbUJcssf5urRc1hKLHi9uxst6ELVrEgIrSmzzZuvlnlzaG7rzc+6UyzRyx1v4iE1yguBwSWtv61YSu2uDQiX3z4LvtL07z6WNq02npjjsiN9/+t6NizsdqwQLOYZRWIiGtzH48bRir7iXp0bOr1XpRg/3FWbNK9nuVPiCyapX1BvtnlzaGMrNw6MT+J/E19hfvucd/v3AqZc1Cv3dCpX464LbQH6t7L1nEgAr/aWqyPqZ8W78aNX5jWij/ZNdlhw7ZagC9wFIl+clRMd05tCn0f/oDXx+vbf1qsl9Yv96fgdkIz7ddj1VrK+cxSschoRXWqntJuuvC2falbCU8H0sbEEmnrTeT751QqebyiZE4D57oO8J+kV60yH9VIg5BmnsvWRTqSp6ux8q6dMavkx+En8M1NAo3JI4T3PZ2JrhAMbS2WoOxLYNmhnYinzUtqrrL/oLfEiXMt53HRJY+o1Sam63X0M0VtaGuupdMVZrj+ViCfnClDYi0tFhv+ld/c24kbrAzVgyamVcAoiRSKROkOcS2fjWhP2m7WuhU5kWVCErBIeMXlRsSJrhACTlUh0TlBlsy1WpPD6zPfmH9+pKuh/c6VkRpvv1vR8XspfodHSS1UHwOS9g+OSoWqr4hbtfOn13aaD8fV60q+u9T2oDI4uwD/t4JlaF7qkwuz51U5Vwl4penJjg8DskxmBPiAdVx8uPnRmoI52DqkPEL61IZ2/noOKBSJQL0nrY2x+qQKCW0JOn+gbfbX1i+3D+/pMNYEbX59k8H3Gbv3fdP/8Q5jeJyKAqI0jW0uXyi/Xx84IGi/y6lC4gkEtbBdHVInyqTi2NgoaXFH7+g5cO5rV+NnjupKnLHynHyY2mKBBR7MI3aNdRxQL33Xj4jQG955JGsTVGrDslwTJQ88og/klqtrYwVn9v7pTL96vzv2+dvJLVQTA5FAVFJaGXOx59etjT7hRIktUoXEFm71jqY/qrvyEieF8+dVGVvMNPcXPpfziET9MTXborksfq3o2LOvUSAEg+mUcv47f1SmVpsAeX2dn+VrANhkU5bEwC/Ov/7kasOyfjluWOzN6ZS0oYNpf/lHn+csaKLB23zN0l6+mnObZT0viqKQcpHz662P8WzyEmt0gVELNmF5/vfGNnBVJL+5Rs/tE/qSx21fuKJrE2fHBWL7GAqSf/73BuzN7IOFcVChd1BHLPSfipZB8LC4Sbf8UYzAp47qco+qbcEI4rKIXj1VPktCzjoNAAAIABJREFUkT1WjkktPyQgEQ0OFXZRLQqwXo+KfP9bmoBIMmn9Ix+umBzp88PxRCh11Npy4lpLDiPkib4j7GX6Tz7JhR69z6HCLqpByr1fKnMuWQdQ4Lv/57I27YrFI/NkGSfrBky3TBaeKO0v5RC8euycMZE+VpvOvLbkN2CIKCrssjgmtYrYiqA0AZGnnrJO5sP+HHQvk3pr1HrTptL9Ug7Bq38954bIX9Oe73+jfUAFeptDhV2UOZast7XxeQF6+frz7NnXR363JE6+xH4NKmXlKMErK8cE5Isvcn6jd1Fh5/3+t4itCEoTEHnmGSbzDn536rDsjaXMMLzwQtYmgleff4zPGJW9sb3dP08GQjhRYWef9zuVrD//PJ8ZoJevPxtPvzryu2Zbn3L7NWjzZl/dfBG8Mjdg1qc7WgJIQGEnKwQpbRxbERSpaqs0ARHL4PC7U4dyksglw1CqMj5LdcrLZ47iQEnafPJg+wtbtrBz0HuosHOeZ9gmuFRtAYWzfTvXHxcdtsoDSxKwKNJpa6+pl04ZwoGStPW0y7M3+qEJLsKNIKXVE31H2F8oUtVW8QMiDjf3v+9zPieJ5Dyp+P3vS/MLvfRS1iZrFUsE7f1Smf3JQK++ys5B73n55axNVNgZvz3l0uyNVG0BhfPKK1mbdnKD3WV+ZEnuvfZaaX6ZHTusm587qYoDJYfAUEcH4wV69x6YIKXzPXAJq7aKHxDp7MwvEMAHorQ32ZYTN3kcwasv5jknXujphhUoGMsSuj8eP4D9IpeqLYcbAwA9nxNYM+0R1Xn06Z72WXEuiNnV2NYkTkQ5BoYYL9BbHJLbBCldxpLf/rYoP7v4ARHLBdoaAIiwd8rOzt744YfF/0WSSevmV/tUcJAyx+qrZ2Zv3LuXHYPekU5bK+ysS+0iyLFqq5Rr+IEw2bMna9PbXz2D/ZLrxqYUjVUt88Z3jjmHg9SFtefLW2+xY9A7LMlt7oEPsFbKFGnZ8+Hs/oDcZJciw/DRR443HXA5eYvYFRkR45C5osIux4S/FAFlIIwsk1NrVQRKzzJvfO34geyXLt49pn/2xjffZMegd1gqyF+zBeUiyjHh7pCgL6TiB0QsE1PKLQ+W/vKx/vhFLAERIplACVkyV5RAe5jwl6pkHYiAj750DDsh1zzJJ1UHvplf+oS1IhvoLZYK8rdtSfCo7h6nhLtDgr6Qih8QYWKak296dNAcNPcuYvkQismSufr4yOPZLwdNLijfB4oaAKBCrVvX7kjPL33CWpFNHzj0FsvyXc7JQ8YTW0DZ8nSzQmPJTIBPIpQey4dQ8gkdGa6DWMv3uX4CPWfpXwQfY/luNyd29IED11BfKcKyZwIinEQAAuwdyi25fgLF4PCUQABA97Dk0B8IiARFJU13AABAiVSwRBQACoklhwcrVV9RAiJB0b8/+wAAAJRGGUtEAyVOw20A8KL4AZHLsyM/X/0rj0Ts6qJ3fbLe/QyaE+Yy9P0EOwEAwDgIM6f9jz3ZG4cMKf4vcnx2w+2+n7zFAcp1/3E5T75E8QzYm2QndDHo7WdK8nN9USHS/888ecaXTs9uTnjOuzQnBPzk1I/fYCcAgE/0S7X79nc77eM3OUDcf8BHjtn3ETvBB4ofELFUHZzy0Wscia4X6D2WR375JGJ99Kc0J+yq/APLo6BqatgxKJpT07vZCV1YM6Cck0BhWM6li0iUfOEspzlS377F/2XOPjt7vCCAfhBrNc+xx7JjAD8pwjlZ/ICIpergZCK0Bw9YH+30xwW6qsq6mfLYA05jcoESDwrWCV2kz0kyoECv6dOHm2y3Ke4nDk/iicWK/8ucmf0EMgLoB7NW85x/PjsGvcMSULYmViPMuhKhCOdk8QMiDl3Kucn+fK6xL+2vC7Tl6TacvAdYyy1Zf4reYrkO+Lk8uxSsN2eWTCmAbhg4MHsc/NNv2S+fs1bLlKq56QUXZG0asGs9BymzL5x6N5SimgeRVUYfzYPugUu1EqH4AZGyMutNNiWXxpD3tthfKNXj7ixPt/nanm0cKLfJhWUSAhSEw0SNplw5bs4smVIAhbnJ7pdqV599afaNHJY8X3hhaX6Z885jvHBR9d4L2RtjsdJU8yAaLAnTUjUR9eXwsneHw8la1es/uzRNVUeO5APh4MJ3n8/eGI+X7nF3lpO3snMDB0ouVU0OkxCgxxwma+ftpWqr681ZllI84QEIo8GDrZsdkzkRM2THSstkYaivxgtrICCC/u6dTdkbR41ix6D3WPpo8rCKA6wrECxFFL2hNAERy+AwYNd6MgyShtoqDkr5LHnLjcTJf+4gwyDpijeftJ+4ZBdQ5HPy7955jv0ilyBlqSrsgLApK7POSS5/84nI75pRnW32Fy6+uIS/VPYN/rB/+wWfY0kD37B8ZocNY8eg91iWPR/9aYp7qi/mspYg5UUXFeVnlyYg4jA4XBXxyoMBe5P2BrOXXlq6X6qqynqDP/ytp7j5sgWvLNVPQEFRteXIMUhZqgo7IIwsAZFLX3uES7MtKFTqJMm112bPNUlAalRnm71XwSWXcH6j95SXU7XlopRBytIERGIx64A66o8PRfqD8O2dj9r31YgRJR45sjMMVycfiPSxcgxeUW6J3kbVliOClEAR3HBD1qajP005V0hEQJ99aXtQqNSP/HZIQI7e1RLpj7Bj8Kq8nPMbRb+nGvWHZnZLiYOUh5fsLx8/Pvsmc9d652e4R8BV2+/P3njjjaX/xSwZhpP/3BHpJwP9w47l2Rv9ELxC+DlUbVkDqhFCkBIokvJy67ruG7Yvi+78rXODfTJvCR4VlVMCMsI3YH32pXXly4uyXyh18ArRYLmn6pdqj/T9r1T6IGXpAiJXXmnd/P2X74nkB+GG3a32wdQPk/nqausN2LdeXxvZwdSaCfJD8ArRYPmsDY344xR9W2EHhJHl5jHKSa0Jv5lX0sm8qx/+0HoDFtWk1vjkKoeJ+A2c1+h9DlWr1+9cF9ld4ocKu9IFRGIxqbY2a/OVLy+K5IDqOJj6ZTJvuQGL6rEan1xlD16NHcuFHsVhCZSe/OcO3bC7NbKDqW8r7IAwsszfpGgmtW7Y3WqvTps+3T83YJak1qStCyL50R1t+7vjcZbLoDjKyqzXzyi3IvBDhd3hJd0D3/seA2oQBlNJuv12jtXnN16Og2kRnpMNSDKBUssEN6p9mBwHU4KUQO8gqfUFa0IrFpNGj/bPDZglODxg1/rIVYnUvdJkHyssVTRAr3FoRRDVpJYfKuxKGxCpqrKWw1z58qLINAjssy+tHzw71d+Daeb3cThWURpQf7BtCYMp/GHmTCa4uQZTgpRA73FIat353LTI7ALHhNbMmf56upVDUitKVSKOCa3KSrM0HCgWh1YE1rlMVK+hRS4KOLzke8IyqZek2xOzon2D7bfB1OVY3fbizEgcqwF7k6p+aQ6DKfxhzJjIT3Alk/GzDqZz5/IZAXqTQ1JrwK71kXjijGtCa+JEf/2ysZhUX289VlHJSjvOtxkr4JN7qihWifilwq70ARGXAfWWkHfBHvp+wvkG22+DaeZYWUpk+6XaQ3+sJGnOs1PsLyxaxIUdTHBLdENizfjFYjxuFyiGu+6ybv5R+zj12ZcO9Z8+f/P04CS0JMcqkR88OzX0x8p1vk1CC6UwcaJjlUjYz8cMx4RWCa6hh/tijzgMqOO33BHapTN99qU165nJ9hfnzvXnYCpJDQ3Wzbf+ekKolznVvdKkfqn27BdqaniKBZjg+u2G5O67/XsNBcKkvNwamD3605Tmb54e2j/7ht2tGrJjpf0G248JLcncfDU2Wo/V4l9PDO2xcp1vk9BCqZSVOVaJ/GDbktD/+Wd9mnJOaJXgGuqPgEh5ufVG++hPU5rz7JRQTuznb55uj4rV1Pg7Wu0woEoK7bEa+n5C332+zv6iQzAPKPUEN8w3I5I0qrPN+YZk/Hg+G0CxzJ1rzXQO2bFSda80he7PHbA3aV8qk7nB9nMwduJEc4089G/atT6UxyrnfJuEFkp9PlqundUvzQl9P7g7n5vmqwq7w32zZ267zXqR7pdqD93EftZv59sn8rGY1BSAAWnaNPNUlQgcqwF7k7r7qevtLzY28pg2+HZAHbJjZWiXzpz1aUo/ah/nfEMCoHjKyqQ1a6wvfff5ulBdh/rsS2tB21j7RL621v832GVljtfI7z5fF7reL3WvNAV7vo3wXzuXLrXfKz4zObSVvnWvNGnArvXZL1RWmnvMEjjcVx+KtWutLw3ZsVI/fmFGKD4EN+xuta9jlMxJYbmx8aVly0J/rPrsS2vOs1PsE594vGQnLeD1ZuQHz04N3VK2PvvSWrjx5uDekABhNGKEdelMmK5Dffaltfyp6+zVBpWV0uLFwTlWDsuff9Q+LjRjxg27W52re4M030a4VVdbe2me/OeOUC5lc626X768ZL/XEXfeeeedvtlLJ54o9esnPfZY1kvnvrtZ/fZ9rLbTrwr0xfm//cqha259vVRXF5w/JuTHKjPxsfYNicWkJ5+kRwH845xzpLfekn73u4M2f3lfWlfualF7/xv14ZfC8Xmdm5ilb772sP28/OUvpSOP5PMAlMKQIdILL0i7d1uvQ78581t6729PDN+cQJL+z/8J1g32hReG9liFbr6N8LvsMumf/1lKH1wRcsre3wf+fqqrAXuTWvTEKH3ZVvnS0CDdeCMBkS8MGiR9/LG0eXOobrRdL87xuHT//cGbyIf0WOWc+LS2Wpd3ASUVj0v/+39L776bNcEd/Kff6el+o/XvRwQ7WPDjF2boypcdlsS0tZkgLYDSOPJI6corrRP7zI32H0+7XG8e3Tdcc4KWFnNDE7Rjdckl5nd3OFZBDYqEcr6NcCsrM4kty0qJc9/drK8cebxePPniQP+JZ32a0vKfX+Zcdd/YWNLz8nBf7rWFC609KiTpypcXadXTYwK1rurHL8xwvzj//OfBrTaYO9f1WAVt+cyAvUk9/K/D3Cc+lOTDrwPq2rXWLGW/VLuWP3VdoNejugZDGhvNY8EBlFYsJm3caL0OHf1pSo2tgwPVUyTnnKChIbiPbS0vN8fK4uhPU1r6y+GB6ylyyx+anefbsViw59sIt+pqx2WH332+Trf8oTmwf9pZn6aclzrHYqYNQ4nPy8P279+/35d7L52WrrtOarcPQu+dUKmZI9ZqWx//NrXssy+txb+eaG8c03XiEPTGnDmO1a5YXDOGP6h/O8rf5aSjOtv0o/Zx9hNWMheqhQu5aMPfWlul0aMdz8WGy5b5+rqZdzCE8xII1HVIkp4eWK//fom/z9sbdrfqB89ODf+cIMex+tmljWr8hr97pvXZl9bM38xzHifCMt9G+A0f7ng/FYTr5qEG7E1q6S+HO19Ht2zxRULLvwERDzfaknTfFav1wNf994jFnDfXYbs45zhWnxwV00/ia/REX/9VV/TZl9YPti1xbnbLTReCprlZmjDB8Vy84+rH9NxJ/q+oyBlUDnqFHRBmOW60/RqgzXlzHcY5QY5jta1fjaZfsUp7fdiLasDepOY8O8W5iodgCEJ0P7W5olazhyz25bmY971wS4tvKuz8HRDJfDAmTpTWrw/EoHrWpynNeGmO/TFfXSfxDz4Yvg7XHgJYfjuRh76f0KxnJtu7xmc0NEizZ3ORRrDMmOH6CFq/BpO7TnIXtI11PjcJhgD+l0hI118vpVKOb/nZpY1qLp/oi3lBzgl8mOcEOYIinxwV008vW6pHz/bHDUyffWmNT65yfmIFwRCE9H4qCNW+da80uZ+bPgqGBCMg4nFyL5lSovsH3l6SpRmZC/PorQvcB9KaGmnVqvBO4tNpafp0aeVK10G1ZdDMkk6APAWufHjCAoW8bm7rV6M7hzb5bjlbzoGUYAgQHMmkNHas1NHh25vtoe8nNGnrAudqtKjMCZJJU7LvEsDa1q9GKwbNLGmV4Q27WzXhN/Pck1lhTT6CoMjn/LicLWfFlk+vo8EJiEg5o9ddAyMPV0wuSuTsrE9TunnHSl21/X73QIgUrUqD+fOlOXNc3/LeCZV6qvyWogZGzvo0pe+/fI97KaxkBtDHHqNRI4LPQ9avZdBMXwyqniq2wh5UBsI6uc9R7ZuZF6wbMF0t/UYXZV4wqrNNN2xfljsQEqU5QSol3Xyz641YqQIjngIhklRbKy1ezDiB0AdFdsXiWnLxgpIvg/ZUseXTYEjwAiKSiV5PmZLzQp35kDzx9fFqO/3KgmZA++xL66rODRr2xuO5KwwyA+maNdF7OklbmzRunGumIXND9nz/G3stiJU5XqP++FDuSQ83XIjoufjeCZVa/c25JcnQes7O0ssHCLamJqmuztNbnx5Yr2fOGFXw3mMD9ib17Z2Pauiu9blvrKN6c51OS0uW5ExsZcaO3gxinfVpStfvXKerkw94O16rV0vjx3OuITzn4rx5OVdJbK6o1cKLGope8dtnX1qjd7Vo/JY73AsDfB5UDl5ApBuDaiY4sjUW129PuVTbjzsvrw9Mn31pXbB3hy56d7MGvf2Mt5vqrhP4uXOje3PtYQnNoQPrc/1q9NtTLtXmkwd3e3A969OULn7vRe9Bq8zJevfdDKQIJ4/B5GJWbt2wu9VboDIWk5YuZfkaEJZr0axZOatFMj45KqaXzxyl3506TMnjzs87Ezpgb1Ln7d2uv3vnOVV2bvB2U5257kQxmdVVW5uZx3Z422fb+tVo01l/r8TJl/QowTX0/YSuePNJDUq1u5fedxWPm8d30i8EYeTSLP/Qc/DR86f0+kMsMoHKnK0iMuemz5evBTcgIpls57RpngdV24dGkl47oVIff/nYL7Z/9a8fqv/nA+Y5727OfaCdDv6CBSy5yEgkpMmTPQ+qXW/O3j2mv7aedrkk6aVThmS9p+8nb+m0j9/84rh165jV1polTaw1RZjlkfWTTMZh05nX6ld9RxYsODKqs00Xvvu8t2WGTHKB8GptlaZOzVlF6jY3kPTF/CDj1I/f0Knp3frqf+zxfjN9qIYG6bbbqBTNjBurVuWVhOw6z36n7Gy989Uz9fZXz1Dn0adnvaf8g+0q++uH6r/nZZ360c78jxnJLERFHqskMgnmX59xTcGW03Qr2dzYaO7VfS7YAZGuN9sLFnQ7MFJQlZWmIoRMpvMEaN68vAMjvaamRpo5k8AVoiWRMJ/7du8Tz0yV3R+P/4Y6jz7d0wB71qcpnf5J5xfVdXkFK5nkAtG52V6woFuBkYKrr5duv53kiE0qJd1zT87S/aKJxcw4NnEigStES56rJDJVdq8dP1AvnTJEbx3d19NKiaHvJ9T3k7f0tT2v5FetJQUumRWOgEjXSf7ataW5WNfWSjfeGO3SynyUOjBSWyt973sEQhBtzc3SHXf06EZkVyyuj488/qBteS0r5KYEQGZecO+9eQVqC3Zj/f3vm3kB15zcMoGRRx4pTRCLQAhQkADlJ0fFtPOQyvseVdZJgS0MCFdAJCOdljZskB5/3HPvim6Jx0328sorGUS7KxPEKsbAWlkp3XKLNGYMxwvoer30S4aWQAiAZFJ69FFT9dtbSZNYzCSxRo0ikdXTuXaxglgkHoFsfqncCvgKiXAGRA69YG/ZIj3/vBlYe7KsJh6XLrxQGjpUuvhiJu2F1tZmjlN7e+EG15oa6e//XrrkEnoQALm0tkoPPVTc5YcEKgE4SSalF16QNm2SXnqp+wGSWEwaMkS6/HLzX6pDC39T9uKLJhH5xBOFCa5XVkojR5qg1eDBVIMAuc7BlSul++8vbnKrpka66abAt4oIf0DEaYD96CNp+3bpww/d3ztkiHTMMdxMl0IiceAYPfPMge2bNx842eNx6fjPy/XPPls680zpgguk00/nmAE9GVifftosqemNzF/XiS7ZPgD5zg0++kh69VX3951xhpkL9O1LsLUUY8jvf2+O0RtvSLt3H3ita8C9pubgceHYY828u6KCAAjQXW1tJjC5YUPvVNllks0hWiERzYAIAMCbTJXdq6+awGTXgGQ+g+fZZ1NdBwAAUCyZKrtt20xgMt8K4MpKqX9/U113wQWhrdYiIAIA6N4g+9FH7u8hywcAAOAf6bS0Y4f7eyK2OoKACAAAAAAAiJzD2QUAAAAAACBqCIgAAAAAAIDIISACAAAAAAAih4AIAAAAAACIHAIiAAAAAAAgcgiIAAAAAACAyCEgAgAAAAAAIoeACAAAAAAAiBwCIgAAAAAAIHIIiAAAAAAAgMghIAIAAAAAACKHgAgAAAAAAIic/7+9u4+Oqr7zOP5JItTBGhoJi7irx0008aF23eNDxTN40nowcd36UEOhsCIoXXawCRxdVywyNKgtrcfSi0toq1tYYDhwYKW6WCd2D4JgY4fFh8WnxEnWdV0FQyYYNCEwyW//ICSTyWTmTpJJMrnv1zlzDiEzl+F+72/uZ773d++lIQIAAAAAAByHhggAAAAAAHAcGiIAAAAAAMBxaIgAAAAAAADHoSECAAAAAAAch4YIAAAAAABwHBoiAAAAAADAcWiIAAAAAAAAx6EhAgAAAAAAHIeGCAAAAAAAcBwaIgAAAAAAwHFoiAAAAAAAAMehIQIAAAAAAByHhggAAAAAAHAcGiIAAAAAAMBxaIgAAAAAAADHoSECAAAAAAAch4YIAAAAAABwHBoiADAanajSwvEZysiI98jXwqqm5F43dbXqWLsAAADkt1Egkw0D1A4YhcYW66nXn1WZOzfmr13uMm0I/EmVxTm9Xlf5YbWs0sKoV+TK7VmnwPP3KZ+1C4AcQO2oHUB+Gw1MmggHnzVl7lwjqdfD5S4zGwINsV8YqjZWaWHUa3KN27POBEJhA2oHjO4BWGN8M6LHUbZxW+/GfVmb32Oyu55faGb4agyjDgA5gNpRO4D8NpqIDQPUDhjlQjuNJ8/VM8iW+kxDny/4wgS8V3UHWO8eE2ItAiAHUDtqB5DfRpn0uoZIVoFmrX1SnjxXxF8268DeN3Skzxd9qbf+GFDz6SlD3t9o7awCZTE5iNoBTpFzi556caWKIoZf6wsbtbm2Nfbzm3Zr3aZ3JbmU51mv5ytuUA5rEQA5gNpRO4D8NtqkZ6PaMkWuiC61q8RYNS0JOmsuk+fZSZeM2gEO1WJqrBLj6jHducJUR09dDh80VlFu378HAHIAtaN2APltlBAbBqgd4JQ02z2uTj2ig2rE+IwXdAGAHEDtqB1AfqMhwoYBagek1fALbjAzepyPernx+A8ZY8Im5C8zeT3+DgDIAaB2APlt9BIbBqgd4KjRFzHGOh95ZWZnYF3nmMw1RdZBLnwHgBwAageQ30Y9sWGA2gFOc8j4PZfHuI2iy+TN2GCCwzbwQsbvyYt5e0fllRl/omnXQcu4Y71WMnJbJkjhAXIAqB1Afos9soN+s8ZaZby9bpl9epyXGq9lGcvaEuP22emb4cSGAWoHOFCsW7kN6rneYRMKrDMed65RodcEbC+2wQR8XlMa9d7sXpgvHNxpKiJ35C638WwIcEE/gHCfZLgHtQMckt9CAbPB4+5xfaD4j75uu52eGU5sGKkO90O9TGqXmvXcYAK+NcaylvYe5C638axaY3yBBj6kkVaSumNAUkE2aoeWdGc/bBp8M2LsmG1OwY44yuAq9RlGJkC471+4J8ONjtqR4UB+63vM7TFed27EGPaYVb6eTYhw0G+sHuMy3rhLvwwnNoyhCPdDs0xqN/jrORz0mzXe0p7TQvt85Bp32bPMbEGaaDDV3qLeOyw70xqTDbL9+Hxr83tMdoxx5iqyTE2itxexM832+E0bxQYI9/0O92S4dK0dGQ7kt0R6zvSKn7Einxv/MzPdMpzYMIYm3Kd0mdQuNeu5zW882VFHESx/xM6yxQT9j0UdbeC8WaSDFhP0zTkVEl3XmdLbCpOe1hiVOo3f8hi3a/DO/ezamfZ6fzbGWMTYpSECEO4HGu7JcGlYOzIcyG82hrDPlHZlt8mm1PeRzefbbIikSYYTG8bQhPuULJPapXY9R+5M4xzx6HV0xKlTZ5E2urfZzh1Tr2nPdu8O0PNc0a6jedG3ZRzQDJFpxqpeF7HDtnEEkoYIQLgfxHBPhkvD2pHhQH5LvLyA1xR2vTbPePyJRu3pC6fanSGSHhlObBipDvep+8JA7VK8nrsGZKJu5hcm4L0q4n1PM1aQr2AYobrGWWRgjXHHAFvTnjvPE+110as2E7SmDV5DJHjU1FglPY5Cxj16SEMEINwPSrgnw6Vt7chwIL8lkbVsNiJHaYYTG0aqw33qvjBQu5GynqMvHsTOFCM2wRrfjMI+pjT3vmOArXM9w0dN6Gj0kwa7IdJmTPQXkHghl4YIQLgflHBPhkv3L2ZkOJDf4oi+1W3eHOMLDvw6jumW4cSGMQThPkVfGKjdSFnP7EyRDlq6O/R9hdReR/j6ez51ChoiJomL99EQAQj3gxXuyXBp/cWMDAfyW7zNP7pRceqW1hX+4ICupZNuGS5TaalVtWsWaf7WGslVIuvFn6k4Jyvi95NU/PjP5Mlzdb9i96NasOZttSdadNZ45YzPGty3m4plpq00q50tx/XfNUG1nv6xcIqmXDiWUmMEaVdT1UO6eZFfrcpV0condF+Bq/fTckr0uG+J3F2/OqLdi2aqrOrwML73kBpDJ08N8YIf6NcrS9T19lr9WrLgadW2U2GAHCDpwm9relFu98/1GzT7pjlaUVWnfn9MkOHSt3ZkOJDfEny+Xaq7floW8TpJ9du1vOQinT11oX65eb+anJDh0rA1HTElL173K2xC1RVRF8BK7nzG1B4JcOLRhdFSu+i3W228hS6uUI4RfEAvoiuf8IJxHxlf6eSoowXJHqkbzBkiUeeS25l2yQwRwKE5INbr+r6FKxnOibUjw4H8ZnfsnZ4x4k1y/KVbhhMbBg0RajcQLT0uFGR7aqhjnL7oWXdzt9iNAAAKQ0lEQVQd+/xwi54u2+e01SSWCRMObjAzIqZRJl5XUWOmK5BWmGrbt1FMYUPE2Jh2SUMEINwPYrgnw42m2pHhyG/kt9j/nt9YsW4r3o9TadItw6XVKTPtdRs1++Yl2t05ry3729frr+LOYpykb079es+/qt+g+XOf0GtNzLGmdoMwje21J3TvEv+pqZZ5Zdrx7H0qYGYtRoQj2r+xXEVXzNHW+q7JwGpev1KPv3ak7216/2Y9ue2N3hOl9y3XlKtna/X+I8P+P+PUGYAcEOcTQjnXebX7oF+Wx61ek8vrt2vF7Gt1Tv70ITgdg9qN3NqR4UB+6zH68otVXrlb/xfYolV9jL/lJVeoYOZG1Q1g8I3EDJfJhgFq19+AsFme2Su1r1VS3hz5Xoo+lxYYLidUt3qWrp3z1Knts8cg2q0VU/I1dfV7MV5zs865dp7W7utjfNVv1aJrZ2l13Ylh/v+5VHDXDzW3P+epAyDcD2K4p3bpWTsyHMhvMUefcq6ZocWVe9USCsjnLVVezzeh+q0LdNPsgXxuDn6G6zzrpfvRjwWMcLGn/3Q/Yt1/PNFrkr2SNKfMULs409iG7EroTLlkymWajv1BPmWma2p1X7d45JQZgBzQa9cRMD5vac/PDOnUrWNnbDDB8AD+X2S4NKodGY78huTGy05TUVoYNfbi3xp7SDJc+wnT3HjI1Bx83ezb87LZtetls2vXLrN7z6vmwJvvmA8/PmSOHT9pOkbHKTNjlV/+Uu/OT9fjc+0tvzTJ15x+vKTyfK4kTe2S1PSKVsy9/9TRkrw58r30K83Kd1FuYEhlKad4qSo9l0ccuPBrydIdOjL2Al3yjex+LrdVdVWrtXDqRI1fWKUTrGhgdOSAnGs0q2KbaoM7VVFaGHXE8yEt2fq/lMsJtSPDAcmlrfxb5N22R/7IvKVP9cKOver/fP2BZbhwS6Pe2LVD1k+W6aGHlmjpj5Zp+XKvvI88rPL7Fujev1+oJSt/pT1vf6yTHYnfTSZlBpJrhiy/9U6t2HeEHam9FKPiyroeQejzymLFjEH55dprKzAlsUyMcjFu8bj9J/JWHRpAI+QCXVSyqO9ppwAI90jP2pHhyG8YvLz10j4dODHIy7SR4dpbQwo8/1s98uA/qXLH6zr7oimaOWee7r33Ht0z7+9U/M0L9PFbe7Tt336vN2oP0RABUtYMcRXJ63uSHSkw7JmtRI9Xzo84x/UdrV+5SW+HaYQAGMpwjxFdOzIcMMC8db1uK548vBnOtKvxo//Spo3r5X//uKbOWqilP3pAP5g/V3fdNUd3z/sHPbzsx/Lcdq3GtH2uY232rkpCQwSwo/1trf5uxI501zZVXJfLegGGXe9pl627f6unX2tOPKzrdqi8sxGyXtO1yrJiX8APAOEe6Vs7MhwQQ5OqFuYrI2OcLln+WvIXNJ08UecM+DrESWa4jrBCH9fovQ9qlTX+XH3jykKdN/FsZWVmKjMzU5lZZyjnvMt155z5mvu9m3TJX3xNWRmJ3wUNESChw6oqm6lFu9mRAvacVKgxNIT/Xu8jhrZ2wxdOVs4ZN6rCH9SxvZVaXF6uxQ9M11UUECDcY5TUjgwHxNeqmk2b9R9NiUbeIdUc7J5Fm/j22ynIcBlGRkYmM0Mnjx7WwTeDCjWf7PmcMS5dduP39dijy3Tn9RdrrI33SENk2ML9UH9hoHb9/ZCoXT1Xd6x9R1KhZjzza3nj7Ejb9y/XJf3doQOjRkgfvPtJ948H/qg/HUnxiOg17dKGrOtU8fIWeYvzxfcggHBvP9yT4dKjdmQ4wJb6Z7RwqV9NfY8ONVWtlbXv9MyNq7R4nnvwrv9iN8NljtWE8y/VFX95qTLaDum536zUslXr9OZHjTp+IixjJClDY878qibkTlT2uLG2mh00RIYt3A/DFwZql/R6bq99WguW+NUql/I8T2rtrIK+vzg1vaIV91eqRmM0ccJ4vmDBgdrVtH+rfrlwluZv/zQikz6vZZ7lqqyqsxky29XcGNLJzkDb0PiFne5G7yuWAyDcpyTck+HSoXZkOMCuVtWvna6rpz/SO6s17dfm5TN1dclTqpck5crt/YUWX3PWMGS4TE288ErNume2vnXZJJ347H1tfLRct35nuh786b9o78F6hY61yiT73+fuynHvvGxCgS1mlcdtXNH3PS9datb4gyY8IpaJlKzn8EFjFeVG3XfbziPbuK13KQEc4l1jubP7MU6mGSsY6+7yDSbg85rSPFfXc11uj1nlC5iQnZFfY5kiV/e/E/ce9rEELePu72sBDKOQ8XvyEu/vQwHj85aavK7n5Rq3d4+tzxcyXBrVjgwHJDnu7DwKTalVHefzcogy3Ilmc2DnM2bB7UXmwklfM1mdz59UeJ255+FV5g8HgubYiQ7ba4KGSMrDfaqWidSu57AJ+csidrrJPPKMxx+iHGDcJT3u4u2c7YbUFlNjlXR9WaEhAhDu+x/uyXDpWTsyHGDPqSavZVnGspb2aGQosvHoWWmsNX4TDPd3HKcmwx39pNb8ftNTZvG9d5q/zpvc2RgZYwqm3G6sba+a0HF7TZEzmCIExNKswHMvdE4NA9C3S1W+93OVD8qyclRcWSdTOZBluFRQ/qJayqkM4Cw5Kq6sVWjedm2sPizpM+21fqHt9a1Rz8uV2/OPmv71K3XLgmLlc27EKKwdGQ6wJ0s518xQ+TWnfiovfyytMtz4yRfr5tn5ct/8Xb0XeEW/2+bThu1+1Vb/TqtXuZR77iRNd+drTILlZBhjDBsDAACS6lZr6kWLtE9StsevhsriwbtoGAAAAFKgQ82f1mrLP1fox6u26PCYPC1Y+nN5f3i7zh0Xv/PNRVUBAAAAAMDIZTp0/MvP9Vljo74Md0T9MlPZkwv0t3d8T9+64lx1tBxVQ+gzfXEynHCxNEQAAAAAAMCIFW47pn1bfq67v3+3/nXP/3TeySaCkc48a5zOco1Rlsbq7DPHy5WV+LxIGiIAAAAAAGDk6girpaFBb/9hl57b8e/6oKFFxhh1dHSoo6NDJ9taVfPWAb1ZG9JXzi/UZVdeonNciS+ZykVVAQDo1B5qVEPnn082NKpZUi6rBQAAYHhlZGjMmV+RK7NVu7as1sPtTSq98SpNGJelzIwOHa6t1qZnNur9lgm6Y95MfeeGy+SyceFsLqoKAIDa1bR/o5be/6DW7jty6q9cbnlWPqIH7uNOFAAAAMOpI9yqmlef0/r1Pv3nh0fVcKRJyhqrsWOyJNOudnOmJp1foBv+5lbdeXuJCv9snK3l0hABADhUk6oWXq2StXZvzjhNVnCnyvO57wwAAMBQ6wi3qfloSI2NIR3+5BN91tSsdmNkTKa+OuHPdXHhxbrgvHMS3mo3Eg0RAAAAAADgOFxUFQAAAAAAOA4NEQAAAAAA4Dg0RAAAAAAAgOPQEAEAAAAAAI5DQwQAAAAAADgODREAAAAAAOA4NEQAAAAAAIDj0BABAAAAAACOQ0MEAAAAAAA4zv8D9i55krjBNE0AAAAASUVORK5CYII=" } }, "cell_type": "markdown", "metadata": {}, "source": [ "\n", "
\n",
" \n",
" \n",
" | \n",
" \n",
" \n",
" \n",
" | \n",
"