Course details

Formal Languages and Compilers

IFJe Acad. year 2016/2017 Winter semester 5 credits

Current academic year

This course discusses formal languages and their models. Based on these models, it explains the construction of compilers. The lectures are organized as follows: (I) Basic notions: formal languages and their models, grammars, automata; compilers. (II) Regular languages and lexical analysis: regular languages and expressions, finite automata, lexical analyzer; symbol table. (III) Context-free languages and syntax analysis: context-free grammars, pushdown automata, deterministic top-down syntax analysis (recursive descent), the essence of deterministic bottom-up syntax analysis. (IV) Semantic analysis and code generation: intermediate code generation, optimization, code generation.

Guarantor

Language of instruction

English

Completion

Credit+Examination (written)

Time span

  • 26 hrs lectures
  • 13 hrs exercises
  • 13 hrs projects

Assessment points

  • 55 pts final exam (written part)
  • 20 pts mid-term test (written part)
  • 25 pts projects

Department

Subject specific learning outcomes and competences

Fundamental familiarity with the theory of formal languages. Ability of a compiler construction.

Learning objectives

Familiarity with formal languages and their models. Grasp of compiler construction.

Prerequisite knowledge and skills

Discrete mathematics.

Study literature

  • Copy of lectures.
  • Meduna, A.: Automata and Languages. London, Springer, 2000.

Fundamental literature

  • Parsons, T. W.: Introduction to Compiler Construction. Freeman, New York, 1992.

Syllabus of lectures

  • Basics of formal languages: alphabet, strings, languages.
  • Introduction to compiler design: structure of a compiler.
  • Regular languages and their models: regular expressions, finite automata.
  • Variants of finite automata.
  • Lexical analysis: lexical analyzer, symbol table.
  • Context-free languages and their models: context-free grammars, pushdown automata.
  • Pushdown automata and general parsing.
  • Deterministic top-down syntax analysis: recursive descent.
  • Deterministic bottom-up syntax analysis: simple precedence analysis.
  • Chomsky hierarchy and the corresponding models. Remarks and summary.

Progress assessment

To be allowed to take the final exam, the student has to obtain 20 points during the semester; out of these 20 points, at least five points have to be obtained from the project.

Controlled instruction

Midterm. Checking the project solution by the teacher.

Back to top