
A Uniform Framework for Handling Position Constraints in
String Solving

YU-FANG CHEN, Academia Sinica, Taiwan
VOJTĚCH HAVLENA, Brno University of Technology, Czech Republic
MICHAL HEČKO, Brno University of Technology, Czech Republic
LUKÁŠ HOLÍK, Brno University of Technology, Czech Republic and Aalborg University, Denmark
ONDŘEJ LENGÁL, Brno University of Technology, Czech Republic

We introduce a novel decision procedure for solving the class of position string constraints, which includes
string disequalities, ¬prefixof , ¬suffixof , str .at, and ¬str .at. These constraints are generated frequently in
almost any application of string constraint solving. Our procedure avoids expensive encoding of the constraints
to word equations and, instead, reduces the problem to checking conflicts on positions satisfying an integer
constraint obtained from the Parikh image of a polynomial-sized finite automaton with a special structure.
By the reduction to counting, solving position constraints becomes NP-complete and for some cases even
falls into PTime. This is much cheaper than the previously used techniques, which either used reductions
generating word equations and length constraints (for which modern string solvers use exponential-space
algorithms) or incomplete techniques. Our method is relevant especially for automata-based string solvers,
which have recently achieved the best results in terms of practical efficiency, generality, and completeness
guarantees. This work allows them to excel also on position constraints, which used to be their weakness.
Besides the efficiency gains, we show that our framework may be extended to solve a large fragment of
¬contains (in NExpTime), for which decidability has been long open, and gives a hope to solve the general
problem. Our implementation of the technique within the Z3-Noodler solver significantly improves its
performance on position constraints.

CCS Concepts: • Theory of computation → Regular languages; Automated reasoning; Logic and verification;
• Security and privacy→ Logic and verification.

Additional Key Words and Phrases: string constraints, stabilization, word equations, SMT solving, disequality,
length constraints, regular languages, monadic decomposition, not contains

ACM Reference Format:
Yu-Fang Chen, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál. 2025. A Uniform Framework
for Handling Position Constraints in String Solving. Proc. ACM Program. Lang. 9, PLDI, Article 169 (June 2025),
26 pages. https://doi.org/10.1145/3729273

1 Introduction
Solving string constraints (string solving) has been motivated initially by the analysis of string
manipulations in programs, especially in preventing security risks such as cross-site scripting or
SQL injection in web-applications. In the last two decades, the lively research community has
managed to develop a number of string constraints solvers (overviewed in Sec. 9) that may be

Authors’ Contact Information: Yu-Fang Chen, Academia Sinica, Taipei, Taiwan, yfc@iis.sinica.edu.tw; Vojtěch Havlena,
Brno University of Technology, Brno, Czech Republic, ihavlena@fit.vutbr.cz; Michal Hečko, Brno University of Technology,
Brno, Czech Republic, ihecko@fit.vutbr.cz; Lukáš Holík, Brno University of Technology, Brno, Czech Republic and Aalborg
University, Aalborg, Denmark, holik@fit.vutbr.cz; Ondřej Lengál, Brno University of Technology, Brno, Czech Republic,
lengal@fit.vutbr.cz.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/6-ART169
https://doi.org/10.1145/3729273

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

HTTPS://ORCID.ORG/0000-0003-2872-0336
HTTPS://ORCID.ORG/0000-0003-4375-7954
HTTPS://ORCID.ORG/0009-0003-2428-8547
HTTPS://ORCID.ORG/0000-0001-6957-1651
HTTPS://ORCID.ORG/0000-0002-3038-5875
https://doi.org/10.1145/3729273
https://orcid.org/0000-0003-2872-0336
https://orcid.org/0000-0003-4375-7954
https://orcid.org/0009-0003-2428-8547
https://orcid.org/0000-0001-6957-1651
https://orcid.org/0000-0002-3038-5875
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729273
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3729273&domain=pdf&date_stamp=2025-06-13

169:2 Yu-Fang Chen, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál

capable of realizing this goal. String constraints solvers are being integrated within SMT solvers
such as Z3, cvc4/5, or Princess [11, 33, 51, 69], and the string category has been introduced in the
SMT competition [1]. Since string solving is ubiquitous and string constraint logics are general,
string solving keeps finding also new applications, such as analysing Simulinkmodels [42], verifying
UML models [45], or checking cloud access policies at Amazon Web Services [70].

The competition of string-solving methods is lively. While it was long dominated by the strongest
industrial grade SMT-solvers Z3 and cvc4/5, the leading positions have been recently taken by
approaches based on finite automata. They include Z3-Noodler [24], a recent winner of string
categories of SMT-COMP [2], OSTRICH [20, 22], which supports the richest palette of string
constraints with strong completeness guarantees, Z3str3RE [14, 16], and loosely also one of the
engines of Z3 [72]. Automata-based solvers excel especially in handling complex regular constraints
with word equations and related constraints, such as transducer constraints or ReplaceAll.

Position constraints. In this paper, we aim at remedying a weakness of automata-based techniques,
which is handling a class of constraints that we call position constraints. The so-called existential

position constraints can be reduced to checking disequality of letters at two specific positions
in strings (called a mismatch), where the positions are determined through measuring lengths
of certain sub-strings—i.e., counting their letters and comparing the counts. The prime example
of such constraints are string disequalities (negated word equations) like 𝑥𝑦𝑥 ≠ 𝑦𝑥𝑧, which can
be reduced to the existence of mismatching positions in the two strings that are at the same
distance from the strings’ start.1 Other existential position constraints include ¬prefixof , ¬suffixof ,
str .at, and ¬str .at. A special place among position constraints is occupied by ¬contains(𝑡𝑥 , 𝑡𝑦)
where 𝑡𝑥 and 𝑡𝑦 are concatenations of variables, which does not reduce to a simple existence
of mismatching positions (i.e., it is not an existential constraints), but is equivalent to a string
formula with quantifier alternation, much harder to solve than existential formulae. Informally, the
formula says that there exists a string assignment to variables such that for the two strings 𝑤𝑥
and 𝑤𝑦 obtained by concatenating assignments of the variables in 𝑡𝑥 and 𝑡𝑦 , it holds that for all
alignments of the start of𝑤𝑥 inside𝑤𝑦 , the letter at some position of𝑤𝑥 does not match the letter
at the aligned position in𝑤𝑦 . The formula falls into the ∀∃ fragment of the string theory, which
is undecidable [35, 58]; the decidability of ¬contains is a known open problem [3]. Solvers use
heuristics that handle only very simple cases or rough approximations.
Position constraints are practically relevant, for instance, a disequality may be generated in

symbolic execution at every else-branch of a program that tests the equality of strings. Some solvers
may be able to guess the right solution for satisfiable position constraints with ease (CVC5 excels
in this), but especially unsatisfiable position constraints may be much harder; no current solver
can handle them satisfactorily.
The automata-based approach particularly reduces position constraints into combinations of

equations and length constraints. The work [23] even shows a version of this reduction that allows
one to freely add disequalities to one of the largest known decidable fragments of basic constraints
(word equations, regular membership, and string length constraints), the chain-free fragment [8],
while preserving decidability. However, since equations are expensive, the price of the reduction
may be very high. Indeed, essentially all string solvers use exponential-space algorithms to deal
with word equations, including the automata-based ones, and the problem is opaque even in theory:
equations with regular memberships are in PSpace [44, 64], but decidability of their combination
with length constraints is a long-standing open problem.

1On a high-level, we might write such a formula as ∃𝑖 ∈ N : 𝑖 ≤ max(len(𝑥𝑦𝑥), len(𝑦𝑥𝑧)) ∧ (𝑥𝑦𝑥) [𝑖] ≠ (𝑦𝑥𝑧) [𝑖] where
len denotes the length of the corresponding string obtained by substituting into the variables and 𝑡 [𝑖] denotes the 𝑖-th
position in the string given by the term 𝑡 .

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

A Uniform Framework for Handling Position Constraints in String Solving 169:3

The gist of our approach to solving position constraints. In contrast, the procedure we propose
in this paper starts only after the rest of the constraint is solved—transformed into the monadic

decomposition [22, 38, 74], i.e., a formula obtained by transforming word equations into regular
constraints—and then solves position constraints quickly and efficiently by other means. The
specific technical problem we are solving is therefore satisfiability of Monadic-Position constraints:
(MP) Satisfiability of a quantifier-free conjunction of a monadic constraint (a conjunction

of regular membership constraints and linear integer arithmetic (LIA) constraints
over string lengths, a.k.a. length constraints) and a conjunction of position con-
straints with string terms as parameters (e.g., 𝑥𝑦𝑥 ≠ 𝑦𝑥𝑦, ¬contains(𝑥𝑦𝑥,𝑦𝑥𝑦)).

Monadic decomposition is at the heart of how automata-based solvers, such as Z3-Noodler and
OSTRICH, solve string constraints. The fact that position constraints can be ignored in this process
is the main distinguishing feature of our approach and the key to its efficiency. Translating the
entire MP to a monadic constraint first, as automata-based solvers currently do, takes exponential
space, while our algorithm runs in NP for existential position constraints and in PTime for a single one.
Moreover, our framework also allows to make a step towards showing decidability of MP with

¬contains. Namely, it allows to translate ¬contains(𝑡, 𝑡 ′) combined with a monadic constraint to
LIA with a nested universal quantifier when the languages constraining variables in terms 𝑡 and 𝑡 ′
are flat (expressible as a concatenation of a fixed number of parts, where every part is an iteration
of a single word). The resulting quantified LIA formula can be solved by an off-the-shelf solver
(SMT-solvers seem to be capable of solving the obtained formulae efficiently). To the best of our
knowledge, our algorithm is the first one for exact reasoning with ¬contains that is complete for
a large and interesting fragment of the problem.

The technical basis of our approach. Technically, given a set of position constraints and automata-
represented regular membership constraints in the monadic decomposition, our procedure derives
a LIA constraint that relates positions of mismatches and lengths of the strings assigned to variables.
Repetition of variables, e.g., 𝑥𝑦𝑥 ≠ 𝑦𝑥𝑦 or ¬contains(𝑥𝑦𝑥,𝑦𝑥𝑦), the main limiting factor of decidable
fragments, is handled too: The length of every variable is extracted from a single run of its automaton,
and its contribution to a mismatch position in the string is counted with the multiplicity equal to
the number of the occurrences of the variable that precede the mismatch position. For a single
existential position constraint, the LIA formula is constructed by taking the formula for the Parikh
image of an automaton with a specific structure, enriched with constraints that enforce seeing
a mismatch of symbols at at the proper positions.
The construction is more complex with multiple position constraints that share variables. The

straightforward approach would be to enumerate an exponential number of cases corresponding
to all orders of mismatches in the position constraints. E.g., for the constraint 𝐷𝑎 ∧ 𝐷𝑏 ∧ 𝐷𝑐 , we
would need to consider orders like (𝐷1

𝑎, 𝐷
2
𝑎, 𝐷

1
𝑏
, 𝐷2

𝑏
, 𝐷1

𝑐 , 𝐷
2
𝑐), (𝐷1

𝑎, 𝐷
1
𝑏
, 𝐷1

𝑐 , 𝐷
2
𝑎, 𝐷

2
𝑐 , 𝐷

2
𝑏
), etc., where 𝐷𝑖𝑥

denotes the 𝑖-th mismatch in 𝐷𝑥 . The generated LIA formula would then be exponential (more
precisely in 2Θ(𝑛 log𝑛)) to the number of position constraints. Our NP algorithm for MP depends on
the discovery of an equivalent polynomial encoding. The encoding combines the Parikh image of
a polynomial-size automaton that generates any number of mismatch positions in any order with
an additional arithmetic constraint that rules out the “wrong” orderings.

Moreover, we show that MPwith a single existential position constraint is in PTime by a reduction
to 0-reachability in a one-counter automaton [9, 59].
Practical impact on performance. Our experiments show that our framework substantially im-

proves the speed and effectiveness of the automata approach to string constraint solving whenever
position constraints are involved. On position-heavy cases from our benchmark (obtained from
symbolic executions of large software projects), the string solver Z3-Noodler extended with our

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

169:4 Yu-Fang Chen, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál

decision procedure for position constraints is the fastest of all solvers and has less timeouts than
cvc5, the only other solver that handles these benchmarks well. The performance of cvc5 and the
modified Z3-Noodler is orthogonal, reflecting the large difference between the two approaches,
and together they solve all but 10 out of the ∼150,000 benchmarks. Z3-Noodler also demonstrates
its ability to solve hard instances of ¬contains on an artificial benchmark made to test solvers on
constraints involving ¬contains, where all other solvers fail.

Summary of contributions. Our contributions can be summarised as follows:
(1) We propose a procedure for handling position constraints in the automata-based approach

efficiently, without the need of including them into a procedure for monadic decomposition.
(2) We show that MP is in NP for existential position constraints and in PTime for a single one.

This contrasts with the exponential cost of monadic decomposition.
(3) We propose the first algorithm for exact reasoning with ¬contains that is guaranteed to

work on a large and interesting fragment of the problem, namely, the MP where the regular
languages restricting variables within the terms in the arguments of ¬contains are flat, and
show that the problem is in NExpTime.

(4) Experimental results show that our techniques significantly improve the performance of one
of the fastest string solvers, Z3-Noodler, on position constraints.

Context of our work. Our focus is on the basic constraints that must be handled by a universal
practical string solver: combinations of word equations, regular constraints, and length constraints
(as witnessed, e.g., by the SMT-COMP benchmark [65]). Besides the PSpace-completeness of classical
decidability of equations with regular constraints by Makanin, Plandowski, and Jeż [44, 57, 64],
decidability of the full basic logic is a long-standing open problem, and it is open even when
equations are quadratic, where only two occurrences of every variable are allowed [55]. The
known undecidability results are concerned with extensions of this logic with other than basic
constraints (here called extended constraints), and are thus only marginally relevant to our current
work. These fragments concern unrestricted ReplaceAll, transducer-defined relations, string-integer
conversions, and other extended constraints [19–22, 31, 32, 54]. The approach that started at [6] led
to a discovery of the largest decidable fragment of the basic constraints, the chain-free fragment [8].
It generalizes the earlier acyclic fragment of [54] and the larger straight-line fragment of [6]. The
other solvers, especially Z3 and cvc5, which use different approaches usually revolving around the
congruence closure [34], can handle similar class of constraints in practice, but do not come with
strong theoretical guarantees. Limited extensions of straight-line or chain-free logics with extended
constraints were shown decidable in [19–22, 31, 32, 54]. The automata-based approach transforms
equations and regular constraints to a monadic decomposition (a disjunction of conjunctions of
regular constraints of at most doubly exponential size), which is in turn transformed to a LIA
formula and solved using a LIA solver. The decidable fragments are all based on prohibiting forms
of “cyclic dependencies” of string variables in word equations, and range from PSpace-complete to 2-
ExpSpace, depending on the allowed extended constraints. The position constraints that we discuss
here are in this framework normally solved by a reduction to the basic constraints. Essentially, after
obtaining doubly exponential monadic decomposition of the other basic constraints, the original
approach needs to run the doubly exponential space procedure to solve the position constraints.
Our work allows to replace the second 2-ExpSpace phase by an NP-algorithm (or NExpTime for
our fragment of ¬contains), or even by a PTime one in the simplest case of one disequality.

2 Preliminaries
We fix a finite non-empty alphabet Γ. A word or string over Γ is a (finite) sequence of symbols
𝑤 = 𝑎0 . . . 𝑎𝑛−1 from Γ, its length |𝑤 | is 𝑛, and the symbol at index 0 ≤ 𝑖 < 𝑛 is denoted as𝑤 [𝑖] = 𝑎𝑖 .

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

A Uniform Framework for Handling Position Constraints in String Solving 169:5

𝜈 |= 𝑥𝑠 ∈ 𝐿 ⇔ 𝜈 (𝑥𝑠) ∈ 𝐿,
𝜈 |= 𝑡𝑖 ≤ 𝑡 ′𝑖 ⇔ 𝜈 (𝑡𝑖) ≤ 𝜈 (𝑡 ′𝑖),
𝜈 |= 𝑡𝑠 = 𝑡 ′𝑠 ⇔ 𝜈 (𝑡𝑠) = 𝜈 (𝑡 ′𝑠),

𝜈 |= 𝑥𝑠 = str .at (𝑡𝑠 , 𝑡𝑖) ⇔
{
𝜈 (𝑥𝑠) =𝑤𝑠 [𝜈 (𝑡𝑖)] ∧ 𝜈 (𝑡𝑠) =𝑤𝑠 if 𝜈 (𝑡𝑖) < |𝑤𝑠 |,
𝜈 (𝑥𝑠) = 𝜖 otherwise,

𝜈 |= prefixof (𝑡𝑠 , 𝑡 ′𝑠) ⇔ ∃𝑧𝑝 ∈ Γ∗ : 𝜈 (𝑡𝑠) ◦ 𝑧𝑝 = 𝜈 (𝑡 ′𝑠),
𝜈 |= suffixof (𝑡𝑠 , 𝑡 ′𝑠) ⇔ ∃𝑧𝑠 ∈ Γ∗ : 𝑧𝑠 ◦ 𝜈 (𝑡𝑠) = 𝜈 (𝑡 ′𝑠), and
𝜈 |= contains(𝑡𝑠 , 𝑡 ′𝑠) ⇔ ∃𝑧𝑐 , 𝑧′𝑐 ∈ Γ∗ : 𝑧𝑐 ◦ 𝜈 (𝑡𝑠) ◦ 𝑧′𝑐 = 𝜈 (𝑡 ′𝑠).

Fig. 1. Semantics of atomic predicates for a variable assignment 𝜈

We use 𝜖 to denote the empty word and ◦ denotes string concatenation (we sometimes omit the
operator, i.e., 𝑎 ◦ 𝑏 = 𝑎𝑏). N denotes the set of natural numbers {0, 1, . . .}.
A nondeterministic finite automaton (NFA) is a tuple 𝐴 = (𝑄,Δ, 𝐼 , 𝐹) where 𝑄 is a finite set of

states, Δ ⊆ 𝑄 × Γ × 𝑄 is a transition relation with transitions denoted as 𝑞
𝑎−→ 𝑝 for 𝑞, 𝑝 ∈ 𝑄

and 𝑎 ∈ Γ, and 𝐼 , 𝐹 ⊆ 𝑄 are sets of initial and final states respectively. A run R of 𝐴 over
a word 𝑤 = 𝑎1 . . . 𝑎𝑛 ∈ Γ∗ is a sequence of transitions 𝑞0

𝑎1−→ 𝑞1
𝑎2−→ · · · 𝑎𝑛−−→ 𝑞𝑛 s.t. 𝑞0 ∈ 𝐼 and

∀1 ≤ 𝑖 ≤ 𝑛 : 𝑞𝑖−1
𝑎𝑖−→ 𝑞𝑖 ∈ Δ. The run R is accepting if 𝑞𝑛 ∈ 𝐹 , and the language of 𝐴 is the set

𝐿(𝐴) = {𝑤 ∈ Γ∗ | there exists an accepting run of 𝐴 over𝑤}. A language 𝐿 ⊆ Γ∗ is regular iff
there exists an NFA 𝐴 such that 𝐿 = 𝐿(𝐴). We sometimes define regular languages using regular
expressions with the standard textbook notation.
Given a set 𝑈 , let #𝑈 = {#𝑢 | 𝑢 ∈ 𝑈 } denote the set of elements obtained from 𝑈 ’s elements by

prepending them with #. The Parikh image of a run R, denoted as PI R , is a mapping PI R : #Δ → N
such that PI R (#𝑡) denotes the number of occurrences of transition 𝑡 in R. We say that𝐴 is flat2 if for
every two runs R1 and R2 it holds that if PI R1 = PI R2 , then R1 = R2. Structurally, this means that
flat automata have the form of directed acyclic graphs (DAGs) connecting simple (i.e., non-nested)
loops. We say that a regular language 𝐿 is flat iff there exists a flat NFA 𝐴 s.t. 𝐿 = 𝐿(𝐴). For instance,
the language (𝑎𝑏)∗𝑐 ((𝑎𝑏)∗ + (𝑏𝑎)∗) is flat, while the language (𝑎 + 𝑏)∗ is not flat.
Let X and I be the sets of string and integer variables. String formulae are of the form:

𝜑 ::= 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ¬𝜑 | 𝜑atom
𝜑atom ::= 𝑥𝑠 ∈ 𝐿 | 𝑡𝑖 ≤ 𝑡𝑖 | 𝑡𝑠 = 𝑡𝑠 | 𝑥𝑠 = str .at (𝑡𝑠 , 𝑡𝑖) | prefixof (𝑡𝑠 , 𝑡𝑠) | suffixof (𝑡𝑠 , 𝑡𝑠) | contains(𝑡𝑠 , 𝑡𝑠)

𝑡𝑠 ::= 𝑥𝑠 | 𝑡𝑠 ◦ 𝑡𝑠
𝑡𝑖 ::= 𝑥𝑖 | 𝑘 | len(𝑥𝑠) | 𝑡𝑖 + 𝑡𝑖

where 𝜑atom is an atomic formula, 𝐿 is a regular language (given by a regular expression or an NFA),
𝑡𝑠 is a string term consisting of a concatenation of string variables 𝑥𝑠 ∈ X3, and 𝑡𝑖 is an integer term
composed of sums of integer variables 𝑥𝑖 , integers 𝑘 ∈ Z, and lengths of string variables len(𝑥𝑠).

The semantics of formulae is defined as follows. A (variable) assignment is a mapping 𝜈 : (X →
Γ∗) ∪ (I → Z) and we lift 𝜈 to string terms 𝑡𝑠 and integer terms 𝑡𝑖 in the usual way (𝑡𝑠 ◦ 𝑡𝑠 as string
concatenation and 𝑡𝑖 + 𝑡𝑖 as integer addition), with 𝜈 (len(𝑥𝑠)) being interpreted as the length of the
string 𝜈 (𝑥𝑠). Semantics of atomic predicates is given in Fig. 1.
2We note that our notion of flatness differs from the one from [4] and is similar to the one from [49].
3A string literal 𝑢 ∈ Γ∗ can be encoded by a new string variable 𝑥𝑢 and a regular constraint 𝑢 ∈ 𝐿𝑢 for 𝐿𝑢 = {𝑢}.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

169:6 Yu-Fang Chen, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál

When used within the DPLL(T) framework, it is sufficient to consider only conjunctions of
atomic formulae and their negations. A normal form of such formula is E ∧ R ∧ I ∧ P where

• E is a conjunction of word equations 𝑡𝑠 = 𝑡𝑠 ,
• R is a conjunction of regular memberships 𝑥𝑠 ∈ 𝐿4 such that for every 𝑥𝑠 ∈ X, there is exactly
one regular membership constraint in R (and we use 𝐿(𝑥𝑠) to denote it),

• I is a conjunction of integer constraints 𝑡𝑖 ≤ 𝑡𝑖 where 𝑡𝑖 ’s do not contain len(𝑡𝑠) terms, and
• P is a conjunction of position constraints of the following form:

𝑡𝑠 ≠ 𝑡𝑠 | 𝑥𝑖 = len(𝑥𝑠) | 𝑥𝑠 = str .at (𝑡𝑠 , 𝑡𝑖) | 𝑥𝑠 ≠ str .at (𝑡𝑠 , 𝑡𝑖) |
¬prefixof (𝑡𝑠 , 𝑡𝑠) | ¬suffixof (𝑡𝑠 , 𝑡𝑠) | ¬contains(𝑡𝑠 , 𝑡𝑠)

We transform a conjunction of literals into the normal form in the followingway: (i)We substitute ev-
ery non-negated occurrence of the predicates prefixof (𝑢𝑝 , 𝑣𝑝), suffixof (𝑢𝑠 , 𝑣𝑠), and contains(𝑢𝑐 , 𝑣𝑐)
with the word equations 𝑣𝑝 = 𝑢𝑝𝑧𝑝 , 𝑣𝑠 = 𝑧𝑠𝑢𝑠 , and 𝑣𝑠 = 𝑧𝑐𝑢𝑐𝑧′𝑐 respectively for fresh string variables
𝑧𝑝 , 𝑧𝑠 , 𝑧𝑐 , and 𝑧′𝑐 (note that we cannot do a similar thing for negated occurrences, since we would
need to introduce universal quantifiers for the 𝑧-variables). (ii) For every string variable 𝑥 , we
compute a single NFA that represents all regular membership constraints for 𝑥 . We will use |R | to
denote the sum of numbers of states of all NFAs used for encoding the R constraint.

3 Overview
Given a formula in the normal form E ∧R ∧I ∧P in the considered fragment, the main idea of our
approach is the following (focusing on the P part). Other automata-based approaches usually try
to get rid of the predicates in P by transforming them into word equations and length constraints
(e.g. [21, 23, 39]), thus making their word equations potentially much harder to process. Handling
word equations is the most demanding task in string solving, as the best known algorithms for
dealing with word equations work in PSpace [44, 64] and are not practical5 (and in the presence of
length constraints, the decidability of the problem is currently unknown).
In our approach, we take care of the constraints in P only after the word equations in E have

been processed and the obtained constraint R′ ∧ I′ ∧ P′ contains no more word equations. This is
achieved by the stabilization-based procedure introduced in [23], which transforms E ∧ R ∧ I into
a disjunction of constraintsR′∧I′ extended with a substitution mapping variables from the original
constraints to a concatenation of fresh variables occurring in R′ and I′. The transformation comes
with the additional property that the resulting constraint is a monadic decomposition [22, 38, 74],
which means that each choice of the fresh variable assignment given by R′ forms a solution of the
original system of equations (the substitution defines how to obtain values of variables occurring
in E from the fresh variables)6. Using the substitution map, we can substitute variables in P in
order to obtain a position constraint R′∧I′∧P′. Therefore, we will now focus on solving formulae
of the form R′ ∧ I′ ∧ P′, which is the main contribution of this paper.
The main idea of solving a formula of the form R′ ∧ I′ ∧ P′ is by transforming R′ ∧ P′ into

a LIA formula that is then added to I′ to obtain a (potentially quantified) LIA constraint I′′, which
can be solved by an off-the-shelf LIA solver. The procedure for transforming R′ ∧ P′ into a LIA
constraint is based on constructing a tag automaton 𝐴tag , which is an NFA whose transitions are
extended with tags. The tags do not affect the run of 𝐴tag , but are used for counting “positions”
where something interesting happens, e.g., for a string disequality 𝑥 ≠ 𝑦, we count the position ℓ

4A regular non-membership constraint can be translated into a membership constraint for a complement language.
5Existing string solvers usually deal with word equations by incomplete algorithms that do not guarantee termination.
6Strictly speaking, we only need monadic decomposition on the variables that occur in position constraints.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

A Uniform Framework for Handling Position Constraints in String Solving 169:7

of a single character mismatch 𝑥 [ℓ] ≠ 𝑦 [ℓ]. 𝐴tag is constructed from the regular constraints in R′

based on the atomic predicates in P′.

4 Tag Automaton
In this section, we define tag automata (TAs) used in the later sections for encoding position
constraints. We note that TAs are used just to simplify notation; one could build the framework on
top of NFAs or some counter model, such as Parikh automata [47], cost-enriched finite automata [21],
or simply vector addition systems with states [41], for the price of a more cumbersome notation.
Let T be a set of tags. A tag automaton (TA) over T is a quadruple 𝑇 = (𝑄,Δ, 𝐼 , 𝐹), where 𝑄, 𝐼, 𝐹

are as for an NFA and the set of transitions Δ is Δ ⊆ 𝑄 × 2T × 𝑄 . We use 𝑞−{𝑆}→𝑝 to denote
a transition (𝑞, 𝑆, 𝑝); we drop duplicate braces, so, e.g., for 𝑆 = {𝑎, 𝑏}, we write 𝑞−{𝑎,𝑏}→𝑝 . A run R
of 𝑇 is a sequence of transitions 𝑞0−{𝑆1}→𝑞1−{𝑆2}→· · ·−{𝑆𝑛}→𝑞𝑛 such that 𝑞0 ∈ 𝐼 and 𝑞𝑖−1−{𝑆𝑖 }→𝑞𝑖 ∈ Δ for
all 1 ≤ 𝑖 ≤ 𝑛. R is accepting if 𝑞𝑛 ∈ 𝐹 . The Parikh image of R, PI R , is defined in the same way as
for NFAs. We may write 𝑄 (𝑇), Δ(𝑇), 𝐼 (𝑇), and 𝐹 (𝑇) to refer to the components of a TA 𝑇 .
For an NFA 𝐴 = (𝑄,Δ, 𝐼 , 𝐹) and a variable 𝑥 , we define the tag automaton LenTag𝑥 (𝐴) =

(𝑄,Δ′, 𝐼 , 𝐹) over a set of tags {⟨S, 𝑎⟩ | 𝑎 ∈ Γ} ∪ {⟨L, 𝑥⟩} where Δ′ = {𝑞−{⟨S,𝑎⟩,⟨L,𝑥 ⟩}→𝑟 | 𝑞 𝑎−→ 𝑟 ∈
Δ}. The used tags denote the Symbol and Length (i.e., we will use the number of occurrences
of the L tag to derive the length of a word from the TA). Given two TAs 𝐴 = (𝑄𝐴,Δ𝐴, 𝐼𝐴, 𝐹𝐴)
and 𝐵 = (𝑄𝐵,Δ𝐵, 𝐼𝐵, 𝐹𝐵) with disjoint sets of states, their 𝜖-concatenation is the TA 𝐴 ◦𝜖 𝐵 =

(𝑄𝐴 ∪𝑄𝐵,Δ𝐴 ∪ Δ𝐵 ∪ Δ𝜖 , 𝐼𝐴, 𝐹𝐵) with Δ𝜖 = {𝑞−{}→𝑟 | 𝑞 ∈ 𝐹𝐴, 𝑟 ∈ 𝐼𝐵}.
The Parikh formula of a TA 𝑇 , denoted as PF (𝑇) is a linear integer arithmetic (LIA) formula with

free variables #𝛿 corresponding to numbers of occurrences of transitions 𝛿 ∈ Δ. Models of PF (𝑇)
are, therefore, assignments 𝜎 : #Δ → N such that

𝜎 |= PF (𝑇) iff there is an accepting run R of 𝑇 s.t. PI R = 𝜎 (1)

Constructing PF (𝑇) can be done in the usual way [43] (cf. [28]). We will also work with the Parikh
tag formula PF tag (𝑇), which is a formula whose models are numbers of each tag seen on an accepting
run in 𝑇 , constructed as

PF tag (𝑇)
def.⇔ PF (𝑇) ∧

∧
𝑡 ∈T

#𝑡 =
∑{#𝛿 ∈ #Δ | 𝛿 = 𝑞−{𝑆}→𝑟 ∈ Δ, 𝑡 ∈ 𝑆}. (2)

Note that in PF tag (𝑇), the free variables are now also the counts of tags from T and a model is an
assignment 𝜎 ′ : (#Δ ∪ #T) → N.

5 Solving Disequalities
In this section, we will show how to solve a formula R′∧I∧P where P only contains disequalities.
We will start from the simplest case (a single disequality with two different variables), proceed to
an arbitrary single disequality, and finish with a system of disequalities.

5.1 I: A Single Disequality of Two Variables
First, we consider the simplest case, i.e., when the position constraint P contains a single disequality

𝑥 ≠ 𝑦, (3)

where 𝑥 and 𝑦 are two different string variables whose values are restricted to regular languages 𝐿𝑥
and 𝐿𝑦 . The constraint is satisfiable iff there exist strings𝑤𝑥 ∈ 𝐿𝑥 and𝑤𝑦 ∈ 𝐿𝑦 such that they are
either (i) of a different length or (ii) they are of the same length ℓ and there exists a position 0 ≤ 𝑝 < ℓ

such that𝑤𝑥 [𝑝] ≠ 𝑤𝑦 [𝑝].

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

169:8 Yu-Fang Chen, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál

Copy 1

0 mismatches seen

Copy 2

1 mismatch seen

Copy 3

2 mismatches seen

𝑟𝑥 , 1

𝑞𝑥 , 1

𝑟𝑥 , 2

𝑞𝑥 , 2𝑞𝑦, 1

𝑟𝑦, 1

𝑞𝑦, 2

𝑟𝑦, 2

𝑞𝑦, 3

𝑟𝑦, 3

⟨S, a⟩
⟨L, 𝑥⟩
⟨P, 𝑥⟩

⟨S, b⟩
⟨L, 𝑥⟩
⟨P, 𝑥⟩

⟨S, a⟩
⟨L, 𝑥⟩

⟨S, b⟩
⟨L, 𝑥⟩

⟨S, a⟩
⟨L, 𝑦⟩

⟨S, c⟩
⟨L, 𝑦⟩

⟨S, a⟩
⟨L, 𝑦⟩
⟨P, 𝑦⟩

⟨S, c⟩
⟨L, 𝑦⟩
⟨P, 𝑦⟩

⟨S, a⟩
⟨L, 𝑦⟩

⟨S, c⟩
⟨L, 𝑦⟩

⟨S, a⟩
⟨L, 𝑥⟩
⟨M1, a⟩

⟨S, b⟩
⟨L, 𝑥⟩
⟨M1, b⟩

⟨S, a⟩
⟨L, 𝑦⟩
⟨M2, a⟩

⟨S, c⟩
⟨L, 𝑦⟩
⟨M2, c⟩

Fig. 2. Example of a tag automaton for the disequality 𝑥 ≠ 𝑦 with 𝐿(𝐴𝑥) = (𝑎𝑏)∗ and 𝐿(𝐴𝑦) = (𝑎𝑐)∗.
States 𝑞𝑥 , 𝑟𝑥 belong to 𝐴𝑥 , states 𝑞𝑦, 𝑟𝑦 belong to 𝐴𝑦 .

We will show how to construct a tag automaton and, from it, a LIA formula 𝜑 I that is satisfiable
iff the disequality is satisfiable. We assume that we are given NFAs 𝐴𝑥 = (𝑄𝑥 ,Δ𝑥 , 𝐼𝑥 , 𝐹𝑥) and 𝐴𝑦 =

(𝑄𝑦,Δ𝑦, 𝐼𝑦, 𝐹𝑦) such that 𝐿(𝐴𝑥) = 𝐿𝑥 and 𝐿(𝐴𝑥) = 𝐿𝑦 with 𝑄𝑥 ∩ 𝑄𝑦 = ∅. For this, we construct
a TA 𝐴I. Intuitively, 𝐴I is obtained by first concatenating LenTag𝑥 (𝐴𝑥) with LenTag𝑦 (𝐴𝑦) using an
𝜖-transition into a TA𝐴◦. One can see𝐴◦ as an encoding of all possible models of 𝑥 and 𝑦 w.r.t. only
regular constraints7. Then, we take three copies of 𝐴◦ and connect them together with transitions
that represent detected mismatches: the first copy is used for tracking the run of 𝐴𝑥 before the
position of the mismatch in 𝑥 is encountered, the second copy is used for tracking the rest of the
run in 𝐴𝑥 and the first part of the run in 𝐴𝑦 (before the mismatch in 𝐴𝑦), and the last copy tracks
the rest of the run in 𝐴𝑦 . Moreover, the automaton is enhanced with tags that keep track of the
position of the mismatch in 𝑥 and in 𝑦 and the values of the mismatched symbols.

5.1.1 Tag Automaton Construction. Formally, let 𝐴◦ = (𝑄◦,Δ◦, 𝐼◦, 𝐹◦) be a TA over T◦ = {⟨S, 𝑎⟩ |
𝑎 ∈ Γ} ∪ {⟨L, 𝑥⟩, ⟨L, 𝑦⟩} obtained by the 𝜖-concatenation of LenTag𝑥 (𝐴𝑥) and LenTag𝑦 (𝐴𝑦), i.e.,
𝐴◦ = LenTag𝑥 (𝐴𝑥) ◦𝜖 LenTag𝑦 (𝐴𝑦). The tags S are used for tracking the currently read symbol and
L-tags are used for counting of the length of a word from the language of the corresponding variable.
Then 𝐴I = (𝑄1 ∪𝑄2 ∪𝑄3,Δ, 𝐼 , 𝐹) is a TA over TI = T◦ ∪ {⟨M1, 𝑎⟩, ⟨M2, 𝑎⟩ | 𝑎 ∈ Γ} ∪ {⟨P, 𝑥⟩, ⟨P, 𝑦⟩},
where the M1 and M2 tags denote the first and the second Mismatch respectively and ⟨P, 𝑥⟩, ⟨P, 𝑦⟩
are used to count the Positions of the mismatch in 𝑥 and 𝑦. 𝐴I is constructed as follows:

• 𝑄1 =𝑄◦×{1},𝑄2 =𝑄◦×{2}, and𝑄3 =𝑄◦×{3}; intuitively,𝑄1 are states where no mismatch
was seen, 𝑄2 are states where only the first mismatch symbol was seen, and 𝑄3 are states
where both mismatch symbols were seen,

• 𝐼 = 𝐼◦ × {1},
• 𝐹 = 𝐹◦ × {1, 3}, and
• Δ is the union of the following sets of transitions:
– {(𝑞, 1)−{⟨S,𝑎⟩,⟨P,𝑥 ⟩,⟨L,𝑥 ⟩}→(𝑟, 1) | 𝑞−{⟨S,𝑎⟩,⟨L,𝑥 ⟩}→𝑟 ∈ Δ◦} — transitions in 𝐴𝑥 before the first
mismatch,

– {(𝑞, 1)−{⟨S,𝑎⟩,⟨L,𝑦⟩}→(𝑟, 1) | 𝑞−{⟨S,𝑎⟩,⟨L,𝑦⟩}→𝑟 ∈ Δ◦} — transitions in𝐴𝑦 if no mismatch symbols
are seen and the disequality is satisfied due to 𝑥 and 𝑦 having different lengths,

– {(𝑞, 1)−{⟨S,𝑎⟩,⟨M1,𝑎⟩,⟨L,𝑥 ⟩}→(𝑟, 2) | 𝑞−{⟨S,𝑎⟩,⟨L,𝑥 ⟩}→𝑟 ∈ Δ◦} — the first mismatch (in 𝐴𝑥),
– {(𝑞, 2)−{⟨S,𝑎⟩,⟨L,𝑥 ⟩}→(𝑟, 2) | 𝑞−{⟨S,𝑎⟩,⟨L,𝑥 ⟩}→𝑟 ∈ Δ◦} — transitions in 𝐴𝑥 after the first mismatch
(we still need to finish reading 𝑥 to make sure that it was accepted by 𝐴𝑥),

– {(𝑞, 2)−{}→(𝑟, 2) | 𝑞−{}→𝑟 ∈ Δ◦} — jump from 𝐴𝑥 to 𝐴𝑦 ,
– {(𝑞, 2)−{⟨S,𝑎⟩,⟨P,𝑦⟩,⟨L,𝑦⟩}→(𝑟, 2) | 𝑞−{⟨S,𝑎⟩,⟨L,𝑦⟩}→𝑟 ∈ Δ◦} — transitions in 𝐴𝑦 before the second
mismatch,

7In fact, the order in which we do the concatenation does not really matter—the main objective is to obtain a TA such that
an accepting run in it represents a model of regular constraints

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

A Uniform Framework for Handling Position Constraints in String Solving 169:9

– {(𝑞, 2)−{⟨S,𝑎⟩,⟨M2,𝑎⟩,⟨L,𝑦⟩}→(𝑟, 3) | 𝑞−{⟨S,𝑎⟩,⟨L,𝑦⟩}→𝑟 ∈ Δ◦} — the second mismatch (in 𝐴𝑦),
– {(𝑞, 3)−{⟨S,𝑎⟩,⟨L,𝑦⟩}→(𝑟, 3) | 𝑞−{⟨S,𝑎⟩,⟨L,𝑦⟩}→𝑟 ∈ Δ◦} — transitions in 𝐴𝑦 after the second mis-
match.

Note that in Δ, the M1-tagged transitions denote the occurrence of the first mismatch (which
causes a jump from 𝑄1 to 𝑄2) and theM2-tagged transitions denote the occurrence of the second
mismatch (jumping from 𝑄2 to 𝑄3). For accepting runs of 𝐴I, it holds that they either (i) stay in 𝑄1
and accept in some state from 𝐹◦ × {1} (so we only keep track of the lengths of the words𝑤𝑥 ∈ 𝐿𝑥
and𝑤𝑦 ∈ 𝐿𝑦) or (ii) take aM1-tagged transition to 𝑄2 and then aM2-tagged transition to 𝑄3 and
accept in some state from 𝐹◦ × {3}. An accepting run of the tag automaton encodes an assignment
of 𝑥 and 𝑦 to words from 𝐿𝑥 and 𝐿𝑦 . An example of a constructed tag automaton is given in Fig. 2.

5.1.2 Formula Construction. After 𝐴I is constructed, it remains to test whether there is a run
of 𝐴I starting in 𝐼 and ending in 𝐹 such that the number of occurrences of ⟨L, 𝑥⟩ and ⟨L, 𝑦⟩ differs
(corresponding to the case |𝑥 | ≠ |𝑦 |), or the number of occurrences of the ⟨P, 𝑥⟩ and ⟨P, 𝑦⟩ tags is
the same and there is one occurrence of a ⟨M1, 𝑎⟩ tag and one occurrence of a ⟨M2, 𝑏⟩ tag with
𝑎 ≠ 𝑏. The means to this is via the Parikh tag formula of 𝐴I. First, we define formulae 𝜑 I

sym
and 𝜑 I

mis
,

which express that the two sampled symbols are a mismatch and that there was a mismatch:

𝜑 I
sym

def.⇔
∧
𝑎∈Γ

(#⟨M1, 𝑎⟩ + #⟨M2, 𝑎⟩ < 2) and 𝜑 I
mis

def.⇔
∑︁
𝑎∈Γ

#⟨M1, 𝑎⟩ > 0. (4)

In the formula, the first sum is used to check that the mismatched symbols are indeed different
(from the construction of 𝐴I, there will be at most one M1 and one M2 tags in every accepting run)
and the second sum makes sure that there was at least one mismatch (so that we can only accept
in 𝑄3). Finally, we construct the formula 𝜑 I equisatisfiable to the disequality 𝑥 ≠ 𝑦 as follows:

𝜑 I def.⇔ PF tag (𝐴I) ∧
(
#⟨L, 𝑥⟩ ≠ #⟨L, 𝑦⟩ ∨

(
#⟨P, 𝑥⟩ = #⟨P, 𝑦⟩ ∧ 𝜑 I

sym
∧ 𝜑 I

mis

))
. (5)

Theorem 5.1. The formula R′ ∧ I ∧ 𝑥 ≠ 𝑦 is equisatisfiable to the formula I ∧ 𝜑 I
. Moreover, the

size of 𝜑 I
is polynomial to |R′ |.

5.2 II: A Single Unrestricted Disequality
Let us now move to the case of an arbitrary disequality between concatenations of (potentially
repeating) variables: 𝑥1 . . . 𝑥𝑛 ≠ 𝑦1 . . . 𝑦𝑚 . (6)
This complex disequality is satisfiable if there are words𝑤𝑥𝑖 ∈ 𝐿𝑥𝑖 and𝑤𝑦 𝑗 ∈ 𝐿𝑦 𝑗 for all 𝑖, 𝑗 such that
either (i) both sides have different lengths (given by

∑
1≤𝑖≤𝑛 |𝑤𝑥𝑖 | and

∑
1≤ 𝑗≤𝑚 |𝑤𝑦 𝑗 | respectively)

or (ii) they are of the same length and there is a mismatch position ℓ s.t. 𝑤𝑥 [ℓ] ≠ 𝑤𝑦 [ℓ] where
𝑤𝑥 =𝑤𝑥1 · · ·𝑤𝑥𝑛 and𝑤𝑦 =𝑤𝑦1 · · ·𝑤𝑦𝑚 . We emphasize that there might be multiple occurrences of
a single variable 𝑧, potentially on both sides of the disequality, and they all need to be assigned the
same word from 𝐿𝑧 .

We will again construct a tag automaton𝐴II checking whether one of the conditions to satisfy the
disequality holds. In this case, an accepting run in the tag automaton encodes an assignment that
maps every variable 𝑧 from the disequality to a word from 𝐿𝑧 . The mismatch may happen in any pair
of occurrences of variables (𝑥𝑖 , 𝑦 𝑗) and, moreover, the variables might have multiple occurrences in
the disequality. In the tag automaton, a run encoding a mismatch needs to nondeterministically
guess a pair of variables’ occurrences where the mismatch happens, the mismatch positions within
the variables, and the mismatch symbol itself. In order to check that the guess is valid, we then
construct a formula that will use the Parikh tag image of𝐴II and use it to check that (i) the mismatch
symbols are different and (ii) the global positions of both mismatches are equal, meaning that for

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

169:10 Yu-Fang Chen, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál

𝑟𝑥 , 1 𝑞𝑥 , 1

𝑟𝑥 , 2 𝑞𝑥 , 2

𝑟𝑥 , 3 𝑞𝑥 , 3

𝑞𝑦, 1 𝑟𝑦, 1

𝑞𝑦, 2 𝑟𝑦, 2

𝑞𝑦, 3 𝑟𝑦, 3

⟨S, 𝑎⟩, ⟨L, 𝑥⟩, ⟨P1, 𝑥⟩

⟨S, 𝑏⟩, ⟨L, 𝑥⟩, ⟨P1, 𝑥⟩

⟨S, 𝑎⟩, ⟨L, 𝑥⟩, ⟨P2, 𝑥⟩

⟨S, 𝑏⟩, ⟨L, 𝑥⟩, ⟨P2, 𝑥⟩

⟨S, 𝑎⟩, ⟨L, 𝑥⟩, ⟨P3, 𝑥⟩

⟨S, 𝑏⟩, ⟨L, 𝑥⟩, ⟨P3, 𝑥⟩

⟨S, 𝑎⟩, ⟨L, 𝑦⟩, ⟨P1, 𝑦⟩

⟨S, 𝑐⟩, ⟨L, 𝑦⟩, ⟨P1, 𝑦⟩

⟨S, 𝑎⟩, ⟨L, 𝑦⟩, ⟨P2, 𝑦⟩

⟨S, 𝑐⟩, ⟨L, 𝑦⟩, ⟨P2, 𝑦⟩

⟨S, 𝑎⟩, ⟨L, 𝑦⟩, ⟨P3, 𝑦⟩

⟨S, 𝑐⟩, ⟨L, 𝑦⟩, ⟨P3, 𝑦⟩

⟨S, 𝑎⟩, ⟨L, 𝑥⟩, ⟨P2, 𝑥⟩, ⟨M1, 𝑎, 𝑥⟩⟨S, 𝑏⟩, ⟨L, 𝑥⟩, ⟨P2, 𝑥⟩, ⟨M1, 𝑏, 𝑥⟩

⟨S, 𝑎⟩, ⟨L, 𝑥⟩, ⟨P3, 𝑥⟩, ⟨M2, 𝑎, 𝑥⟩⟨S, 𝑏⟩, ⟨L, 𝑥⟩, ⟨P3, 𝑥⟩, ⟨M2, 𝑏, 𝑥⟩

⟨S, 𝑎⟩, ⟨L, 𝑦⟩, ⟨P2, 𝑦⟩, ⟨M1, 𝑎,𝑦⟩ ⟨S, 𝑐⟩, ⟨L, 𝑦⟩, ⟨P2, 𝑦⟩, ⟨M1, 𝑐, 𝑦⟩

⟨S, 𝑎⟩, ⟨L, 𝑦⟩, ⟨P3, 𝑦⟩, ⟨M2, 𝑎,𝑦⟩ ⟨S, 𝑐⟩, ⟨L, 𝑦⟩, ⟨P3, 𝑦⟩, ⟨M2, 𝑐, 𝑦⟩

Fig. 3. Example of a tag automaton for the disequality 𝑥𝑦 ≠ 𝑦𝑥 with 𝐿(𝐴𝑥) = (𝑎𝑏)∗ and 𝐿(𝐴𝑦) = (𝑎𝑐)∗.

a guess of mismatch variables (𝑥𝑖 , 𝑦 𝑗), the mismatch position in 𝑥𝑖 plus lengths of assignments of
𝑥1 · · · 𝑥𝑖−1 is equal to the mismatch position in 𝑦 𝑗 plus lengths of assignments of 𝑦1 · · ·𝑦 𝑗−1.

5.2.1 Tag Automaton Construction. Similarly to the previous section, we assume an NFA𝐴𝑥 for each
variable 𝑥 describing the language 𝐿𝑥 . We use X to denote the set of all variables in the disequality.
Without loss of generality, we assume that the sets of states of 𝐴𝑥 ’s are pairwise disjoint. We also
assume a fixed linear order on variables ≼, which is further used to create a unique concatenation of
tag automata for each variable. First, for each variable 𝑥 we construct the TA𝑇𝑥 corresponding to𝐴𝑥
enriched with lengths, i.e., 𝑇𝑥 = LenTag𝑥 (𝐴𝑥). Then, we construct 𝐴◦ = (𝑄◦,Δ◦, 𝐼◦, 𝐹◦) over T◦ as
an 𝜖-concatenation of all TAs 𝑇𝑥 for 𝑥 ∈ X in the order given by ≼.
𝐴II = (𝑄1 ∪ 𝑄2 ∪ 𝑄3,Δ, 𝐼 , 𝐹) is a TA over TII = T◦ ∪ {⟨M1, 𝑎, 𝑥⟩, ⟨M2, 𝑎, 𝑥⟩ | 𝑎 ∈ Γ, 𝑥 ∈ X} ∪

{⟨P1, 𝑥⟩, ⟨P2, 𝑥⟩, ⟨P3, 𝑥⟩ | 𝑥 ∈ X}, where the M1 and M2 tags again denote the first and the second
mismatch respectively (note that, contrary to Sec. 5.1, the mismatch tags here are extended with
variables). The tags ⟨P1, 𝑧⟩ and ⟨P2, 𝑧⟩ are used to count the local positions of the first and second
mismatch in 𝑧 respectively8. The ⟨P3, 𝑥⟩ tag will become important in Sec. 6.2 when reusing the
automaton construction for the ¬suffixof predicate. 𝐴II is constructed as follows:

• 𝑄1 =𝑄◦ × {1}, 𝑄2 =𝑄◦ × {2}, and 𝑄3 =𝑄◦ × {3},
• 𝐼 = 𝐼◦ × {1},
• 𝐹 = 𝐹◦ × {1, 3}, and
• Δ is the union of the following sets of transitions:
– {(𝑞, 1)−{⟨S,𝑎⟩,⟨P1,𝑧⟩,⟨L,𝑧⟩}→(𝑟, 1) | 𝑞−{⟨S,𝑎⟩,⟨L,𝑧⟩}→𝑟 ∈ Δ◦} — transitions in each 𝐴𝑧 before the
first mismatch,

– {(𝑞, 1)−{⟨S,𝑎⟩,⟨M1,𝑎,𝑧⟩,⟨P2,𝑧⟩,⟨L,𝑧⟩}→(𝑟, 2) | 𝑞−{⟨S,𝑎⟩,⟨L,𝑧⟩}→𝑟 ∈ Δ◦} — the first mismatch,
– {(𝑞, 2)−{⟨S,𝑎⟩,⟨P2,𝑧⟩,⟨L,𝑧⟩}→(𝑟, 2) | 𝑞−{⟨S,𝑎⟩,⟨L,𝑧⟩}→𝑟 ∈ Δ◦} — transitions in each 𝐴𝑧 before the
second mismatch,

– {(𝑞, 2)−{⟨S,𝑎⟩,⟨M2,𝑎,𝑧⟩,⟨P3,𝑧⟩,⟨L,𝑧⟩}→(𝑟, 3) | 𝑞−{⟨S,𝑎⟩,⟨L,𝑧⟩}→𝑟 ∈ Δ◦} — the second mismatch,
– {(𝑞, 3)−{⟨S,𝑎⟩,⟨L,𝑧⟩,⟨P3,𝑧⟩}→(𝑟, 3) | 𝑞−{⟨S,𝑎⟩,⟨L,𝑧⟩}→𝑟 ∈ Δ◦} — transitions in each 𝐴𝑧 after the sec-
ond mismatch, and

– {(𝑞, 𝑖)−{}→(𝑟, 𝑖) | 𝑞−{}→𝑟 ∈ Δ◦, 1 ≤ 𝑖 ≤ 3} — transitions connecting variables on level 𝑖 .

5.2.2 Formula Construction. For the satisfiability checking of the general disequality, we generalize
the LIA reduction from the previous section. As in the previous case, the LIA formula speaks about
properties of 𝐴II using the Parikh tag formula PF tag (𝐴II).
8We need to consider two possible mismatches in one variable because an occurrence of a mismatch can be between two
positions in an assignment for 𝑧, one for the left-hand side and one for the right-hand side. E.g., consider the disequality
𝑥𝑦 ≠ 𝑦𝑥 and the assignment {𝑥 ↦→ 𝑎𝑏, 𝑦 ↦→ 𝑎}; the first mismatch is between the 𝑏 in 𝑥 on the left-hand side and the 𝑎
in 𝑥 on the right-hand side.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

A Uniform Framework for Handling Position Constraints in String Solving 169:11

First, the formula expressing that lengths of both sides are different can be defined as follows:

𝜑 II
len

def.⇔
∑︁

1≤𝑖≤𝑛
#⟨L, 𝑥𝑖⟩ ≠

∑︁
1≤ 𝑗≤𝑚

#⟨L, 𝑦 𝑗 ⟩. (7)

Next, for the case the lengths are the same but there is a mismatch, we begin by defining
a formula that checks that the particular mismatch symbols are different (and that there is at least
one mismatch) by generalizing the formula 𝜑 I

sym
from the previous section:

𝜑 II
sym

def.⇔
∧
𝑎∈Γ

(∑︁
𝑥∈X

(#⟨M1, 𝑥, 𝑎⟩ + #⟨M2, 𝑥, 𝑎⟩) < 2

)
(8)

In order to check whether the global mismatch positions on both sides are equal, we need to
make a case split ranging over all pairs (𝑥𝑖 , 𝑦 𝑗) of occurrences of variables from the left-hand side
and the right-hand of the disequality. For each such a pair, we define an auxiliary formula 𝜑pos (𝑖, 𝑗)
comparing global mismatch positions when the mismatch is between the two occurrences.
(1) If 𝑥𝑖 and 𝑦 𝑗 are occurrences of a different variable then:

• if 𝑥𝑖 ≺ 𝑦 𝑗 ,
𝜑pos (𝑖, 𝑗)

def.⇔ #⟨P1, 𝑥𝑖⟩ +
∑︁

1≤𝑢<𝑖
#⟨L, 𝑥𝑢⟩ = #⟨P2, 𝑦 𝑗 ⟩ +

∑︁
1≤𝑣< 𝑗

#⟨L, 𝑦𝑣⟩, (9)

• if 𝑥𝑖 ≻ 𝑦 𝑗 ,
𝜑pos (𝑖, 𝑗)

def.⇔ #⟨P2, 𝑥𝑖⟩ +
∑︁

1≤𝑢<𝑖
#⟨L, 𝑥𝑢⟩ = #⟨P1, 𝑦 𝑗 ⟩ +

∑︁
1≤𝑣< 𝑗

#⟨L, 𝑦𝑣⟩. (10)

The formulae express that the mismatch position is given by the sum of lengths of preceding
variable assignments and the local mismatch position in the particular variable 𝑥𝑖 or 𝑦 𝑗 .

(2) If 𝑥𝑖 and 𝑦 𝑗 are occurrences of the same variable 𝑧, in order to get the position of the second
local mismatch we have to add #⟨P1, 𝑧⟩ to #⟨P2, 𝑧⟩ since the second local mismatch in 𝑧 has
to be counted from the beginning of 𝑧 and not from the beginning of the previous mismatch.
Formally, the formula is given as

𝜑pos (𝑖, 𝑗)
def.⇔

(
#⟨P1, 𝑧⟩ +

∑︁
1≤𝑢<𝑖

#⟨L, 𝑥𝑢⟩ = #⟨P1, 𝑧⟩ + #⟨P2, 𝑧⟩ +
∑︁

1≤𝑣< 𝑗
#⟨L, 𝑦𝑣⟩

)
∨(

#⟨P1, 𝑧⟩ + #⟨P2, 𝑧⟩ +
∑︁

1≤𝑢<𝑖
#⟨L, 𝑥𝑢⟩ = #⟨P1, 𝑧⟩ +

∑︁
1≤𝑣< 𝑗

#⟨L, 𝑦𝑣⟩
)
.

(11)

Then, for each 𝜑pos (𝑖, 𝑗) , we need to combine it with a formula that says that there are indeed
mismatches in 𝑥𝑖 and 𝑦 𝑗 , to obtain formulae 𝜑𝑖, 𝑗 as follows:

• if 𝑥𝑖 ≼ 𝑦 𝑗 (including the case when they are occurrences of the same variable),

𝜑𝑖, 𝑗
def.⇔ 𝜑pos (𝑖, 𝑗) ∧

∑︁
𝑎∈Γ

#⟨M1, 𝑥𝑖 , 𝑎⟩ > 0 ∧
∑︁
𝑎∈Γ

#⟨M2, 𝑦 𝑗 , 𝑎⟩ > 0, (12)

• if 𝑥𝑖 ≻ 𝑦 𝑗 ,

𝜑𝑖, 𝑗
def.⇔ 𝜑pos (𝑖, 𝑗) ∧

∑︁
𝑎∈Γ

#⟨M1, 𝑦 𝑗 , 𝑎⟩ > 0 ∧
∑︁
𝑎∈Γ

#⟨M2, 𝑥𝑖 , 𝑎⟩ > 0. (13)

We do the case split based on the order of variables since the construction of 𝐴I guarantees in
which variable will be which mismatch. All 𝜑𝑖, 𝑗 formulae are then collected into the formula

𝜑 II
mis

def.⇔
∨

1≤𝑖≤𝑛
1≤ 𝑗≤𝑚

𝜑𝑖, 𝑗 (14)

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

169:12 Yu-Fang Chen, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál

and the final formula equisatisfiable to 𝑥1 . . . 𝑥𝑛 ≠ 𝑦1 . . . 𝑦𝑚 is then defined as

𝜑 II def.⇔ PF tag (𝐴II) ∧
(
𝜑 II
len

∨
(
𝜑 II
sym

∧ 𝜑 II
mis

))
. (15)

Theorem 5.2. The formula R′ ∧ I ∧ 𝑥1 . . . 𝑥𝑛 ≠ 𝑦1 . . . 𝑦𝑚 is equisatisfiable to the formula I ∧ 𝜑 II
.

Moreover, the size of 𝜑 II
is polynomial to 𝑛𝑚 · |R′ |.

5.3 III: A System of Disequalities
We now move to the general case of a system of disequalities, which all need to be satisfied at the
same time: ∧

1≤𝑖≤𝑛
𝐿𝑖 ≠ 𝑅𝑖 (16)

where each 𝐿𝑖 and 𝑅𝑖 are arbitrary concatenations of variables, with potentially multiple occurrences
in multiple disequalities. We, again, construct a tag automaton and a corresponding LIA formula
for it. The tag automaton for this case will be more complex.

One could extend the construction of 𝐴II from the previous section in a straightforward manner
by creating more copies of 𝐴◦. With multiple disequalities, we need to keep track of satisfying
position mismatches in particular disequalities, so that we do not count two mismatches in one
disequality and zero mismatches in another disequality. If done in a straightforward way, we would
need to consider all possible orders of mismatches in different disequalities, basically having one
copy of the tag automaton 𝐴II for each such an order. The number of these copies and the size
of the resulting automaton would, however, be intractable. In particular, if we consider a set of
disequalities 𝐷 = {𝐷1, . . . , 𝐷𝑛}, we would need (2𝑛)!

2𝑛 ∈ 2Θ(𝑛 log𝑛) such copies (obtained as the
number of permutations of a set of 𝑛 pairs of symbolsM𝑖

1,M
𝑖
2, respecting the orderM𝑖

1 ≺ M𝑖
2).

Another issue that we need to take into consideration is the fact that one mismatched symbol
may be used for solving more than one disequality. For instance, for the system of disequalities
𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 and its model {𝑥 ↦→ 𝑎,𝑦 ↦→ 𝑏, 𝑧 ↦→ 𝑐}, the value of 𝑥 is a mismatch for both
disequalities. To deal with these issues, we take a more involved approach. Our approach is based
on introducing two new types of tags:
(i) Instead of mismatch tags ⟨M𝑖 , 𝑎, 𝑥⟩ for 𝑖 ∈ {1, 2} from TII, we use more complex tags for

mismatches of the form ⟨M𝑖 , 𝑥, 𝐷, 𝑠, 𝑎⟩ denoting that the 𝑖-th mismatched symbol for the
disequality 𝐷 on the side 𝑠 ∈ {L,R} tracked for the variable 𝑥 was 𝑎. The mismatches can
appear in an arbitrary order in an accepting run of the tag automaton (potentially also multiple
or zero times), so we will need to extend the final LIA formula with a part that makes sure
that we have a mismatch for both sides of every disequality.

(ii) We introduce Copy tags ⟨C𝑖 , 𝑥, 𝐷, 𝑠⟩, which express that the 𝑖-th mismatch symbol for dise-
quality 𝐷 and side 𝑠 ∈ {L,R} is given by the latest symbol sampled by a M-tag for variable 𝑥 .

With these two new kinds of tags and corresponding constraints added to the final LIA formula,
we suffice with having a tag automaton with only 2𝑛 + 1 copies of 𝐴◦.

5.3.1 Tag Automaton Construction. Let 𝐴◦ be the 𝜖-concatenation of NFAs for all variables ob-
tained in the same way as described in Sec. 5.2. Then 𝐴III = (𝑄,Δ, 𝐼 , 𝐹) is a TA over TIII =

T◦ ∪ {⟨M𝑖 , 𝑥, 𝐷, 𝑠, 𝑎⟩, ⟨C𝑖 , 𝑥, 𝐷, 𝑠⟩ | 𝑎 ∈ Γ, 𝑥 ∈ X, 1 ≤ 𝑖 ≤ 2𝑛, 1 ≤ 𝐷 ≤ 𝑛, 𝑠 ∈ {L,R}} ∪ {⟨P𝑖 , 𝑥⟩ | 𝑥 ∈
X, 1 ≤ 𝑖 ≤ 2𝑛 + 1}. 𝐴III is constructed as follows:

• 𝑄 = {(𝑞, 𝑖) | 𝑞 ∈ 𝑄◦, 1 ≤ 𝑖 ≤ 2𝑛 + 1},
• 𝐼 = 𝐼◦ × {1},
• 𝐹 = 𝐹◦ × {1, 3, . . . , 2𝑛 + 1}, and
• Δ is the union of the following sets of transitions:

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

A Uniform Framework for Handling Position Constraints in String Solving 169:13

𝑞𝑥 𝑟𝑥 𝑠𝑥
𝑎 𝑏
𝐴𝑥

𝑞𝑦 𝑟𝑦 𝑠𝑦
𝑎 𝑐
𝐴𝑦

𝑞𝑧 𝑟𝑧 𝑠𝑧
𝑎 𝑑
𝐴𝑧

(𝑞𝑥 , 1) (𝑟𝑥 , 1) (𝑠𝑥 , 2) (𝑠𝑥 , 3) (𝑞𝑦, 3)

(𝑟𝑦, 3)(𝑠𝑦, 4)(𝑞𝑧, 4)(𝑟𝑧, 4)(𝑠𝑧, 5)

⟨S, 𝑎⟩
⟨L, 𝑥⟩
⟨P1, 𝑥⟩

⟨S, 𝑏⟩, ⟨L, 𝑥⟩
⟨P2, 𝑥⟩

⟨M1, 𝑥, 𝐷1,L, 𝑏⟩
⟨C2, 𝑥, 𝐷2,L⟩

⟨S, 𝑎⟩
⟨L, 𝑦⟩
⟨P3, 𝑦⟩⟨S, 𝑐⟩, ⟨L, 𝑦⟩

⟨P4, 𝑦⟩
⟨M3, 𝑦, 𝐷1,R, 𝑐⟩

⟨S, 𝑎⟩
⟨L, 𝑧⟩
⟨P4, 𝑧⟩

⟨S, 𝑑⟩, ⟨L, 𝑧⟩
⟨P5, 𝑧⟩

⟨M4, 𝑥, 𝐷2,R, 𝑑⟩

Fig. 4. An example of a run satisfying the system 𝐷1 ∧ 𝐷2 where 𝐷1
def.⇔ 𝑥 ≠ 𝑦 and 𝐷2

def.⇔ 𝑥 ≠ 𝑧.

– {(𝑞, 𝑖)−{⟨S,𝑎⟩,⟨L,𝑧⟩,⟨P𝑖 ,𝑧⟩}→(𝑟, 𝑖) | 𝑞−{⟨S,𝑎⟩,⟨L,𝑧⟩}→𝑟 ∈ Δ◦, 1 ≤ 𝑖 ≤ 2𝑛 + 1},
– {(𝑞, 𝑖)−{}→(𝑟, 𝑖) | 𝑞−{}→𝑟 ∈ Δ◦, 1 ≤ 𝑖 ≤ 2𝑛 + 1},
– {(𝑞, 𝑖)−{⟨S,𝑎⟩,⟨M𝑖 ,𝑧,𝐷,𝑠,𝑎⟩,⟨L,𝑧⟩,⟨P𝑖+1,𝑧⟩}→(𝑟, 𝑖 + 1) | 𝑞−{⟨S,𝑎⟩,⟨L,𝑧⟩}→𝑟 ∈ Δ◦, 1 ≤ 𝐷 ≤ 𝑛, 1 ≤ 𝑖 ≤
2𝑛, 𝑠 ∈ {L,R}} — a mismatch guess for the disequality 𝐷 and its side 𝑠 , and

– {(𝑞, 𝑖)−{⟨C𝑖 ,𝑥,𝐷,𝑠 ⟩}→(𝑞, 𝑖 + 1) | 1 ≤ 𝐷 ≤ 𝑛, 2 ≤ 𝑖 ≤ 2𝑛, 𝑠 ∈ {L,R}} — a guess that a mismatch
previously seen in 𝑥 is shared with the disequality 𝐷 and its side 𝑠 .

A run of 𝐴III nondeterministically guesses possible mismatches for disequalities, as well as which
mismatch is shared by multiple disequalities (the correctness of the guess is enforced by the final
LIA formula). The run also guesses which disequalities are satisfied due to a mismatch and which
are satisfied by the lengths violation (that is why 𝐹 contains accepting states within all odd-labelled
internal copies: each length-satisfied disequality removes the need for twomismatches). An example
of a selected run of 𝐴III is shown in Fig. 4.

5.3.2 Formula Construction. We construct a LIA formula equisatisfiable to the system of disequali-
ties based on the tag automaton described above. Contrary to the case of a single disequality, the
resulting formula is enhanced by subformulae ensuring consistency of each nondeterministic choice.
For simplicity, we introduce auxiliary (integer) variables describing particular choices that are then
used in the LIA subformulae: (i)𝑚𝐷,𝑠 variables containing the mismatch symbol for a disequality
𝐷 and its side 𝑠 and (ii) 𝑐𝑖 variables containing the shared 𝑖-th mismatch symbol (the mismatch
symbol preceding the C𝑖 -tag).
We start with auxiliary subformulae expressing that the mismatches are consistent, meaning

that each disequality and side has at most one sampled mismatch and that these mismatches are
sampled consistently for both sides. The first subformula 𝜑Fair checks that there is at most one
mismatch for each side of each disequality:

𝜑Fair
def.⇔

∧
𝐷∈{𝐷1,...,𝐷𝑛 }
𝑠∈{L,R}

(∑︁
1≤𝑖≤2𝑛
𝑥∈X,𝑎∈Γ

#⟨M𝑖 , 𝑥, 𝐷, 𝑠, 𝑎⟩ + #⟨C𝑖 , 𝑥, 𝐷, 𝑠⟩ ≤ 1
)
. (17)

The subformula 𝜑Consistent then ensures that the quantified variables containing the mismatch
symbols are properly set, including the case of the copy tag, where the mismatch is inherited from
the previous mismatch transition.

𝜑Consistent
def.⇔

∧
𝐷∈{𝐷1,...,𝐷𝑛 }
𝑠∈{L,R},𝑎∈Γ,

1≤𝑖≤2𝑛

((∑︁
𝑥∈X

#⟨M𝑖 , 𝑥, 𝐷, 𝑠, 𝑎⟩ = 1
)
→ 𝑐𝑖 =𝑚𝐷,𝑠 = 𝑎

)
∧

((∑︁
𝑥∈X

#⟨C𝑖 , 𝑥, 𝐷, 𝑠⟩ = 1
)
→ 𝑐𝑖 =𝑚𝐷,𝑠 = 𝑐𝑖−1

)
.

(18)

Since not all disequalities have to be satisfied by the existence of a mismatch (but possibly also by
a length violation), the values of𝑚𝐷,𝑠 and 𝑐𝑖 variables for disequalities with a missing mismatch
(one side or both) might hold arbitrary values. Therefore, it is not sufficient to compare only values

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

169:14 Yu-Fang Chen, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál

of𝑚𝐷,L and𝑚𝐷,R but it is necessary to take into account existing mismatches. It remains to check
the consistency of copy tags. In particular, we need to ensure that copy tags for a variable 𝑥 occur
on a run only if the previous mismatch or copy transition for 𝑥 was taken. We also need to check
that a C-transition was taken immediately after the previous mismatch or copy transition (M or C).

𝜑Copies
def.⇔

∧
1≤𝑖≤2𝑛
𝑥∈X

((∑︁
𝐷∈{𝐷1,...,𝐷𝑛 }
𝑠∈{L,R},𝑎∈Γ

#⟨M𝑖 , 𝑥, 𝐷, 𝑠, 𝑎⟩ + #⟨C𝑖 , 𝑥, 𝐷, 𝑠⟩ = 0
)
→

(∑︁
𝐷∈{𝐷1,...,𝐷𝑛 }
𝑠∈{L,R}

#⟨C𝑖+1, 𝑥, 𝐷, 𝑠⟩ = 0
))

∧

∧
2≤𝑖≤2𝑛
𝑥∈X

((∑︁
𝐷∈{𝐷1,...,𝐷𝑛 }
𝑠∈{L,R}

#⟨C𝑖 , 𝑥, 𝐷, 𝑠⟩ = 1
)
→ #⟨P𝑖 , 𝑥⟩ −

∑︁
𝐷∈{𝐷1,...,𝐷𝑛 }
𝑠∈{L,R},𝑎∈Γ

#⟨M𝑖−1, 𝑥, 𝐷, 𝑠, 𝑎⟩ = 0
)
.

(19)

We note that the last expression in 𝜑Copies , #⟨P𝑖 , 𝑥⟩ −
∑
. . . , is there since we need to make sure

that if there is a C𝑖 -tag immediately after an M𝑖−1-tag, the number of ⟨P𝑖 , 𝑥⟩ is one (because there
was already one P𝑖 tag on theM𝑖−1-transition), but if a copy tag follows another copy tag, then the
number of corresponding position tags is zero.

The final formula will be

𝜑 III def.⇔ PF tag (𝐴III) ∧ 𝜑Fair ∧ 𝜑Consistent ∧ 𝜑Copies ∧
∧

𝐷∈{𝐷1,...,𝐷𝑛 }

(
𝜑𝐷
len

∨ (𝜑𝐷
mis

∧ 𝜑𝐷
sym

)
)
, (20)

where 𝜑𝐷
len
, 𝜑𝐷

mis
, and 𝜑𝐷

sym
are similar to their counterparts in Sec. 5.2 but using the𝑚𝐷,𝑠 variables

instead of directly usingM-tags. Details are in [28].

Theorem 5.3. The formula R′ ∧ I ∧ ∧
1≤𝑖≤𝑛 𝐿𝑖 ≠ 𝑅𝑖 is equisatisfiable to the formula I ∧ 𝜑 III

.

Moreover, the size of 𝜑 III
is polynomial to𝑚𝑛 · |R′ | where𝑚 is the maximum size of any 𝐿𝑖 or 𝑅𝑖 .

6 Other Position Constraints
In this section, we show how the framework introduced in Sec. 5 can be extended for solving other
considered position constraints.

6.1 Length Constraints
For conjunctions

∧
1≤𝑖≤𝑛 𝑥𝑖 = len(𝑦𝑖1 · · ·𝑦𝑖𝑚𝑖

), where 𝑥𝑖 are integer variables, we create the 𝜖-
concatenation 𝐴◦ for all string variables occurring in the constraint and construct the formula

𝜑LEN
def.⇔ PF tag (𝐴◦) ∧

∧
1≤𝑖≤𝑛

(
𝑥𝑖 =

∑︁
1≤ 𝑗≤𝑚𝑖

#⟨L, 𝑦𝑖 𝑗 ⟩
)
. (21)

Theorem 6.1. The formula R′ ∧ I ∧∧
1≤𝑖≤𝑛 𝑥𝑖 = len(𝑦𝑖1 · · ·𝑦𝑖𝑚𝑖

) is equisatisfiable to the formula

I ∧ 𝜑LEN
and the size of 𝜑LEN

is polynomial to𝑚𝑛 · |R′ |.

6.2 Not Prefix and Not Suffix Predicates
The ¬prefixof (𝑥1 · · · 𝑥𝑛, 𝑦1 · · ·𝑦𝑚) and ¬suffixof (𝑥1 · · · 𝑥𝑛, 𝑦1 · · ·𝑦𝑚) predicates are similar to a dis-
equality 𝑥1 · · · 𝑥𝑛 ≠ 𝑦1 · · ·𝑦𝑚 in that they are satisfied if there is a mismatch at the same global
position between their first and second argument. Both predicates, however, have slightly different
conditions than disequalities on satisfiability due to their sides having incompatible lengths—the
first argument (𝑥1 · · ·𝑦𝑛) must be strictly longer than the second argument (𝑦1 · · ·𝑦𝑚). Therefore,
the tag-automaton construction is the same as in the case of a single unrestricted disequality
given in Sec. 5.2. Forming an equisatisfiable LIA formula also remains the same, save for small

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

A Uniform Framework for Handling Position Constraints in String Solving 169:15

differences. The different condition on satisfiability by 𝑥1 · · · 𝑥𝑛 and 𝑦1 · · ·𝑦𝑚 having incompatible
lengths requires replacing the corresponding subformula 𝜑 II

len
by 𝜑∗FIX

len
defined as

𝜑∗FIX
len

def.⇔
∑︁

1≤𝑖≤𝑛
#⟨L, 𝑥𝑖⟩ >

∑︁
1≤ 𝑗≤𝑚

#⟨L, 𝑦 𝑗 ⟩. (22)

Furthermore, the ¬suffixof predicate treats the mismatch position differently than ¬prefixof .
Instead of being satisfied by a mismatch on the same global position starting from the beginning of
its arguments, the ¬suffixof predicate counts the mismatch position from the end of its arguments.
Therefore, we also need to replace the𝜑pos (𝑖, 𝑗) subformulae with𝜑NS

pos (𝑖, 𝑗) asserting that the mismatch
positions in both arguments are the same, using the ⟨P3, 𝑥⟩-tags, which we already added into 𝐴II

in Sec. 5.2. We define 𝜑NS
pos (𝑖, 𝑗) as follows:

(1) If 𝑥𝑖 and 𝑦 𝑗 are occurrences of a different variable, then

𝜑NS
pos (𝑖, 𝑗)

def.⇔

#⟨P2, 𝑥𝑖⟩ + #⟨P3, 𝑥𝑖⟩ +

∑
1≤𝑢<𝑖 #⟨L, 𝑥𝑢⟩ = #⟨P3, 𝑦 𝑗 ⟩ +

∑
1≤𝑣< 𝑗 #⟨L, 𝑦𝑣⟩ if 𝑥𝑖 ≺ 𝑦 𝑗 ,

#⟨P3, 𝑥𝑖⟩ +
∑

1≤𝑢<𝑖 #⟨L, 𝑥𝑢⟩ = #⟨P2, 𝑦 𝑗 ⟩ + #⟨P3, 𝑦 𝑗 ⟩ +
∑

1≤𝑣< 𝑗 #⟨L, 𝑦𝑣⟩ otherwise.
(23)

(2) If 𝑥𝑖 and 𝑦 𝑗 are occurrences of the same variable 𝑧, then

𝜑NS
pos (𝑖, 𝑗)

def.⇔
(
#⟨P2, 𝑧⟩ + #⟨P3, 𝑧⟩ +

∑︁
1≤𝑢<𝑖

#⟨L, 𝑥𝑢⟩ = #⟨P3, 𝑧⟩ +
∑︁

1≤𝑣< 𝑗
#⟨L, 𝑦𝑣⟩

)
∨(

#⟨P3, 𝑧⟩ +
∑︁

1≤𝑢<𝑖
#⟨L, 𝑥𝑢⟩ = #⟨P2, 𝑧⟩ + #⟨P3, 𝑧⟩ +

∑︁
1≤𝑣< 𝑗

#⟨L, 𝑦𝑣⟩
)
.

(24)

Intuitively, we start counting the mismatch position inside a variable after the mismatch has been
sampled rather than counting until it has been sampled. We denote the corresponding constructed
formulae as 𝜑pre (for ¬prefixof) and 𝜑 suf (for ¬suffixof).

Theorem 6.2. The formula R′∧I∧¬prefixof (𝑥1 · · · 𝑥𝑛, 𝑦1 · · ·𝑦𝑚) is equisatisfiable to the formula

I ∧ 𝜑pre
and the formula R′ ∧ I ∧ ¬suffixof (𝑥1 · · · 𝑥𝑛, 𝑦1 · · ·𝑦𝑚) is equisatisfiable to the formula

I ∧ 𝜑 suf
. The sizes of 𝜑pre

and 𝜑 suf
are polynomial to𝑚𝑛 · |R′ |.

6.3 Symbol (not) at a Position
Starting with the negative case first, let the input predicate be 𝑥𝑠 ≠ str .at (𝑦1 · · ·𝑦𝑚, 𝑥𝑖) where
𝑥𝑠 , 𝑦1, . . . 𝑦𝑛 are string variables and 𝑥𝑖 is an integer variable. We construct the tag automaton 𝐴
in the same way as described in Sec. 5.2. To form an equisatisfiable LIA formula, we modify the
reduction from Sec. 5.2 to capture that the mismatch position of the left-hand side is given by 𝑥𝑖
rather than being nondeterministically given by a run in the automaton:

𝜑1, 𝑗
def.⇔

{
𝑥𝑖 = #⟨P1, 𝑦 𝑗 ⟩ +

∑
1≤𝑘< 𝑗 #⟨L, 𝑦𝑘⟩ if 𝑦𝑖 ≺ 𝑥𝑠 ,

𝑥𝑖 = #⟨P2, 𝑦 𝑗 ⟩ +
∑

1≤𝑘< 𝑗 #⟨L, 𝑦𝑘⟩ otherwise.
(25)

We further introduce an auxiliary predicate 𝜑InBounds checking that 𝑥𝑖 is a valid position in 𝑦1 · · ·𝑦𝑚 :

𝜑InBounds
def.⇔ 0 ≤ 𝑥𝑖 <

∑︁
1≤ 𝑗≤𝑚

#⟨L, 𝑦 𝑗 ⟩. (26)

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

169:16 Yu-Fang Chen, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál

∧ ∧ ∧
a a b b a

a b a

offset 𝜅 = 0

a a b b a

a b a•

offset 𝜅 = 1

a a b b a

a b a• •

offset 𝜅 = 2

a a b b a ⋇

a b a• • •

offset 𝜅 = 3

𝑣 :

𝑢:

Fig. 5. Demonstration of how ¬contains(𝑢, 𝑣) for 𝑢, 𝑣 ∈ X∗
is satisfied by an assignment 𝜎 = {𝑢 ↦→ 𝑎𝑏𝑎,

𝑣 ↦→ 𝑎𝑎𝑏𝑏𝑎}. Symbols with red background present mismatches in the corresponding alignments.

The final formula 𝜑¬str .at is then modified to capture possible invalid positions of 𝑥𝑖 :

𝜑¬str .at def.⇔ PF tag (𝐴) ∧
((
#⟨L, 𝑥𝑠⟩ > 0 ∧ ¬𝜑InBounds

)
∨ #⟨L, 𝑥𝑠⟩ > 1 ∨(

#⟨L, 𝑥𝑠⟩ = 1 ∧ 𝜑InBounds ∧ 𝜑sym ∧
∨

1≤ 𝑗≤𝑚
𝜑1, 𝑗

))
.

(27)

Theorem 6.3. The formula R′ ∧ I ∧ 𝑥𝑠 ≠ str .at (𝑦1 · · ·𝑦𝑚, 𝑥𝑖) is equisatisfiable to the formula

I ∧ 𝜑¬str .at
and the size of 𝜑¬str .at

is polynomial to𝑚 · |R′ |.

The 𝑥𝑠 = str .at (𝑦1 · · ·𝑦𝑚, 𝑥𝑖) predicate can be reduced in a similar fashion, requiring us to replace
𝜑sym with 𝜑 ′

sym
, which enforces the sampled letters to be the same rather than being different.

𝜑 str .at def.⇔ PF tag (𝐴) ∧
((
#⟨L, 𝑥𝑠⟩ = 0 ∧ ¬𝜑InBounds

)
∨(

#⟨L, 𝑥𝑠⟩ = 1 ∧ 𝜑InBounds ∧ 𝜑 ′
sym

∧
∨

1≤ 𝑗≤𝑚
𝜑1, 𝑗

))
.

(28)

Theorem 6.4. The formula R′ ∧ I ∧ 𝑥𝑠 = str .at (𝑦1 · · ·𝑦𝑚, 𝑥𝑖) is equisatisfiable to the formula

I ∧ 𝜑 str .at
and the size of 𝜑 str .at

is polynomial to𝑚 · |R′ |.

6.4 Not Contains Predicate
In this section, we extend the reasoning about the disequality tag automaton 𝐴II introduced in
Sec. 5.2 to handling ¬contains with flat languages. The constraint ¬contains(𝑢, 𝑣) for 𝑢, 𝑣 ∈ X∗

is satisfiable if there is a string assignment of variables from 𝑢 and 𝑣 yielding words 𝑤𝑢 and 𝑤𝑣
respectively such that for every alignment of𝑤𝑢 and𝑤𝑣 (i) there is a mismatch symbol of𝑤𝑢 and𝑤𝑣
or (ii) 𝑤𝑢 overflows 𝑤𝑣 . For example, considering the constraint ¬contains(𝑢, 𝑣), the assignment
𝜎 = {𝑢 ↦→ 𝑎𝑏𝑎, 𝑣 ↦→ 𝑎𝑎𝑏𝑏𝑎} is a model—for every alignment of 𝑎𝑏𝑎 and 𝑎𝑎𝑏𝑏𝑎, there is either
a mismatching symbol or a part of 𝑎𝑏𝑎 is outside 𝑎𝑎𝑏𝑏𝑎 (cf. Fig. 5). The alignment of 𝑤𝑢 and 𝑤𝑣
can be characterized by the offset 𝜅 ∈ N of𝑤𝑢 counted from the beginning of𝑤𝑣 . Therefore, the
semantics of ¬contains implicitly involves a universal quantifier ranging over all possible offsets.
Since we need to consider mismatches for all offsets of 𝑤𝑢 and 𝑤𝑣 , one might consider the

formula 𝜑 II from Sec. 5.2, but changed such that the position constraints 𝜑pos (𝑖, 𝑗) take into account
a universally quantified offset variable 𝜅. Such a solution, however, does not work, since we need
that (i) for each value of 𝜅, the string assignment remains the same (we want to shift the same
assignment to different positions given by the offset and not obtain a different assignment for
each offset), and (ii) for each offset the particular mismatch position and symbol (if any) may be
different. The second property is problematic as the different offsets might involve different runs in
the tag automaton that are, however, over the same string assignment. For this reason, we need to
impose a flat language restriction, since for flat automata, the number of taken transitions (and so
a model of PF (𝐴)) uniquely determines the accepted word. On the other hand, for non-flat automata,
this property does not hold. E.g,. consider an NFA with a single state 𝑞 (which is both initial and

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

A Uniform Framework for Handling Position Constraints in String Solving 169:17

accepting) and two transitions: 𝑞
𝑎−→ 𝑞 and 𝑞

𝑏−→ 𝑞. The two words 𝑎𝑎𝑏𝑏 and 𝑏𝑏𝑎𝑎 accepted by the
NFA are different, but they have the same Parikh images. Our restriction to flat languages gives us
the guarantee that a model of the Parikh formula uniquely determines the string assignment.

6.4.1 Formula Construction. Let 𝜑 = ¬contains(𝑢, 𝑣) where 𝑢 = 𝑢1 . . . 𝑢𝑛 and 𝑣 = 𝑣1 . . . 𝑣𝑚 are
sequences of variables from X such that 𝐿(Aut(𝑥)) is flat for every 𝑥 ∈ X, and let 𝐴II be a tag
automaton constructed as described in Sec. 5.2. Since we now need to speak about different runs
of 𝐴II, we lift the definition of the Parikh tag image to explicitly speak about the Parikh variables,
i.e., PF tag (𝑇, #) where # denotes the set of all #-prefixed variables in PF tag . Since we need to speak
about alignments of assignments, we also refine the formulae 𝜑pos (𝑖, 𝑗) from Sec. 5.2 to 𝜑pos (𝑖, 𝑗) (𝜅, #),
explicitly relating the used Parikh variables and the particular offset 𝜅 . The offset 𝜅 is added to the
left-hand side of every equation occurring inside 𝜑pos (𝑖, 𝑗) , in order to express that the assignments
of the left-hand side are shifted to the right by 𝜅 . The formula 𝜑 II

mis
from Sec. 5.2 is then also changed

into 𝜑mis (𝜅, #), which uses 𝜑pos (𝑖, 𝑗) (𝜅, #) instead of 𝜑pos (𝑖, 𝑗) .
Let us start by defining some auxiliary predicates used later in the resulting formula:

𝜋 (𝑞−{⟨S,𝑎⟩,⟨L,𝑥 ⟩}→𝑝) def.
=

{
(𝑞, 𝑖)−{𝑈 }→ (𝑝, 𝑗) | (𝑞, 𝑖)−{𝑈 }→ (𝑝, 𝑗) ∈ Δ(𝐴II), ⟨S, 𝑎⟩ ∈ 𝑈

}
and (29)

EqualWords(#1, #2)
def.⇔

∧
𝑡 ∈Δ(𝐴◦)

©­«
∑︁

𝑟 ∈𝜋 (𝑡)
#1𝑟 =

∑︁
𝑟 ∈𝜋 (𝑡)

#2𝑟
ª®¬ . (30)

Let #1 and #2 be two sets of Parikh variables encoding accepting runs of 𝐴II, i.e., PF tag (𝐴II, #1) and
PF tag (𝐴II, #2) hold. Intuitively, EqualWords(#1, #2) is satisfied iff #1 and #2 correspond to the same
sets of runs in the 𝜖-concatenation 𝐴◦ serving as a basis for 𝐴II, and, therefore, since we assume
flat automata, #1 and #2 correspond to the same string assignments. Further, we define LenDiff (#)
expressing the difference |𝑤𝑣 | − |𝑤𝑢 | where𝑤𝑢 and𝑤𝑣 are concatenated assignments of ¬contains’s
arguments given by the Parikh image:

LenDiff (#) def.
=

(∑︁
1≤ 𝑗≤𝑚

#⟨L, 𝑣 𝑗 ⟩
)
−

(∑︁
1≤𝑖≤𝑛

#⟨L, 𝑢𝑖⟩
)
. (31)

The resulting formula equisatisfiable to the ¬contains is then given as

𝜑NC
def.⇔ PF tag (𝐴II, #1)∧∀𝜅∃#2

((
PF tag (𝐴II, #2) ∧ EqualWords(#1, #2) ∧ 𝜑mis (𝜅, #2)

)
∨

𝜅 < 0 ∨ 𝜅 > LenDiff (#1)
)
.

(32)

Note that in the formula, we use ∃# to denote the existential quantification over all variables in #.
Intuitively, 𝜑NC is satisfied iff there is a string assignment corresponding to #1 such that for every
offset 𝜅, we can find some other model #2 satisfying PF tag (𝐴II, #2) that encodes the same string
model (but potentially a different run through 𝐴II. Moreover, 𝜑NC says that the run corresponding
to #2 contains a mismatch for the offset 𝜅. Alternatively, the offset 𝜅 might be larger than the
difference between lengths of ¬contains arguments or negative, in which case the corresponding
alignment is trivially satisfied.

Theorem 6.5. The formula R′ ∧ I ∧ ¬contains(𝑢1 . . . 𝑢𝑛, 𝑣1 . . . 𝑣𝑚) where the language of each 𝑢𝑖
and 𝑣 𝑗 is flat is equisatisfiable to the formula I ∧ 𝜑NC

. Moreover, the size of 𝜑NC
is polynomial

to𝑚𝑛 · |R′ |.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

169:18 Yu-Fang Chen, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál

6.5 Arbitrary Combination of Position Predicates
The construction of the tag automaton for multiple disequalities and the subsequent LIA re-
duction can be easily extended to a system 𝜓 ≡ ∧

1≤𝑘≤𝐾 𝑃𝑘 (𝑥𝑘,1 · · · 𝑥𝑘,𝑛𝑘 , 𝑦𝑘,1 · · ·𝑦𝑘,𝑚𝑘
) where

𝑃𝑘 ∈ {≠, ¬prefixof , ¬suffixof , str .at, ¬str .at, ¬contains}. From a high-level perspective, a single
𝜖-concatenation 𝐴◦ of all automata of variables occurring in 𝜓 is created. The tag automaton is
formed in the same way as described in Sec. 5.3, containing 2𝐾 + 1 copies of 𝐴◦ to track up to 2𝐾
possible mismatch symbols (one for each side of every predicate). The resulting LIA formula is then

𝜑comb
def.⇔ 𝜑Parikh ∧ 𝜑Consistent ∧ 𝜑Copies ∧

∧
1≤𝑖≤𝐾

𝜑𝑖
Sat

(33)

where 𝜑𝑖
Sat

is a LIA formula specific to the type of 𝑖-th constraint described in previous sections
expressing that the predicate is satisfied. Note that 𝜑𝑖

Sat
needs to be modified in the same way as in

the case of a system of multiple disequalities (cf. Sec. 5.3) to make use of the 𝑝𝐷,𝑠 and𝑚𝐷,𝑠 variables.
Furthermore, all variables present in any ¬contains predicate must have a flat language to maintain
soundness, similar as in the case of a single ¬contains predicate.
Theorem 6.6. The formula R′ ∧ I ∧𝜓 is equisatisfiable to the formula I ∧ 𝜑comb

, provided all

variables occurring in ¬contains constraints within𝜓 are assigned flat languages by R′
. In addition,

the size of 𝜑comb
is polynomial to𝑚𝑛 · |R′ | where 𝑛 is the number of constraints in 𝜓 and𝑚 is the

maximum size of any side of the constraints in𝜓 .

7 Decidability and Complexity
This section covers theoretical results that follow from tag-automaton constructions based on
position predicates and subsequent reductions into LIA described in previous sections. We will
formulate our results as instances of the following parametrized decision problem.

PosRegSAT(E,R,I,P)
INPUT: • a set of string variables X = {𝑥1, 𝑥2, . . . , 𝑥𝑘 },

• a conjunction of word equations E,
• a conjunction of regular constraints R =

{
𝑥 ∈ 𝐿(𝐴𝑥) | 𝑥 ∈ X

}
,

• a conjunction of length constraints I, and
• a conjunction of position constraints P.

QUESTION: Is there an assignment 𝜎 : X → Γ∗ satisfying E ∧ R ∧ I ∧ P?
In the following, we write R to denote an arbitrary conjunction of regular constraints of the form

R =
∧
𝑥∈X 𝑥 ∈ 𝐿(𝐴𝑥) where 𝐴𝑥 is an NFA associated with the variable 𝑥 if not specified otherwise.

Theorem 7.1. The time complexity of PosRegSAT(∅,R, ∅,P) with P = 𝑃 (𝑥1 · · · 𝑥𝑛, 𝑦1 · · ·𝑦𝑚) for
𝑃 ∈ {≠,¬suffixof ,¬prefixof } is in PTime, more concretely in O(𝑛𝑚 · |Γ |3 · |R |6).

Proof outline. We outline the proof for 𝑃 being a disequality; the other cases are similar. We
construct a one-counter automaton𝐶 with a counter c with updates limited to {−1, 0,+1} such that
there is an accepting state reachable with c = 0 iff the input combination of regular constraints
and 𝑃 is satisfiable. We show that 𝐶 has a polynomial size to the input and using the result of [9,
Lemma 11] stating that 0-reachability of a state in a one-counter automaton can be decided in
PTime, we get the theorem. The full proof is given in [28]. □

Lemma 7.2. PosRegSAT(∅,R, ∅,P) with P =
∧

1≤𝑖≤𝐾 (𝑥𝑖,1 · · · 𝑥𝑖,𝑛𝑖 ≠ 𝑦𝑖,1 · · ·𝑦𝑖,𝑚𝑖
) is NP-hard.

Proof. By reduction from 3-SAT. Let 𝜑 be an input 3-SAT formula. For each Boolean variable 𝑥𝑖
in 𝜑 , we create a string variable 𝑦𝑖 with Aut(𝑦𝑖) being a DFA with 2 states accepting the language

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

A Uniform Framework for Handling Position Constraints in String Solving 169:19

{0, 1}. For each clause in 𝜑 , we create a new disequality such that, e.g., for a clause (𝑥1 ∨ ¬𝑥2 ∨ 𝑥3),
we create the disequality 𝑦1𝑦2𝑦3 ≠ 010. Then the system of disequalities is equisatisfiable to 𝜑 . □

Theorem 7.3. PosRegSAT(∅,R, ∅,P) with P =
∧

1≤𝑖≤𝐾 𝑃𝑖 (𝑥𝑖,1 · · · 𝑥𝑖,𝑛𝑖 , 𝑦𝑖,1 · · ·𝑦𝑖,𝑚𝑖
) for 𝑃𝑖 ∈ {≠,

¬suffixof ,¬prefixof , str .at,¬str .at} is NP-complete.

Proof. From Theorem 7.2 we have that the problem is NP-hard. NP-membership follows from
constructing an equisatisfiable quantifier-free LIA formula𝜓 as described in Sec. 6.5 and observing
that𝜓 is of polynomial size. Satisfiability of quantifier-free LIA is in NP [63]. □

The following theorem states that position constraints with structurally limited languages of
variables occurring in ¬contains predicates can be decided in NExpTime.

Theorem 7.4. PosRegSAT(∅,R, ∅,P) with P =
∧

1≤𝑖≤𝐾 𝑃𝑖 (𝑥𝑖,1 · · · 𝑥𝑖,𝑛𝑖 , 𝑦𝑖,1 · · ·𝑦𝑖,𝑚𝑖
) for 𝑃𝑖 ∈ {≠,

¬suffixof ,¬prefixof ,¬contains, str .at,¬str .at} such that 𝐿(𝐴𝑥) of any variable 𝑥 that occurs in

a ¬contains predicate is flat can be decided in NExpTime.

Proof. We can observe that, in the presence of ¬contains predicates, the resulting formula 𝜓
constructed as described in Sec. 6.5 falls into the ∃∀∃-fragment of LIA (after transforming into the
prenex normal form). As the number of quantifier alternations is 2, we obtain that𝜓 is decidable in
ΣExp
1 = NExpTime [37], where ΣExp

1 is the first level of the weak exponential hierarchy. □

Contrary to deciding a single disequality (which is in PTime), deciding a single ¬contains is
already NP-hard, as stated by the following theorem (proven in [28]).

Theorem 7.5. PosRegSAT(∅,R, ∅,P) with P = ¬contains(𝑥1 . . . 𝑥𝑛, 𝑦1 . . . 𝑦𝑚) is NP-hard.

Finally, we obtain the decidability of the whole fragment considered in the paper for chain-free
word equations.

Theorem 7.6. PosRegSAT(E,R,I,P) with E being chain-free [8], P =
∧

1≤𝑖≤𝐾 𝑃𝑖 (𝑥𝑖,1 · · · 𝑥𝑖,𝑛𝑖 ,
𝑦𝑖,1 · · ·𝑦𝑖,𝑚𝑖

) for 𝑃𝑖 ∈ {≠,¬suffixof ,¬prefixof ,¬contains, str .at,¬str .at} and R =
∧
𝑥∈X 𝑥 ∈ 𝐿(𝐴𝑥)

such that 𝐿(𝐴𝑥) of any variable 𝑥 that occurs in a ¬contains predicate is flat is decidable.

Proof. As E is chain-free, we start by solving only E ∧ R ∧ I using the approach described
in [23], obtaining a new set of variables X′ along with a length constraint I′ (extension of I
with equalities relating lengths of the original variables and the variables from X′), a monadic
decomposition R′ =

∧
𝑥 ′∈X′ 𝑥 ′ ∈ 𝐿(𝐴𝑥 ′) and a length constraint (we note that the noodlification

procedure in [23] preserves flatness of languages), and a substitution map 𝜎 : X → (X′)∗ mapping
original variables to (potentially concatenations of) new variables. Applying 𝜎 to P, we obtain
a conjunction P′ of new position predicates. We are left to solve a new system R′ ∧ I′ ∧ P′, for
which we can construct an equisatisfiable LIA formula using the techiniques presented in this work.
Therefore, we obtain an equisatisfiable formula in a decidable theory, concluding the proof. □

8 Experimental Evaluation
We implemented the proposed decision procedure in the Z3-Noodler solver version 1.3 [24]. We
call the modified version Z3-Noodler-pos. Since we need a monadic decomposition for dealing
with position constraints, the proposed decision procedure was integrated to the stabilization-based
procedure [23], which computes the monadic decomposition. For an input formula, we separate
the position constraints, apply the stabilization-based procedure on the remaining constraints,
and for each of the possible obtained monadic decompositions (there might be more depending
on the case-splits within the stabilization), we add the LIA formula describing satisfiability of
those position constraints to the LIA formula provided by the stabilization-based procedure (this

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

169:20 Yu-Fang Chen, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál

Table 1. Results of experiments on all benchmarks. For each benchmark we give the number of cases the tool

runs out of resources (column “OOR”, the number of timeouts and memory outs), the number of unknowns

(column “Unk”), and total time in seconds on finished instances (column “Time”) and on all instances (i.e.,

when taking the time 120 s for OOR/Unk instances; column “TimeAll”). The best TimeAll results are bold.
biopython django thefuck position-hard All
(77,222) (52,643) (19,872) (550) (150,287)

OOR Unk Time TimeAll OOR Unk Time TimeAll OOR Unk Time TimeAll OOR Unk Time TimeAll OOR Unk Time TimeAll

Z3-Noodler-pos 171 0 3,490 24,010 39 0 3,325 8,005 0 0 665 665 0 0 124 124 210 0 7,604 32,804
Z3-Noodler 171 336 3,545 64,385 37 108 3,473 20,873 1 375 637 45,757 234 246 1,912 59,512 443 1,065 9,567 190,527
cvc5 69 0 12,834 21,114 0 0 4,515 4,515 0 0 690 690 550 0 – 66,000 619 0 18,039 92,319
Z3 1,047 0 15,661 141,301 502 0 7,501 67,741 47 0 9,457 15,097 550 0 – 66,000 2,146 0 32,619 290,139
OSTRICH 2,986 0 749,986 1,108,306 4,404 0 979,326 1,507,806 967 0 120,152 236,192 550 0 – 66,000 8,907 0 1,849,464 2,918,304

LIA formula may contain additional subformulae speaking, e.g., about lengths of the solution
or string-integer conversions [39]). For satisfiability checking of quantifier-free LIA formulae,
Z3-Noodler uses Z3’s internal LIA solver based on the Simplex method extended with a branch-
and-cut strategy to obtain integer solutions [33]. For universally quantified formulae (those obtained
by the reduction of ¬contains), we use an additional Z3’s internal solver based on the model-based

quantifier instantiation [36] approach.
For representing the tag automaton structure, we use the Mata library [30]. A tag automaton is

represented as a nondeterministic finite automaton with additional mapping of Mata’s integer
symbols to sets of tags. The LIA formula is generated in Z3-Noodler’s internal format, which is
then converted to Z3’s formula representation. Except of the proposed procedure, Z3-Noodler-pos
implements heuristics for simple cases of the ¬contains predicate. In particular, if |𝑢 | < |𝑣 |, then
¬contains(𝑢, 𝑣) is satisfied. Therefore, if we get a ¬contains with not-flat languages, we apply this
underapproximation. For the case when the language of 𝑣 is finite, we enumerate words from the
language and check them separately instead of generating complex quantified formulae.
8.1 Experimental Settings
We evaluated Z3-Noodler-pos on benchmarks containing heavy position constraints. We collected
4 benchmark sets (the number of formulae is in parentheses): (i) biopython (77,222) obtained by
a symbolic execution of Python tools for bioinformatics [3], (ii) django (52,643) from a symbolic
execution of the Django web application framework [3], (iii) thefuck (19,872) from a symbolic
execution of a tool correcting command mistakes [3]9, and (iv) position-hard (550) containing diffi-
cult hand-crafted formulae with disequalities and ¬contains predicates.10 Altogether, we collected
150,287 formulae for evaluation. We note that these formulae (in particular the first three sets)
are from the wild, i.e., they are not of the form R′ ∧ I ∧ P, which we consider in Secs. 5 and 6.
Instead, they have a more general Boolean structure with word equations and other constraints
(not even necessarily chain-free), which are (in our case) handled and transformed into the monadic
decomposition and our input form by the stabilization-based procedure of Z3-Noodler. Moreover,
a single input formula might cause multiple calls to the string solver with formulae from different
fragments. Since the main goal of this evaluation is to show the improvement that our contribu-
tion brings to automata-based techniques being able to handle position constraints, we excluded
benchmarks from SMT-LIB [12], where the number of position-heavy constraints is small.
We compared Z3-Noodler-pos with Z3-Noodler (version 1.3) [24], cvc5 (version 1.2.0) [11],

Z3 (version 4.13.3) [33], and OSTRICH (version 1.4) [22]. We excluded Z3-Trau [5] as it gives
incorrect results on some benchmarks and Z3-Alpha [56] as it fails with an error on a large fraction
9The three benchmark sets biopython, django, and thefuck are from [3], where they were obtained by running the symbolic
executor PyCT [73] on the respective projects and keeping formulae that contained at least one position string constraint or
a constraint that is naturally translated to a position constraint, such as indexof.
10These are simple formulae inspired by the problem of testing primitiveness of a word. They contain one ¬contains or ≠
predicate over concatenations of string variables (with possible repetitions, e.g., 𝑥𝑦𝑧 ≠ 𝑥𝑥𝑦) constrained by simple regular
languages (e.g., 𝑎∗ or (𝑎𝑏𝑐)∗). Despite their apparent simplicity, a solution cannot be easily found by systematically trying
different assignments, which seems to be the reason why these formulae are unsolvable by state-of-the-art solvers.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

A Uniform Framework for Handling Position Constraints in String Solving 169:21

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Z3-Noodler-pos

Z3

(a) Z3-Noodler-pos vs. Z3

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Z3-Noodler-pos
cv
c5

(b) Z3-Noodler-pos vs. cvc5

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Z3-Noodler-pos

OS
TR

IC
H

(c) Z3-Noodler-pos vs. OSTRICH

Fig. 6. Comparison of Z3-Noodler-pos with Z3-Noodler, cvc5, Z3, and OSTRICH. Times are in seconds,

axes are logarithmic. Dashed lines represent timeouts (120 s). Colours distinguish benchmarks: • biopython,
• django, • thefuck, and • position-hard.

of the benchmark. The experiments were executed on a server with an AMD EPYC 9124 64-Core
Processor (16 cores were used by our experiment) with 125GiB of RAM running Ubuntu 22.04.5.
The timeout was set to 120 s (from our experience, higher limit has only a negligible effect on the
number of solved instances) and the memory limit was set to 8GiB (except for OSTRICH, where
we set the limit to 16GiB, since OSTRICH refuses to run with less than 8GiB of memory).

8.2 Results
The overall results comparing Z3-Noodler-pos with other tools are shown in Table 1. From the
table you can see that Z3-Noodler-pos has the smallest number (210) of OORs (i.e., time/memory-
outs) followed by Z3-Noodler (443; however, it answers Unk for 1,065 instances) and cvc5 (619).
Z3 and OSTRICH have a bit more OORs than these tools (2,146 and 8,907 respectively). For the
biopython and django benchmark sets, cvc5 is the best solver, having slightly less OORs than
Z3-Noodler-pos (171 vs. 69 on biopython and 39 vs. 0 on django, which is ∼0.1 % of the two
benchmark sets). On the thefuck set, the overall performance of Z3-Noodler-pos and cvc5 is
roughly the same (Z3-Noodler-pos is faster by 25 s on thewhole benchmark set, which is negligible),
though the performance on individual formulae in the set can differ by a lot (cf. Fig. 6b). On the
position-hard benchmark, Z3-Noodler-pos can solve all formulae while no other solver except
Z3-Noodler can solve any of them (and Z3-Noodler can solve only 70). Note that concerning
unsolved instances, Z3-Noodler-pos is quite orthogonal to cvc5 (only 10 formulae can be solved
neither by Z3-Noodler-pos nor cvc5). Regarding the overall running time, Z3-Noodler-pos has
the smallest time of all other tools.

From a comparison of Z3-Noodler-pos and Z3-Noodler, it is evident that the proposed decision
procedure significantly helps in solving instances that were unknown for the original Z3-Noodler
without any performance regression. The OORs of Z3-Noodler-pos on benchmarks obtained
from symbolic execution are caused mainly by non-chain-freeness of the input constraint where
the stabilization-based procedure was not able to get a stable solution before the time limit. In
Fig. 6 we show scatter plots comparing the performance of Z3-Noodler-pos with Z3, cvc5, and
OSTRICH. It can be seen from the figures that Z3-Noodler-pos can significantly outperform other
state-of-the-art solvers on many instances. In Fig. 7 we give a cactus plot comparing sorted running
times on all benchmarks, showing the superior performance of Z3-Noodler-pos.

9 Related Work
Approaches and tools for string solving are numerous and diverse, with a variety of constraint
representations, algorithms, and input types. Many approaches use automata, e.g., Stranger [76–
78], Z3-Noodler [18, 24, 26], Norn [6, 7], OSTRICH [19–21, 21, 54], Trau [3–5, 8], Sloth [40],

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

169:22 Yu-Fang Chen, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál

135700 137150 138600 140050 141500 142950 144400 145850 147300 148750 150287
Instances

10−1

100

101

102

Ru
nt

im
e

[s
]

Z3-Noodler-pos
Z3-Noodler
cvc5
Z3
OSTRICH

Fig. 7. Cactus plot comparing sorted runtimes of Z3-Noodler-pos with other tools. The 𝑦-axis denotes the

time in seconds (the axis is logarithmic), the 𝑥-axis denotes the number of solved formulae ordered by their

runtime (we show only the ∼14,500 hardest formulae for each solver).

Slog [75], Z3str3RE [14, 16], Retro [25, 29]. The most important tools focused on word equations
include cvc4/5 [13, 51–53, 62, 67, 68], Z3 [17, 33]. Bit vectors are commonly used in tools like
Z3Str/2/3/4 [15, 60, 79, 80] and HAMPI [46], while PASS [50] utilizes arrays, and G-strings [10] and
GECODE+S [71] use a SAT solver. Z3-Alpha [56] synthesizes efficient strategies for Z3 in order to
improve the performace.
The chain-free fragment [8], which we extend in this paper, represents the largest fragment of

string constraints for which any string solver offers formal completeness guarantees. Quadratic
equations, addressed by tools like Retro [25, 29] and Kepler22 [48], are incomparable but have
less practical relevance, though some tools, such as Z3-Noodler or OSTRICH, implement Nielsen’s
algorithm [61] to handle quadratic cases. Most other solvers guarantee completeness on smaller
fragments (e.g., OSTRICH [54], Norn [6, 7], and Z3str3RE [16]), or use incomplete heuristics that
work in practice by over-/under-approximating or by sacrificing termination guarantees.

When it comes to handling position constraints, existing tools generally employ a similar
approach—reducing these constraints to equations and length constraints, which are then solved
using exponential-space algorithms or incomplete techniques in modern string solvers. However,
this approach cannot be even used for ¬contains as it cannot be directly reduced to quantifier-free
combination of equations and length constraints. cvc-4/5 transforms ¬contains to quantified string
formula, which is then solved by quantifier instantiation [66]. Probably the closest approach to
ours is [3] converting the ¬contains into a LIA formula. The main differences are threefold: (i) the
approach of [3] builds on the flattening underapproximation, while our approach is precise. (ii) our
framework is more general that we can reduce to LIA all combinations of position constraints
and not just ¬contains. (iii) The approach in [3] avoids considering repetitions of variables, which
is a central part of our work, by an aggressive overapproximation based on replacing repeating
variables by fresh ones. The idea of using counting to determine positions in strings was also used
in [21], where cost enriched automata similar to our tag automata were used, though [21] aspires
only to solve a substantially simpler problem of computing pre-images of basic constraints and
does not consider position constraints. The inspiration for our use of tag automata was originally
drawn from methods used in functional equivalence checking of streaming string transducers [9].

Data Availability Statement
An environment with the tools and data used for the experimental evaluation in the current study
is available at [27].

Acknowledgements
We thank the anonymous reviewers for careful reading of the paper and their suggestions that
greatly improved its quality. This work was supported by the Czech Ministry of Education, Youth
and Sports ERC.CZ project LL1908, the Czech Science Foundation project 25-18318S, and the FIT
BUT internal project FIT-S-23-8151. The work of Michal Hečko, a Brno Ph.D. Talent Scholarship

Holder, is funded by the Brno City Municipality.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

A Uniform Framework for Handling Position Constraints in String Solving 169:23

References
[1] 2024. SMT-COMP’24. https://smt-comp.github.io/2024/
[2] 2024. SMT-COMP’24, QF_Strings. https://smt-comp.github.io/2024/results/qf_strings-single-query/
[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukáš Holík, Denghang Hu, Wei-Lun Tsai,

Zhilin Wu, and Di-De Yen. 2021. Solving not-substring constraint with flat abstraction. In Proc. of APLAS’21 (LNCS,

Vol. 13008), Hakjoo Oh (Ed.). Springer, 305–320. doi:10.1007/978-3-030-89051-3_17
[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukás Holík, Ahmed Rezine, and Philipp

Rümmer. 2017. Flatten and conquer: a framework for efficient analysis of string constraints. In Proc. of PLDI’17, Albert
Cohen and Martin T. Vechev (Eds.). ACM, 602–617. doi:10.1145/3062341.3062384

[5] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukáš Holík, Ahmed Rezine, and Philipp
Rümmer. 2018. Trau: SMT solver for string constraints. In Proc. of FMCAD’18, Nikolaj S. Bjørner and Arie Gurfinkel
(Eds.). IEEE, 1–5. doi:10.23919/FMCAD.2018.8602997

[6] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukáš Holík, Ahmed Rezine, Philipp Rümmer, and Jari
Stenman. 2014. String constraints for verification. In Proc. of CAV’14 (LNCS, Vol. 8559), Armin Biere and Roderick
Bloem (Eds.). Springer, 150–166. doi:10.1007/978-3-319-08867-9_10

[7] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukáš Holík, Ahmed Rezine, Philipp Rümmer, and Jari
Stenman. 2015. Norn: An SMT solver for string constraints. In Proc. of CAV’15 (LNCS, Vol. 9206), Daniel Kroening and
Corina S. Pasareanu (Eds.). Springer, 462–469. doi:10.1007/978-3-319-21690-4_29

[8] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bui Phi Diep, Lukáš Holík, and Petr Janků. 2019. Chain-Free String
Constraints. In Proc. of ATVA’19 (LNCS, Vol. 11781), Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza (Eds.).
Springer, 277–293. doi:10.1007/978-3-030-31784-3_16

[9] Rajeev Alur and Pavol Cerný. 2011. Streaming transducers for algorithmic verification of single-pass list-processing
programs. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

2011, Austin, TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 599–610. doi:10.1145/1926385.
1926454

[10] Roberto Amadini, Graeme Gange, Peter J. Stuckey, and Guido Tack. 2017. A novel approach to string constraint
solving. In Principles and Practice of Constraint Programming - 23rd International Conference, CP 2017, Melbourne, VIC,

Australia, August 28 - September 1, 2017, Proceedings (LNCS, Vol. 10416), J. Christopher Beck (Ed.). Springer, 3–20.
doi:10.1007/978-3-319-66158-2_1

[11] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,
Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,
Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A versatile and industrial-strength SMT solver. In Proc. of TACAS’22 (LNCS,

Vol. 13243), Dana Fisman and Grigore Rosu (Eds.). Springer, 415–442. doi:10.1007/978-3-030-99524-9_24
[12] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2016. The Satisfiability Modulo Theories Library (SMT-LIB).

www.SMT-LIB.org.
[13] Clark W. Barrett, Cesare Tinelli, Morgan Deters, Tianyi Liang, Andrew Reynolds, and Nestan Tsiskaridze. 2016.

Efficient solving of string constraints for security analysis. In Proceedings of the Symposium and Bootcamp on the

Science of Security, Pittsburgh, PA, USA, April 19-21, 2016, William L. Scherlis and David Brumley (Eds.). ACM, 4–6.
doi:10.1145/2898375.2898393

[14] Murphy Berzish, Joel D. Day, Vijay Ganesh, Mitja Kulczynski, Florin Manea, Federico Mora, and Dirk Nowotka. 2023.
Towards More Efficient Methods for Solving Regular-expression Heavy String Constraints. Theor. Comput. Sci. 943
(2023), 50–72. doi:10.1016/j.tcs.2022.12.009

[15] Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. 2017. Z3str3: A string solver with theory-aware heuristics. In Proc.

of FMCAD’17, Daryl Stewart and Georg Weissenbacher (Eds.). IEEE, 55–59. doi:10.23919/FMCAD.2017.8102241
[16] Murphy Berzish, Mitja Kulczynski, Federico Mora, Florin Manea, Joel D. Day, Dirk Nowotka, and Vijay Ganesh. 2021.

An SMT solver for regular expressions and linear arithmetic over string length. In Proc. of CAV’21 (LNCS, Vol. 12760),
Alexandra Silva and K. Rustan M. Leino (Eds.). Springer, 289–312. doi:10.1007/978-3-030-81688-9_14

[17] Nikolaj S. Bjørner, Nikolai Tillmann, and Andrei Voronkov. 2009. Path feasibility analysis for string-manipulating
programs. In Proc. of TACAS’09 (LNCS, Vol. 5505), Stefan Kowalewski and Anna Philippou (Eds.). Springer, 307–321.
doi:10.1007/978-3-642-00768-2_27

[18] Frantisek Blahoudek, Yu-Fang Chen, David Chocholatý, Vojtech Havlena, Lukás Holík, Ondrej Lengál, and Juraj Síc.
2023. Word Equations in Synergy with Regular Constraints. In Formal Methods - 25th International Symposium, FM

2023, Lübeck, Germany, March 6-10, 2023, Proceedings (LNCS, Vol. 14000), Marsha Chechik, Joost-Pieter Katoen, and
Martin Leucker (Eds.). Springer, 403–423. doi:10.1007/978-3-031-27481-7_23

[19] Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu. 2018. What is decidable about string
constraints with the ReplaceAll function. Proc. ACM Program. Lang. 2, POPL (2018), 3:1–3:29. doi:10.1145/3158091

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

https://smt-comp.github.io/2024/
https://smt-comp.github.io/2024/results/qf_strings-single-query/
https://doi.org/10.1007/978-3-030-89051-3_17
https://doi.org/10.1145/3062341.3062384
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1007/978-3-319-66158-2_1
https://doi.org/10.1007/978-3-030-99524-9_24
www.SMT-LIB.org
https://doi.org/10.1145/2898375.2898393
https://doi.org/10.1016/j.tcs.2022.12.009
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.1007/978-3-030-81688-9_14
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-031-27481-7_23
https://doi.org/10.1145/3158091

169:24 Yu-Fang Chen, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál

[20] Taolue Chen, Alejandro Flores-Lamas, Matthew Hague, Zhilei Han, Denghang Hu, Shuanglong Kan, Anthony W. Lin,
Philipp Rümmer, and Zhilin Wu. 2022. Solving string constraints with Regex-dependent functions through transducers
with priorities and variables. Proc. ACM Program. Lang. 6, POPL (2022), 1–31. doi:10.1145/3498707

[21] Taolue Chen, Matthew Hague, Jinlong He, Denghang Hu, Anthony Widjaja Lin, Philipp Rümmer, and Zhilin Wu. 2020.
A Decision Procedure for Path Feasibility of String Manipulating Programs with Integer Data Type. In Proc. of ATVA’20

(LNCS, Vol. 12302), Dang Van Hung and Oleg Sokolsky (Eds.). Springer, 325–342. doi:10.1007/978-3-030-59152-6_18
[22] Taolue Chen, Matthew Hague, Anthony W. Lin, Philipp Rümmer, and Zhilin Wu. 2019. Decision procedures for

path feasibility of string-manipulating programs with complex operations. Proc. ACM Program. Lang. 3, POPL (2019),
49:1–49:30. doi:10.1145/3290362

[23] Yu-Fang Chen, David Chocholatý, Vojtech Havlena, Lukás Holík, Ondrej Lengál, and Juraj Síc. 2023. Solving String
Constraints with Lengths by Stabilization. Proc. ACM Program. Lang. 7, OOPSLA2 (2023), 2112–2141. doi:10.1145/
3622872

[24] Yu-Fang Chen, David Chocholatý, Vojtech Havlena, Lukás Holík, Ondrej Lengál, and Juraj Síc. 2024. Z3-Noodler: An
Automata-based String Solver. In Proc. of TACAS’24 (LNCS, Vol. 14570), Bernd Finkbeiner and Laura Kovács (Eds.).
Springer, 24–33. doi:10.1007/978-3-031-57246-3_2

[25] Yu-Fang Chen, Vojtěch Havlena, Ondřej Lengál, and Andrea Turrini. 2020. A symbolic algorithm for the case-split rule
in string constraint solving. In Proc. of APLAS’20 (LNCS, Vol. 12470), Bruno C. d. S. Oliveira (Ed.). Springer, 343–363.
doi:10.1007/978-3-030-64437-6_18

[26] Yu-Fang Chen, David Chocholatỳ, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč. 2023. Solving string
constraints with lengths by stabilization. Proceedings of the ACM on Programming Languages 7, OOPSLA2 (2023),
2112–2141.

[27] Yu-Fang Chen, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál. 2025. Artifact: A Uniform Framework

for Handling Position Constraints for String Solving. doi:10.5281/zenodo.15050654
[28] Yu-Fang Chen, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál. 2025. A Uniform Framework for

Handling Position Constraints in String Solving (Technical Report). arXiv:2504.07033 [cs.LO] https://arxiv.org/abs/
2504.07033

[29] Yu-Fang Chen, Vojtěch Havlena, Ondřej Lengál, and Andrea Turrini. 2023. A symbolic algorithm for the case-split rule
in solving word constraints with extensions. Journal of Systems and Software 201 (2023), 111673. doi:10.1016/j.jss.2023.
111673

[30] David Chocholatý, Tomás Fiedor, Vojtech Havlena, Lukás Holík, Martin Hruska, Ondrej Lengál, and Juraj Síc. 2024.
Mata: A Fast and Simple Finite Automata Library. In Proc. of TACAS’24 (LNCS, Vol. 14571), Bernd Finkbeiner and Laura
Kovács (Eds.). Springer, 130–151. doi:10.1007/978-3-031-57249-4_7

[31] Joel D. Day, Vijay Ganesh, Nathan Grewal, Matthew Konefal, and Florin Manea. 2024. A Closer Look at the Expressive
Power of Logics Based on Word Equations. Theory Comput. Syst. 68, 3 (2024), 322–379. doi:10.1007/S00224-023-10154-8

[32] Joel D. Day, Vijay Ganesh, Paul He, Florin Manea, and Dirk Nowotka. 2018. The Satisfiability of Extended Word
Equations: The Boundary Between Decidability and Undecidability. CoRR abs/1802.00523 (2018). arXiv:1802.00523
http://arxiv.org/abs/1802.00523

[33] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS’08 (LNCS, Vol. 4963).
Springer, 337–340. doi:10.1007/978-3-540-78800-3_24

[34] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2007. Efficient E-Matching for SMT Solvers. In Proc. of CADE’07

(LNCS, Vol. 4603), Frank Pfenning (Ed.). Springer, 183–198. doi:10.1007/978-3-540-73595-3_13
[35] V. G. Durnev. 1995. The undecidability of the positive ∀∃3 theory of a free semigroup. Sibirsk. Mat. Zh. 36, 5 (1995),

1067–1080, ii. doi:10.1007/BF02112533
[36] Yeting Ge and Leonardo Mendonça de Moura. 2009. Complete Instantiation for Quantified Formulas in Satisfiability

Modulo Theories. In Proc. of CAV’09 (LNCS, Vol. 5643), Ahmed Bouajjani and Oded Maler (Eds.). Springer, 306–320.
doi:10.1007/978-3-642-02658-4_25

[37] Christoph Haase. 2014. Subclasses of Presburger arithmetic and the weak EXP hierarchy. In Joint Meeting of the

Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE

Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, Thomas A. Henzinger
and Dale Miller (Eds.). ACM, 47:1–47:10. doi:10.1145/2603088.2603092

[38] Matthew Hague, Anthony W. Lin, Philipp Rümmer, and Zhilin Wu. 2020. Monadic Decomposition in Integer Linear
Arithmetic. In Proc. of IJCAR’20 (LNCS, Vol. 12166), Nicolas Peltier and Viorica Sofronie-Stokkermans (Eds.). Springer,
122–140. doi:10.1007/978-3-030-51074-9_8

[39] Vojtech Havlena, Lukás Holík, Ondrej Lengál, and Juraj Síc. 2024. Cooking String-Integer Conversions with Noodles.
In 27th International Conference on Theory and Applications of Satisfiability Testing, SAT 2024, August 21-24, 2024, Pune,

India (LIPIcs, Vol. 305), Supratik Chakraborty and Jie-Hong Roland Jiang (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 14:1–14:19. doi:10.4230/LIPICS.SAT.2024.14

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

https://doi.org/10.1145/3498707
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1145/3290362
https://doi.org/10.1145/3622872
https://doi.org/10.1145/3622872
https://doi.org/10.1007/978-3-031-57246-3_2
https://doi.org/10.1007/978-3-030-64437-6_18
https://doi.org/10.5281/zenodo.15050654
https://arxiv.org/abs/2504.07033
https://arxiv.org/abs/2504.07033
https://arxiv.org/abs/2504.07033
https://doi.org/10.1016/j.jss.2023.111673
https://doi.org/10.1016/j.jss.2023.111673
https://doi.org/10.1007/978-3-031-57249-4_7
https://doi.org/10.1007/S00224-023-10154-8
https://arxiv.org/abs/1802.00523
http://arxiv.org/abs/1802.00523
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/BF02112533
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1145/2603088.2603092
https://doi.org/10.1007/978-3-030-51074-9_8
https://doi.org/10.4230/LIPICS.SAT.2024.14

A Uniform Framework for Handling Position Constraints in String Solving 169:25

[40] Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar. 2018. String constraints with concate-
nation and transducers solved efficiently. Proc. ACM Program. Lang. 2, POPL (2018), 4:1–4:32. doi:10.1145/3158092

[41] John E. Hopcroft and Jean-Jacques Pansiot. 1979. On the Reachability Problem for 5-Dimensional Vector Addition
Systems. Theor. Comput. Sci. 8 (1979), 135–159. doi:10.1016/0304-3975(79)90041-0

[42] Daisuke Ishii, Takashi Tomita, Toshiaki Aoki, The Quyen Ngo, Thi Bich Ngoc Do, and Hideaki Takai. 2022. SMT-
Based Model Checking of Industrial Simulink Models. In Formal Methods and Software Engineering: 24th International

Conference on Formal Engineering Methods (ICFEM 2022) (LNCS, Vol. 13478). Springer, 156–172. doi:10.1007/978-3-031-
17244-1_10

[43] Petr Janku and Lenka Turonová. 2019. Solving String Constraints with Approximate Parikh Image. In Proc. of

EUROCAST’19 (LNCS, Vol. 12013), Roberto Moreno-Díaz, Franz Pichler, and Alexis Quesada-Arencibia (Eds.). Springer,
491–498. doi:10.1007/978-3-030-45093-9_59

[44] Artur Jeż. 2016. Recompression: A Simple and Powerful Technique for Word Equations. J. ACM 63, 1 (2016), 4:1–4:51.
doi:10.1145/2743014

[45] Ankit Jha, Rosemary Monahan, and Hao Wu. 2023. Verifying UML Models Annotated with OCL Strings. In Proceedings

of the 26th International Conference on Model Driven Engineering Languages and Systems (MODELS). 123–132. doi:10.
1145/3652620.3687822

[46] Adam Kiezun, Vijay Ganesh, Shay Artzi, Philip J. Guo, Pieter Hooimeijer, and Michael D. Ernst. 2012. HAMPI: A solver
for word equations over strings, regular expressions, and context-free grammars. ACM Trans. Softw. Eng. Methodol. 21,
4 (2012), 25:1–25:28. doi:10.1145/2377656.2377662

[47] Felix Klaedtke and Harald Rueß. 2003. Monadic Second-Order Logics with Cardinalities. In Automata, Languages and

Programming, 30th International Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proceedings

(LNCS, Vol. 2719), Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger (Eds.). Springer,
681–696. doi:10.1007/3-540-45061-0_54

[48] Quang Loc Le and Mengda He. 2018. A decision procedure for string logic with quadratic equations, regular expressions
and length constraints. In Proc. of APLAS’18 (LNCS, Vol. 11275), Sukyoung Ryu (Ed.). Springer, 350–372. doi:10.1007/978-
3-030-02768-1_19

[49] Jérôme Leroux and Grégoire Sutre. 2005. Flat Counter Automata Almost Everywhere!. In Proc. of ATVA’05 (LNCS,

Vol. 3707), Doron A. Peled and Yih-Kuen Tsay (Eds.). Springer, 489–503. doi:10.1007/11562948_36
[50] Guodong Li and Indradeep Ghosh. 2013. PASS: String solving with parameterized array and interval automaton. In

Hardware and Software: Verification and Testing - 9th International Haifa Verification Conference, HVC 2013, Haifa,

Israel, November 5-7, 2013, Proceedings (LNCS, Vol. 8244), Valeria Bertacco and Axel Legay (Eds.). Springer, 15–31.
doi:10.1007/978-3-319-03077-7_2

[51] Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark W. Barrett, and Morgan Deters. 2014. A DPLL(T) theory solver
for a theory of strings and regular expressions. In Proc. of CAV’14 (LNCS, Vol. 8559), Armin Biere and Roderick Bloem
(Eds.). Springer, 646–662. doi:10.1007/978-3-319-08867-9_43

[52] Tianyi Liang, Andrew Reynolds, Nestan Tsiskaridze, Cesare Tinelli, Clark W. Barrett, and Morgan Deters. 2016. An
efficient SMT solver for string constraints. Formal Methods Syst. Des. 48, 3 (2016), 206–234. doi:10.1007/s10703-016-
0247-6

[53] Tianyi Liang, Nestan Tsiskaridze, Andrew Reynolds, Cesare Tinelli, and Clark W. Barrett. 2015. A decision procedure
for regular membership and length constraints over unbounded strings. In Frontiers of Combining Systems - 10th

International Symposium, FroCoS 2015, Wroclaw, Poland, September 21-24, 2015. Proceedings (LNCS, Vol. 9322), Carsten
Lutz and Silvio Ranise (Eds.). Springer, 135–150. doi:10.1007/978-3-319-24246-0_9

[54] Anthony Widjaja Lin and Pablo Barceló. 2016. String solving with word equations and transducers: Towards a logic
for analysing mutation XSS. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar
(Eds.). ACM, 123–136. doi:10.1145/2837614.2837641

[55] Anthony W. Lin and Rupak Majumdar. 2021. Quadratic Word Equations with Length Constraints, Counter Systems,
and Presburger Arithmetic with Divisibility. Log. Methods Comput. Sci. 17, 4 (2021). doi:10.46298/lmcs-17(4:4)2021

[56] Zhengyang Lu, Stefan Siemer, Piyush Jha, Joel Day, Florin Manea, and Vijay Ganesh. 2024. Layered and Staged Monte
Carlo Tree Search for SMT Strategy Synthesis. In Proc. of IJCAI’24, Kate Larson (Ed.). International Joint Conferences
on Artificial Intelligence Organization, 1907–1915. doi:10.24963/ijcai.2024/211 Main Track.

[57] G. S. Makanin. 1977. The problem of solvability of equations in a free semigroup. Matematicheskii Sbornik 32, 2 (1977),
147–236. (in Russian)..

[58] S. S. Marchenkov. 1982. Undecidability of the positive ∀∃-theory of a free semigroup. Sibirsk. Mat. Zh. 23, 1 (1982),
196–198, 223.

[59] David Melski and Thomas Reps. 1997. Interconvertibility of Set Constraints and Context-Free Language Reachability.
In Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

https://doi.org/10.1145/3158092
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1007/978-3-031-17244-1_10
https://doi.org/10.1007/978-3-031-17244-1_10
https://doi.org/10.1007/978-3-030-45093-9_59
https://doi.org/10.1145/2743014
https://doi.org/10.1145/3652620.3687822
https://doi.org/10.1145/3652620.3687822
https://doi.org/10.1145/2377656.2377662
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1007/978-3-030-02768-1_19
https://doi.org/10.1007/978-3-030-02768-1_19
https://doi.org/10.1007/11562948_36
https://doi.org/10.1007/978-3-319-03077-7_2
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/s10703-016-0247-6
https://doi.org/10.1007/s10703-016-0247-6
https://doi.org/10.1007/978-3-319-24246-0_9
https://doi.org/10.1145/2837614.2837641
https://doi.org/10.46298/lmcs-17(4:4)2021
https://doi.org/10.24963/ijcai.2024/211

169:26 Yu-Fang Chen, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál

(PEPM). ACM, 74–89. doi:10.1145/258993.259006
[60] Federico Mora, Murphy Berzish, Mitja Kulczynski, Dirk Nowotka, and Vijay Ganesh. 2021. Z3str4: A Multi-armed

string solver. In Proc. of FM’21 (LNCS, Vol. 13047), Marieke Huisman, Corina S. Pasareanu, and Naijun Zhan (Eds.).
Springer, 389–406. doi:10.1007/978-3-030-90870-6_21

[61] Jakob Nielsen. 1917. Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden. Math. Ann. 78,
1 (1917), 385–397.

[62] Andres Nötzli, Andrew Reynolds, Haniel Barbosa, Clark W. Barrett, and Cesare Tinelli. 2022. Even faster conflicts
and lazier reductions for string solvers. In Proc. of CAV’22 (LNCS, Vol. 13372), Sharon Shoham and Yakir Vizel (Eds.).
Springer, 205–226. doi:10.1007/978-3-031-13188-2_11

[63] Christos H. Papadimitriou. 1981. On the complexity of integer programming. J. ACM 28, 4 (1981), 765–768. doi:10.
1145/322276.322287

[64] Wojciech Plandowski. 1999. Satisfiability of Word Equations with Constants is in PSPACE. In 40th Annual Symposium

on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA. IEEE Computer Society, 495–500.
doi:10.1109/SFFCS.1999.814622

[65] Mathias Preiner, Hans-Jörg Schurr, Clark Barrett, Pascal Fontaine, Aina Niemetz, and Cesare Tinelli. 2024. SMT-LIB

release 2024 (non-incremental benchmarks). doi:10.5281/zenodo.11061097
[66] Andrew Reynolds, Andres Nötzli, Clark W. Barrett, and Cesare Tinelli. 2019. High-level abstractions for simplifying

extended string constraints in SMT. In Proc. of CAV’19 (LNCS, Vol. 11562), Isil Dillig and Serdar Tasiran (Eds.). Springer,
23–42. doi:10.1007/978-3-030-25543-5_2

[67] Andrew Reynolds, Andres Nötzli, Clark W. Barrett, and Cesare Tinelli. 2020. Reductions for strings and regular
expressions revisited. In Proc. of FMCAD’20. IEEE, 225–235. doi:10.34727/2020/isbn.978-3-85448-042-6_30

[68] Andrew Reynolds, Maverick Woo, Clark W. Barrett, David Brumley, Tianyi Liang, and Cesare Tinelli. 2017. Scaling up
DPLL(T) string solvers using context-dependent simplification. In Proc. of CAV’17 (LNCS, Vol. 10427), Rupak Majumdar
and Viktor Kuncak (Eds.). Springer, 453–474. doi:10.1007/978-3-319-63390-9_24

[69] Philipp Rümmer. 2008. A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arithmetic. In
Proceedings of the 15th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR)

(LNCS, Vol. 5330). Springer, 274–289. doi:10.1007/978-3-540-89439-1_20
[70] Neha Rungta. 2022. A billion SMT queries a day (invited paper). In Proc. of CAV’22 (LNCS, Vol. 13371), Sharon Shoham

and Yakir Vizel (Eds.). Springer, 3–18. doi:10.1007/978-3-031-13185-1_1
[71] Joseph D. Scott, Pierre Flener, Justin Pearson, and Christian Schulte. 2017. Design and implementation of bounded-

length sequence variables. In Proc. of CPAIOR’17 (LNCS, Vol. 10335), Domenico Salvagnin and Michele Lombardi (Eds.).
Springer, 51–67. doi:10.1007/978-3-319-59776-8_5

[72] Caleb Stanford, Margus Veanes, and Nikolaj Bjørner. 2021. Symbolic Boolean derivatives for efficiently solving extended
regular expression constraints. In Proc. of PLDI’21 (Virtual, Canada). Association for Computing Machinery, New York,
NY, USA, 620–635. doi:10.1145/3453483.3454066

[73] Wei-Lun Tsai. 2021. PyCT. https://github.com/alan23273850/PyCT
[74] Margus Veanes, Nikolaj S. Bjørner, Lev Nachmanson, and Sergey Bereg. 2017. Monadic Decomposition. J. ACM 64, 2

(2017), 14:1–14:28. doi:10.1145/3040488
[75] Hung-En Wang, Tzung-Lin Tsai, Chun-Han Lin, Fang Yu, and Jie-Hong R. Jiang. 2016. String analysis via automata

manipulation with logic circuit representation. In Proc. of CAV’16 (LNCS, Vol. 9779), Swarat Chaudhuri and Azadeh
Farzan (Eds.). Springer, 241–260. doi:10.1007/978-3-319-41528-4_13

[76] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. 2010. Stranger: An automata-based string analysis tool for PHP. In Proc.

of TACAS’10 (LNCS, Vol. 6015), Javier Esparza and Rupak Majumdar (Eds.). Springer, 154–157. doi:10.1007/978-3-642-
12002-2_13

[77] Fang Yu, Muath Alkhalaf, Tevfik Bultan, and Oscar H. Ibarra. 2014. Automata-based symbolic string analysis for
vulnerability detection. Formal Methods Syst. Des. 44, 1 (2014), 44–70. doi:10.1007/s10703-013-0189-1

[78] Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. 2011. Relational String Verification Using Multi-Track Automata. Int. J.
Found. Comput. Sci. 22, 8 (2011), 1909–1924. doi:10.1142/S0129054111009112

[79] Yunhui Zheng, Vijay Ganesh, Sanu Subramanian, Omer Tripp, Julian Dolby, and Xiangyu Zhang. 2015. Effective
search-space pruning for solvers of string equations, regular expressions and length constraints. In Proc. of CAV’15

(LNCS, Vol. 9206), Daniel Kroening and Corina S. Pasareanu (Eds.). Springer, 235–254. doi:10.1007/978-3-319-21690-4_14
[80] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. 2013. Z3-str: A Z3-based string solver for web application analysis.

In Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations

of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013, Bertrand Meyer, Luciano
Baresi, and Mira Mezini (Eds.). ACM, 114–124. doi:10.1145/2491411.2491456

Received 2024-11-15; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 169. Publication date: June 2025.

https://doi.org/10.1145/258993.259006
https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1007/978-3-031-13188-2_11
https://doi.org/10.1145/322276.322287
https://doi.org/10.1145/322276.322287
https://doi.org/10.1109/SFFCS.1999.814622
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.1007/978-3-030-25543-5_2
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_30
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1007/978-3-319-59776-8_5
https://doi.org/10.1145/3453483.3454066
https://github.com/alan23273850/PyCT
https://doi.org/10.1145/3040488
https://doi.org/10.1007/978-3-319-41528-4_13
https://doi.org/10.1007/978-3-642-12002-2_13
https://doi.org/10.1007/978-3-642-12002-2_13
https://doi.org/10.1007/s10703-013-0189-1
https://doi.org/10.1142/S0129054111009112
https://doi.org/10.1007/978-3-319-21690-4_14
https://doi.org/10.1145/2491411.2491456

	Abstract
	1 Introduction
	2 Preliminaries
	3 Overview
	4 Tag Automaton
	5 Solving Disequalities
	5.1 I: A Single Disequality of Two Variables
	5.2 II: A Single Unrestricted Disequality
	5.3 III: A System of Disequalities

	6 Other Position Constraints
	6.1 Length Constraints
	6.2 Not Prefix and Not Suffix Predicates
	6.3 Symbol (not) at a Position
	6.4 Not Contains Predicate
	6.5 Arbitrary Combination of Position Predicates

	7 Decidability and Complexity
	8 Experimental Evaluation
	8.1 Experimental Settings
	8.2 Results

	9 Related Work
	References

