Course details
Physical Optics
FYO Acad. year 2017/2018 Summer semester 5 credits
Electromagnetic waves and light. Fresnel's equations. Reflection at dielectric and metallic surfaces, polarization. Coherence, interference from thin films. Diffraction by 2D and 3D structures. Holography, holography code, reconstruction of optic field. Transmission of light through media. Dispersion, absorption. Scattering. Thermal radiation. Elements of image-forming systems. Analytical ray tracing. Matrix concept. Errors in image forming. Quantum mechanical principles of radiation. Spectra of atoms and molecules. Physical statistics. Photon. Stimulated and spontaneous emission. Lasers. The basis of luminiscence. Radioactive radiation.
Guarantor
Language of instruction
Completion
Time span
- 26 hrs lectures
- 13 hrs exercises
- 13 hrs projects
Assessment points
- 60 pts final exam (written part)
- 10 pts mid-term test (written part)
- 30 pts projects
Department
Subject specific learning outcomes and competences
The students will learn the basic principles of the physical optics needed for computer graphics. They will extend their general knowledge of optics and get acquainted with the modern optics. They will also learn how to apply the gathered knowledge on real tasks. Finally, they will get acquainted with further physics principles important for computer graphics.
Learning objectives
To learn the basic principles of the physical optics needed for computer graphics. Extend the general knowledge of optics and get acquainted with the modern optics. To learn how to apply the gathered knowledge on real tasks. To get acquainted with further physics principles important for computer graphics.
Prerequisite knowledge and skills
Basic knowledge of physics.
Study literature
- Schroeder, G.: Technická optika, SNTL, Praha, ČR, 1981
Fundamental literature
- Hecht, E., Zajac, A.: Optics, Addison-Wesley, Reading, UK, 1977, ISBN 0-201-02835-2
- Saleh, B. E. A, Teich, M. C.: Fundamentals of Photonics, Wiley 2007, USA, 978-0-471-35832-9
- Halliday, D., Resnick, R., Walker, J.: Fundamentals of Physics, Willey, New York, USA, 1997, ISBN 0-471-10559-7
Syllabus of lectures
- Electromagnetic waves and light.
- Light at the interface of two media, Fresnel's equations. Reflection at dielectric and metallic surfaces, linear and elliptical polarization. Polarizers.
- Coherence. Interference from thin films. Interference filters. The Fabry-Perot interferometer.
- Diffraction by edges, slits, gratings and 2D and 3D structures. Holography.
- Transmission of light through media. Dispersion, spectrometers, rainbow. Absorption. Scattering.
- Thermal radiation. Energy and light quantities. Receptors, human eye. Spectral sensitivity of receptors. Filters and color dividers.
- Elements of image-forming systems. Mirrors, prisms, lenses, the microscope, the telescopes. The Fermat principle.
- Analytical ray tracing. Matrix concept. Aperture and field stops. Magnification, resolving power. Errors in image forming. Notes on fiber optics.
- The quantum mechanical concept of radiation. The wave function, the Schroedinger equation, the uncertainty principle. The tunnel effect.
- Energy levels, the Pauli exclusion principle, energy bands. Spectra of atoms and molecules. Selection rules.
- Physical statistics. Photon. Stimulated and spontaneous emission. Inversion population. Lasers.
- The basics of luminiscence, phosphors, fluorescence, phosphorescence.
- Radioactive radiation.
Progress assessment
Study evaluation is based on marks obtained for specified items. Minimimum number of marks to pass is 50.
Controlled instruction
- Mid-term exam - up to 10 points
- Project - up to 30 points
- Written exam - up to 60 points
Course inclusion in study plans