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  Abstract—One of the main problems of modern Smart Cities is 
the constant increase in traffic volume and travel times. City 
governments are trying to address these problems by promoting 
alternative modes of transport, including cycling. The 
infrastructure of modern Smart Cities is planned on the basis of 
analyses obtained from various data sources. In the case of 
cycling, suitable data comes from e.g. automated counters, 
manual counts or training applications. The first step in the 
effective use of data is typically to assign the data to the 
corresponding physical infrastructure elements in real space. 
Thus, the geographic component of datasets plays an important 
role in linking them. However, different data sources describe the 
same infrastructure elements differently, which makes it 
impossible to link the datasets in a straightforward way. The city 
of Brno had to deal with such a problem when trying to use the 
available data sources to improve the quality of cycling 
infrastructure. The purpose of this paper was to propose a 
method for transforming the different input datasets describing 
cycling transport into a common dataset that will serve as a basic 
data source for the analyses. The result is an integration 
algorithm that links the data describing the same infrastructure 
elements. The output of the algorithm is a model mapping the 
individual datasets into one common mapping network. This 
mapping can then be applied to both existing and future data. 
The implemented solution was tested in cooperation with the 
Brno City Council, where the integration of 5 different datasets 
was tested. The use of the integrated data was subsequently 
tested within two implemented dashboards. 
 

Index Terms—Data transformation, Data handling, Geospatial 
data, Data models, Cycling transport, Open Street Map 

I.​ INTRODUCTION 

The rise of the Big Data concept also has a significant 
impact on cycling transport [1]. The simplification of 
obtaining quantitative as well as qualitative data on cycling 
has brought new opportunities to better analyse and plan for 
this integral mode of transport in modern Smart Cities. 
Traditional methods of data collection in the form of manual 
counts have gradually been joined by automated counters and 
data from health or training applications. The use of raw 
cycling data from a variety of sources finds its most common 
application in two complementary areas. 

The first of these areas focuses directly on the cyclist and 
their individual health. GPS data from individual rides 
 
First submitted 14. 2. 2025. 
This work was supported by project Smart information technology for a 
resilient society, FIT-S-23-8209, funded by Brno University of Technology. 
Radoslav Eliáš is with the Brno University of Technology 
Juraj Lazúr is a doctoral student at Brno University of Technology, Brno, 
612 00 Czechia, (e-mail: ilazur@fit.vutbr.cz) 
Jiří Hynek and Tomáš Hruška are with the Brno University of Technology 
(e-mails: hynek@fit.vutbr.cz and hruska@fit.vutbr.cz respectively). 

combined with physiological indicators can be used to analyse 
neurological and biological indicators [7]. The combination of 
these data helps, for example, in improving fitness or detecting 
various diseases [6]. A second area of application of cycling 
data is closely related to infrastructure. In modern Smart 
Cities, the planning and development of infrastructure is 
closely intertwined not only in the field of cycling with the 
need for good quality input data. Individual datasets coming 
from different sources are thus used e.g. for planning new 
cycle paths [3], analysing traffic accidents [5] or evaluating 
the success of implemented changes [2]. For all analyses and 
applications, however, it is necessary to logically link the 
individual datasets [1] at the beginning. 

In the case of integrating multiple datasets, the most 
commonly used aspect, not only in the area of cycling 
transport, is the geographic component of the data [5]. For 
applications focusing on cyclists or their health, time can also 
be used in dataset integration. However, in the area of 
infrastructure planning and management, geography-based 
integration is essential. Individual datasets typically contain 
the location, and in some cases the specific infrastructure 
elements to which the record relates. However, the different 
representation of the same infrastructure elements across 
datasets complicates the proven integration methods used in 
other geographic data domains. 

In the field of geographic data, there are proven methods, 
such as spatial join [4] shown on Figure 1, that integrate 
different datasets into one common space. However, in the 
case of transport data, which includes cycling, the use of these 
methods is not always possible. The problem lies mainly in the 
ambiguous representation of the physical infrastructure. Thus, 
one element, e.g. a street, may be defined differently in 
different datasets. In order to link these datasets, it is thus 
necessary to find all representations of the same infrastructure 
element in different datasets. While in the case of simple 
points it is possible to use, for example, the k-nearest 
neighbours method, in the case of polylines, i.e. streets, the 
problem is more complex. 

 
Fig. 1, One of the most common methods of geographic data 
integration is Spatial Join. Its essence is the integration of 
datasets based on the position of features in space. As can be 
seen in the figure, after integrating dataset A containing 
polygons with dataset B containing points, it is possible to 
obtain which points belong to which polygon using Spatial 
Join. 
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This problem is even more acute in the context of periodic 
processing of input data, where, unlike single-impact analysis, 
the integration process has to be repeated periodically, which 
increases the computational complexity of the whole process. 

In order to transform the individual datasets into one, it is 
necessary to initially determine the logical relationships 
between the individual records. Therefore, the proposed 
solution is based on an algorithm which initially constructs a 
basic infrastructure map from the Open Street Map. The 
algorithm then searches for a representation of each 
infrastructure element from the base map in each datasource. 
The algorithm generates for each dataset a mapping of the 
individual dataset records to elements of the common 
underlying map. Then, individual records from different 
datasets can be grouped according to the infrastructure 
elements of the common model. 

The verification of the proposed concept consisted in the 
implementation of the algorithm and testing over datasets 
describing the city of Brno, the second largest city in the 
Czech Republic. The resulting mapping model works on 
average with a 78% success rate in identifying different 
images of the same infrastructure elements. The testing shows 
that the proposed solution is able to transform a wide range of 
different data sources into a single dataset. The transformation 
into a common dataset facilitates and extends the capabilities 
of cycling data analysis, which has been verified in the 
implementation of two dashboards using the generated 
mapping model. 

II.​ CYCLING DATA COLLECTING AND INTEGRATION 
The simplification and reduction in the cost of data collection 
methods has led to a significant increase of potentially useful 
data availability. Traditional methods of collecting transport 
data, such as manual census [10], have thus been replaced by 
automated counters and traffic cameras. In the cycling domain, 
besides the typical transport methods, potentially useful data 
can also be collected directly from cyclists or through 
crowdfunding campaigns. 

Each cycling data collection method captures a different 
aspect. Manual censuses of cyclists [9], typically conducted 
only a few times a year, enable to obtain data with the highest 
granularity. Depending on the setting of the census, the data 
may include only the total number of cyclists who passed 
through a given section in a given time period, or it may 
include more detailed data such as bicycle type. The 
disadvantage of manual counts of cyclists is the long time 
intervals between counts, which can for example be addressed 
by automated counters. These devices, typically placed at busy 
locations, use a variety of methods to record the number of 
cyclists [13]. Their disadvantage compared to manual counts 
is precisely the absence of any details about cyclists. At the 
same time, both methods are static-oriented, as the data 
collected is location-specific. 

In contrast, the data collected from various health and sport 
applications generally contain the entire route, i.e. the cyclist's 
movement over time. The disadvantage of these applications is 
the higher degree of unreliability of the data, mainly due to the 

imperfection of the different sensors. In addition, cycling data 
can also be obtained through various surveys, but the quality 
of the data obtained in this way depends on a well-chosen 
sample of users [10]. In practice, most applications use at least 
two different methods of collecting cycling data, which 
typically requires the integration of the different datasets. 
However, applications approach this integration differently. 

Different data collection methods generate datasets 
describing different aspects of cycling. Some research papers 
use only one data source, such as the Strava mobile app, which 
researchers try to use as much as possible [12]. A different 
approach is to use the data for validation of predicted 
behaviour. In [11], the data from automated counters was used 
to validate the accuracy of simulated system behavior. 
However, the vast majority of studies use at least two different 
data sources, which need to be linked before use. For example, 
in the work of [8], sensor data is used together with a 
questionnaire, while position records from GPS are used to 
determine the speed of the bicycle. The integration of all 3 
data sources is then based on timestamps. In the case of 
cycling infrastructure management and planning, one of the 
most powerful methods for integrating different data sources is 
to use the geographic component of the data [14]. 

Geographic datasets can be integrated in different ways. The 
traditional way is to use the ontology method, which consists 
in defining common elements and their representations in 
different datasets. In the case of geographic data, an ontology 
can be defined for different data dimensions such as geometry, 
topology or symbolic representation [17]. Then, for each 
dataset an application ontology is created, which is linked to 
the common ontology by abstract rules [16]. An example 
would be an abstract definition of a street in the common 
ontology, which is linked using abstract rules to the 
application ontology of a particular dataset, which represents 
the street as a set of two points. However, ontology-based 
approaches are inadequate for handling geospatial data with 
multiple representations [15]. 

In the case of geographic data, the ontology approach has to 
deal with multiple object representations across different 
datasets. As an example, an intersection may be represented 
by a point in one dataset, while in another dataset, it is 
represented as a set of points as is shown on Figure 2. From an 
ontology perspective, these are the same category of objects, 
but from a geographic representation and data usage 
perspective, they are two completely different concepts [19]. 
One solution is to define separate ontologies for each dataset, 
where these ontologies are constructed from scratch or 
different international standards such as INSPIRE1 are used. 
The different ontologies are then linked by semantic relations. 
However, some of the relationships between data, such as the 
more substantial representation of objects, cannot be 
addressed using semantic relations. As a solution, multiple 
representation databases are used, which directly model the 
relationships between different object representations in real 
space [18]. By using ontologies, it is possible to integrate 

1 https://knowledge-base.inspire.ec.europa.eu/index_en 

 



 

different datasets into one. A completely different way is to 
integrate data using the concept of spatial join. 

  
Fig. 2, The heterogeneous application ontology makes it 
difficult to integrate different datasets. While in the case of the 
first dataset represented by solid lines, the crossroad is defined 
by a single point, in the case of the second dataset represented 
by dashed lines, the crossroad is a set of 4 points. Both 
datasets work with the same concept, but implement it quite 
differently. 

In many cases, not only in the transport sector, it is necessary 
to integrate point data with infrastructure elements or 
administrative areas [20]. A similar problem is the integration 
of several transport networks into one. These and similar tasks 
can be solved using techniques implementing the spatial join 
concept. It allows us to find all pairs of objects in the 
multidimensional plane that satisfy a given relation [21]. One 
of the most frequently solved problems using the spatial join 
methodology is finding overlapping objects of two distinct 
datasets. The advantage of the spatial join concept is precisely 
the ability to take into account multiple dimensions, such as 
elevation combined with area [22]. This feature of the spatial 
join concept allows the integration of different geographical 
datasets. It was also the problem of integrating datasets 
working with different transport networks that had to be 
solved first in the context of the Brno City Council's request to 
use the available cycling data. 

III.​ PROBLEM DEFINITION 
In order to make better use of cycling data in infrastructure 
analysis and planning, it is necessary to integrate the available 
datasets. However, there are specific cases where neither 
ontology nor spatial join methods can be used on their own. 
Besides the integration itself, its frequent repetition is also 
problematic, which increases the computational requirements. 
Thus, successful integration of atypical geographic datasets 
requires solving two fundamental problems. 

The first problem lies in the integration of the datasets 
themselves. Since each dataset is generated by a different 
methodology, the individual records have a different structure. 

In addition, each dataset operates with its own, or none at all, 
underlying infrastructure map, which again makes the 
integration process difficult. At the same time, the different 
datasets contain different types of geographic objects, which, 
in addition to the ambiguous structure and underlying 
network, requires the integration of point and line data. 

The second issue is the applicability of the solution in the 
longer term. While most works implement the integration of 
cycling data once at the beginning of the analysis, new records 
are added every day in the case of data describing the city of 
Brno. This implies the need to potentially repeat the 
integration on a regular basis, resulting in increased demands 
on computational capacity, which will steadily increase as the 
volume of data grows. 

The nature of these two problems precluded the direct use of 
ontology methods as well as spatial join at the beginning of 
the solution design. The proposed solution shaped by these 
problems therefore seeks to combine both proven and widely 
used methods of geographic data integration in order to 
integrate the available cycling datasets. 

IV.​ PROPOSED SOLUTION 
The essence of the proposed solution was to create a tool for 
regular automated integration of datasets describing bicycle 
transport in Brno, which will enable better knowledge 
extraction from these data. The result of the work is an 
integration algorithm combining ontology and spatial join 
methods. Then, the practical output is a set of scripts that 
implement the individual steps of the algorithm. The algorithm 
itself can be divided into several steps, as shown in Figure 3. 

 
Fig. 3, The proposed integration algorithm first divides the 
input dataset records themselves into map sections. 
Subsequently, a common base map is generated. The data 
integration itself consists in creating a mapping of the 
individual records to the underlying map, and the output of the 
algorithm is this mapping. 

In order to reduce the number of comparisons when 
integrating datasets, the state space—the city of Brno—is 
divided into square sections of equal size. This creates 

 



 

sections into which individual points are then sorted based on 
their coordinates. In the case of lines, where it is possible that 
a line extends into more than one section, the bottom left point 
of the line is decisive. In this way, all records from the input 
datasets are sorted into sections. The purpose of introducing 
sections is to optimize and speed up the integration itself, 
since by assigning a record to a section, the record itself will 
only be matched against a subset of the elements of the 
common base infrastructure map. 

The division into sections is followed by the generation of a 
common base map. As the problem definition shows, the 
purpose of using the data is to support the planning and 
management of cycling infrastructure. Therefore, the proposed 
solution integrates the input datasets into a common 
underlying network representing the infrastructure. Since the 
individual datasets work with different underlying networks, 
the proposed solution transforms the datasets into a new 
underlying network based on OpenStreetMap data. This 
creates a source of truth, which is used by the proposed 
solution as the basis for the data integration itself. Due to the 
different types of geographic objects in the input datasets, the 
proposed solution splits the integration into two steps. 

In the first step, point data, typically represented by 
automatic counters, are integrated. First, each element of the 
common underlying map as well as the integrated dataset is 
tagged with a unique ID. Then, for each record, the absolute 
distance to all elements that are in the section to which the 
record has been assigned is calculated. Based on the selection 
of the smallest distance, a mapping between the IDs of the 
individual elements and records of the dataset is gradually 
created. The output is thus an accurate mapping of which 
records belong to which infrastructure elements. Only the 
newly added records are then mapped during updates. 
However, this approach requires some consistency in the 
tagging of records from the input datasets. 

In the second step, line data, where the most typical example 
is the recording of the cyclist's ride progress from a sports 
application, are integrated. Similar to point data integration, 
line data integration works with unique IDs. The unique ID of 
the infrastructure elements in the common underlying map is 
shared obtained from the previous step. The essence of the 
proposed algorithm is to assign a record, a street, to one of the 
candidates from the common base map. The selection of the 
most correct infrastructure element that the examined record 
describes consists of several sub-steps. 

At the beginning, geographic coordinates are rounded to 5 
decimal places. This rounding represents a negligible loss of 
precision in the context of this work, but greatly simplifies the 
removal of parallel objects that actually represent the same 
object. An example is a pair of streets that are parallel in terms 
of input data, but in reality represent a single object. By 
rounding the geographic coordinates, the similarity score is 
increased and the objects can be related to each other. The 
second sub-step is to constrain the angle that the compared 
objects take. 

An important assumption of this sub-step is that different 
representations of the same object have very similar 
orientations in space. Since most of the line objects in practice 
are represented by a set of lines, it is not possible to simply 
compare the angle between two lines. Therefore, the proposed 

solution works with a bounding box enclosing each line. The 
angle itself is then computed based on the diagonals of the 
bounding boxes of the compared objects, as the example in 
Figure 4 shows. If the angle is greater than 45° then the 
comparison is stopped. However, the actual determination of 
the similarity to the candidate infrastructure elements is only 
determined in the last sub–step. 

 
Fig. 4, Determine the similarity of objects A and B based on 
the angle α formed by the lines A and B, which are the 
diagonals of the bounding boxes of each object. A smaller 
angle in this case means a higher probability that the objects 
represent a single real infrastructure element. 

While the first two substeps mainly aim at candidate 
reduction, the actual similarity score is only determined in the 
third sub–step. Thus, the similarity of the examined record to 
the candidate infrastructure features is determined based on 
the overlap of the individual bounding boxes. Thus, the 
examined record is generally assigned to the infrastructure 
element with which its bounding box overlaps the most, as 
illustrated in Figure 5. The result, as in the case of point data, 
is a set of ID pairs that determines the relationships between 
the common underlying map and the integrated dataset. In the 
case of a mapping update, only new objects cannot be 
mapped, since individual records within datasets are not 
identified by a persistent id. Thus, the output of the entire 
algorithm is a common underlying map that contains for each 
dataset the mapping of individual records to infrastructure 
elements. 

The integration of geographic data using ontology or spatial 
join methods is well researched and widespread. However, 
there are cases that require a specific approach combining 
these methods. One such case is the integration of data 
describing the bicycle transport of Brno city. 

 
Fig. 5, The final assignment of a record from the input dataset 
to an element of the underlying map depends on the degree of 
overlap of the bounding boxes. The left part of the figure 
shows the bounding boxes of the investigated record as well as 
the candidate elements from the underlying map A and B. The 
right part then shows the overlap, in which case the examined 
element would be assigned to element B. 

The proposed solution exploits the capabilities of geographic 
data integration methods, which are combined by the proposed 

 



 

algorithm in order to integrate different structured and 
ontologically heterogeneous datasets. 

V.​ RESULTS AND EVALUATION 
Since the solution itself was designed based on the 
requirements of the Brno City Council, testing of the proposed 
algorithm and its implementation were carried out in 
cooperation with the planning department. Within the testing, 
both the accuracy of the generated mapping and the usability 
of the integrated data were investigated by means of the 
implementation of an analytical dashboard. 

OpenStreeMap data were used for modelling the common 
base map, while more than 65 000 streets were processed 
within the Brno agglomeration. Integration testing was 
performed over 4 publicly available and 1 proprietary dataset. 
The datasets available included multi-year data from 19 
bicycle counters, anonymised data from the Strava app, 
multi-year data from the BKOM survey, data from the ŘSD 
road survey and from the Bike to Work campaign. 

The implementation of the proposed algorithm consists of a 
set of Python scripts using Jupyter Notebook technology. The 
NumPy and GeoPandas libraries are also used in the 
implementation. The source code as well as the documentation 
for the whole tool can be found in the public repository2. The 
analytical dashboard was then implemented using ArcGIS, as 
this system is widely used within the Brno City Council. 

 
Fig. 6, Two charts from the dashboard displaying numbers of 
cyclists detected on Královopolská street in the May of 2022. 

Verifying the accuracy of the generated mapping required 
manual annotation of the data, as this is the only way to verify 
the accuracy of the automatically generated mapping.  
However, manual annotation of 65,000 streets would be very 
difficult. Therefore, a small representative sample of 21 
elements was selected. The individual elements were selected 
with an emphasis on as much variability as possible. Thus, 
streets from the centre of Brno with multiple parallel streets as 
well as country roads from the suburbs were included. Each 
selected element had a different length, angle and trajectory. 
The annotation itself consisted in visualizing the selected 
features in all tested datasets to make the selection of 
matching records as accurate as possible. 

2 https://github.com/Radluy/Cycling-traffic-intensity-Brno 

The results of the comparison of the expected and actual 
mappings agreed on average 78% after testing. While for 
example the Bike to Work dataset the agreement averaged 
around 76%, for the BKOM census the success rate was 81%. 
Particularly, the streets whose trajectory was very close to the 
horizontal or vertical direction proved to be problematic, 
which meant a significant reduction in the content of their 
bounding box. The second problematic group of streets where 
the generated mapping did not match the expected mapping 
included streets with parallel pavement. In these cases, the 
algorithm tied the mapping to the sidewalk instead of the 
street. 

Different views of the integrated data were modelled as a 
part of the analytical dashboard implementation using ArcGIS. 
While basic visualizations included, for example, the total 
number of bicyclists crossing a selected street at a specific 
time shown in Figure 6, more advanced analyses focused on, 
for example, comparing bicycle traffic volumes between 
weekday and weekend, or heatmap of cycling intensity as 
shown on Figure 7 and Figure 8. 

 
Fig. 7, Comparison of cycling numbers during one workday 
and one weekend day in 2022 from the City Census datasets. 
The red indicator represents that workday numbers have the 
majority while blue is the other way around. The rest is 
defined as a spectrum between these two colors shown in the 
legend. 

VI.​ DISCUSSION 
The result of this work is an algorithm that allows the 
integration of different datasets describing bicycle transport in 
Brno. The proposed solution has been validated by 
implementing the algorithm and testing it on a selected set of 
manually annotated data. The usability of the integrated data 
was then tested by implementing an interactive dashboard. 
The resulting algorithm can generate reusable mappings of 
different geographic datasets to a common underlying network 
with an accuracy of 78%. Due to its generality, the proposed 
algorithm can also be used in other cases of geographic dataset 
integration. The solution itself simplifies the process of regular 
integration of new data, which can contribute to simplify the 
accessibility and increase the quality of planning and 
management of cycling infrastructure. On the other hand, the 
proposed algorithm is not yet able to deal successfully with 
some anomalies such as very close parallel streets. 

 



 

Further development of the proposed solution should focus 
on two areas. The first area is to increase the reliability of the 
algorithm itself, for example by introducing a bounding box in 
the form of an oval, instead of a rectangle. Such a solution 
could help to increase the overall accuracy, especially in 
specific cases with significantly smaller bounding box sizes. 
The second area of further development should focus on 
defining a custom method for indexing records of integrated 
datasets. Custom indexing would allow better detection of new 
objects, thus reducing the proportion of generated mappings 
that need to be updated. 

 
Fig. 8, Heatmap visualizing the number of cyclists from the 
City Census dataset in one workday of 2022. 

VII.​ CONCLUSION 

The aim of this work was to find a way to integrate different 
datasets describing cycling data of Brno city. The proposed 
solution consisted in the design of an algorithm that combines 
two of the most commonly used methods for the integration of 
geographic data. The output of the algorithm is a mapping that 
allows the repeated integration of different datasets into a 
single underlying traffic network. The design of the solution 
has been validated by implementing the algorithm and testing 
with annotated data. Subsequently, the usability of the 
integrated data was tested by implementing an interactive 
dashboard in close cooperation with the Brno City Council. 
The resulting solution demonstrates the way in which a 
combination of ontology and spatial join methods can be used 
to solve problems that are not solvable using only one of these 
methods. The proposed algorithm enables automated 
integration of different datasets, thus simplifying the process 
of planning and management of cycling infrastructure, which 
can contribute to increasing the satisfaction and safety of 
cyclists. 
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