Course details
Image Processing (in English)
ZPOe Acad. year 2019/2020 Summer semester 5 credits
Introduction to image processing, image acquiring, point and discrete image transforms, linear image filtering, image distortions, types of noise, optimal image filtering, non-linear image filtering, watermarks, edge detection, segmentation, motion analysis, loseless and lossy image compression
Guarantor
Course coordinator
Language of instruction
Completion
Time span
- 26 hrs lectures
- 26 hrs projects
Assessment points
- 51 pts final exam (45 pts written part, 6 pts test part)
- 10 pts mid-term test (8 pts written part, 2 pts test part)
- 39 pts projects
Department
Lecturer
Beran Vítězslav, doc. Ing., Ph.D. (DCGM)
Španěl Michal, Ing., Ph.D. (DCGM)
Zemčík Pavel, prof. Dr. Ing., dr. h. c. (DCGM)
Subject specific learning outcomes and competences
The students will get acquainted with the image processing basics theory (transformations, filtration, noise reduction, etc.). They will learn how to apply such knowledge on real examples of image processing tasks. They will also get acquainted with "higher" imaging algorithms. Finally, they will learn how to practically program image processing applications through projects.
Students will improve their teamwork skills and in exploitation of "C" language.
Learning objectives
To get acquainted with the image processing basics theory (transformations, filtration, noise reduction, etc.). To learn how to apply such knowledge on real examples of image processing tasks. To get acquainted with "higher" imaging algorithms. To learn kow to practically program image processing applications through projects.
Recommended prerequisites
- Computer Graphics (PGR)
Prerequisite knowledge and skills
Programming language C, basic knowledge of computer graphics, mathematical
analysis and linear algebra.
Study literature
- Hlaváč, V., Šonka, M.: Počítačové vidění, GRADA 1992, ISBN 80-85424-67-3
- Jahne, B.: Handbook of Computer Vision and Applications, Academic Press, 1999, ISBN 0-12-379770-5
- Russ, J.C.: The Image Processing Handbook, CRC Press 1995, ISBM 0-8493-2516-1
Syllabus of lectures
- Introduction, representation of image, linear filtration (6. 2. 2020 Beran slides, slides, slides, demo)
- Point image transforms (13. 2. 2020 Beran slides, demo.zip)
- Image acquisition (20. 2. 2020 Zemčík slides) - will be "moved to another date 18.2."
- Discrete image transforms, FFT, relationship with filtering (Zemčík 27. 2. 2020 slajdy a slides)
- Image distortion, types of noise, optimal filtration (5. 3. 2020 Španěl slides)
- Edge detection, segmentation (12. 3. 2020 Beran slides, examples)
- DCT, Wavelets (19. 3. 2020 Bařina slides)
- Watermarks (26. 3. 2020 Zemčík slides, demo)
- Test, project status presentation, mathematical morphology (2. 4. 2020 Beran slides)
- Green Thursday - lecture cancelled (9. 4. 2020)
- Resampling, warping, morphing (16. 4. 2020 Beran slides)
- Lecture from industry, motion analysis, conclusion (23. 4. 2020 Beran slides)
Syllabus - others, projects and individual work of students
Individually assigned project for the whole duration of the course.
Progress assessment
Mid-term test, individual project.
Course inclusion in study plans
- Programme IT-MGR-2 (in English), field MGMe, 1st year of study, Compulsory