Course details

Machine Level Programming

ISU Acad. year 2017/2018 Summer semester 6 credits

Current academic year

Numeral systems. Unsigned and signed numbers representations, arithmetic in binary system. Machine language, assembly language, assembler. Intel Pentium processors architecture (registers, main memory organization, interrupt system). Integer instruction set. Programming in machine language. NASM assembly language, symbolic instruction, directives, macroinstructions. Assembling and linking. Standard control transfer and passing of parameters in procedures and functions. Operation system services. Programming of PC peripherals (videoRAM, mouse, speaker). Real numbers representation, IEEE standard. FPU architecture and instruction set. FPU programming. Introduction to FITkit.

Guarantor

Language of instruction

Czech, English

Completion

Credit+Examination (written)

Time span

  • 39 hrs lectures
  • 26 hrs pc labs

Assessment points

  • 60 pts final exam (written part)
  • 16 pts mid-term test (written part)
  • 24 pts numeric exercises

Department

Subject specific learning outcomes and competences

Students acquaint with architecture of Intel Pentium processors (real mode) including FPU unit and learn to use the most important integer and FPU instructions. Further they learn assembly language NASM and they will be able to create programs in this language and to compile these programs into executable ones. Students acquire basic knowledge of control transfer and parameters passing and of operation system services and they will be able to apply this knowledge in practice.

Students acquire basic knowledge of principles of processor architecture and operation that belongs to basic knowledge of all IT specialists. They learn to solve simple problems in assembly language and maintain proper documentation of elementary computer programs.

Learning objectives

To acquaint students with assembly programming directed at PC with Intel Pentium Processors, namely with numeral systems, representations of unsigned and signed numbers, with arithmetic in binary system and with real numbers representation. Further with Intel Pentium basic architecture, types of operands and their references in registers and memories, integer and FPU instruction set, assembly language and typical programming constructions.

Prerequisite knowledge and skills

None.

Study literature

  • Marek, R.: Assembler pro PC - učíme se programovat v jazyce, Computer Press, 2003, ISBN 80-7226-843-0
  • Duntemann, Jeff. Assembly language step-by-step: programming with linux. 3rd ed. Indianapolis: Wiley, 2009. ISBN 978-0470497029.
  • Irvine, Kip R. Assembly language for x86 processors. Seventh edition. Boston: Pearson, 2015. ISBN 978-0133769401.
  • Intel® 64 and IA-32 architectures software developer’s manual combined volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4. Webové stránky společnosti Intel [online]. [cit. 2022-01-06]. Dostupné z: https://www.intel.com/content/dam/develop/public/us/en/documents/325462-sdm-vol-1-2abcd-3abcd.pdf
  • The Netwide Assembler: NASM, Quick reference Guide [online]. [cit. 2022-01-06]. Dostupné z: https://www.nasm.us/xdoc/2.15.05/nasmdoc.pdf

Fundamental literature

Syllabus of lectures

  1. Introduction, numerical systems, arithmetic. 
  2. Machine code (language), assembly language, assembler.
  3. Real mode of Pentium processors: registers, operands, instruction formats, memory addressing, interrupts.
  4. Pentium processor instruction set. Integer instructions.
  5. Integer instructions, continuation.
  6. Integer instructions, continuation.
  7. Principles of programming in machine language, typical control constructions.
  8. Assembly language.
  9. Assembly language, continuation.
  10. Modules, libraries, operational system services. Procedures and functions, standard control transfer and passing of parameters.
  11. FPU of Pentium processors.
  12. FPU instruction set.

Syllabus of computer exercises

  1. Principles of symbolic language programming.
  2. Simple programs in assembly language.
  3. NASM assembler and LINK linker.
  4. Operation system services. Programming of PC peripherals.
  5. Standard control transfer and passing of parameters in procedures and functions.
  6. Individual more complex programs.
  7. FPU programming.

Progress assessment

At least 15 points earned during semester.

Controlled instruction

  • Mid-Term written test
  • Evaluation of activity in computer exercises

Course inclusion in study plans

  • Programme IT-BC-3, field BIT, 1st year of study, Compulsory
Back to top