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Abstract—One of the main problems of modern Smart Cities is
the constant increase in traffic volume and travel times. City
governments are trying to address these problems by promoting
alternative modes of transport, including cycling. The
infrastructure of modern Smart Cities is planned on the basis of
analyses obtained from various data sources. In the case of
cycling, suitable data comes from e.g. automated counters,
manual counts or training applications. The first step in the
effective use of data is typically to assign the data to the
corresponding physical infrastructure elements in real space.
Thus, the geographic component of datasets plays an important
role in linking them. However, different data sources describe the
same infrastructure elements differently, which makes it
impossible to link the datasets in a straightforward way. The city
of Brno had to deal with such a problem when trying to use the
available data sources to improve the quality of cycling
infrastructure. The purpose of this paper was to propose a
method for transforming the different input datasets describing
cycling transport into a common dataset that will serve as a basic
data source for the analyses. The result is an integration
algorithm that links the data describing the same infrastructure
elements. The output of the algorithm is a model mapping the
individual datasets into one common mapping network. This
mapping can then be applied to both existing and future data.
The implemented solution was tested in cooperation with the
Brno City Council, where the integration of S different datasets
was tested. The use of the integrated data was subsequently
tested within two implemented dashboards.

Index Terms—Data transformation, Data handling, Geospatial
data, Data models, Cycling transport, Open Street Map

L INTRODUCTION

The rise of the Big Data concept also has a significant

impact on cycling transport [1]. The simplification of
obtaining quantitative as well as qualitative data on cycling
has brought new opportunities to better analyse and plan for
this integral mode of transport in modern Smart Cities.
Traditional methods of data collection in the form of manual
counts have gradually been joined by automated counters and
data from health or training applications. The use of raw
cycling data from a variety of sources finds its most common
application in two complementary areas.

The first of these areas focuses directly on the cyclist and
their individual health. GPS data from individual rides

First submitted 14. 2. 2025.

This work was supported by project Smart information technology for a
resilient society, FIT-S-23-8209, funded by Brno University of Technology.
Radoslav Elias is with the Brno University of Technology

Juraj Lazur is a doctoral student at Brno University of Technology, Brno,

612 00 Czechia, (e-mail: ilazur@fit.vutbr.cz,

Jirt Hynek and Tomas HrusSka are with the Brno University of Technology
(e-mails: hynek@fit.vutbr.cz and hruska@fit.vutbr.cz respectively).

combined with physiological indicators can be used to analyse
neurological and biological indicators [7]. The combination of
these data helps, for example, in improving fitness or detecting
various diseases [6]. A second area of application of cycling
data is closely related to infrastructure. In modern Smart
Cities, the planning and development of infrastructure is
closely intertwined not only in the field of cycling with the
need for good quality input data. Individual datasets coming
from different sources are thus used e.g. for planning new
cycle paths [3], analysing traffic accidents [5] or evaluating
the success of implemented changes [2]. For all analyses and
applications, however, it is necessary to logically link the
individual datasets [1] at the beginning.

In the case of integrating multiple datasets, the most
commonly used aspect, not only in the area of cycling
transport, is the geographic component of the data [5]. For
applications focusing on cyclists or their health, time can also
be used in dataset integration. However, in the area of
infrastructure planning and management, geography-based
integration is essential. Individual datasets typically contain
the location, and in some cases the specific infrastructure
elements to which the record relates. However, the different
representation of the same infrastructure elements across
datasets complicates the proven integration methods used in
other geographic data domains.

In the field of geographic data, there are proven methods,
such as spatial join [4] shown on Figure 1, that integrate
different datasets into one common space. However, in the
case of transport data, which includes cycling, the use of these
methods is not always possible. The problem lies mainly in the
ambiguous representation of the physical infrastructure. Thus,
one element, e.g. a street, may be defined differently in
different datasets. In order to link these datasets, it is thus
necessary to find all representations of the same infrastructure
element in different datasets. While in the case of simple
points it is possible to use, for example, the k-nearest
neighbours method, in the case of polylines, i.e. streets, the
problem is more complex.
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Fig. 1, One of the most common methods of geographic data
integration is Spatial Join. Its essence is the integration of
datasets based on the position of features in space. As can be
seen in the figure, after integrating dataset A containing
polygons with dataset B containing points, it is possible to
obtain which points belong to which polygon using Spatial
Join.
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This problem is even more acute in the context of periodic
processing of input data, where, unlike single-impact analysis,
the integration process has to be repeated periodically, which
increases the computational complexity of the whole process.

In order to transform the individual datasets into one, it is
necessary to initially determine the logical relationships
between the individual records. Therefore, the proposed
solution is based on an algorithm which initially constructs a
basic infrastructure map from the Open Street Map. The
algorithm then searches for a representation of each
infrastructure element from the base map in each datasource.
The algorithm generates for each dataset a mapping of the
individual dataset records to elements of the common
underlying map. Then, individual records from different
datasets can be grouped according to the infrastructure
elements of the common model.

The verification of the proposed concept consisted in the
implementation of the algorithm and testing over datasets
describing the city of Brno, the second largest city in the
Czech Republic. The resulting mapping model works on
average with a 78% success rate in identifying different
images of the same infrastructure elements. The testing shows
that the proposed solution is able to transform a wide range of
different data sources into a single dataset. The transformation
into a common dataset facilitates and extends the capabilities
of cycling data analysis, which has been verified in the
implementation of two dashboards using the generated
mapping model.

II. CycLING DATA COLLECTING AND INTEGRATION

The simplification and reduction in the cost of data collection
methods has led to a significant increase of potentially useful
data availability. Traditional methods of collecting transport
data, such as manual census [10], have thus been replaced by
automated counters and traffic cameras. In the cycling domain,
besides the typical transport methods, potentially useful data
can also be collected directly from cyclists or through
crowdfunding campaigns.

Each cycling data collection method captures a different
aspect. Manual censuses of cyclists [9], typically conducted
only a few times a year, enable to obtain data with the highest
granularity. Depending on the setting of the census, the data
may include only the total number of cyclists who passed
through a given section in a given time period, or it may
include more detailed data such as bicycle type. The
disadvantage of manual counts of cyclists is the long time
intervals between counts, which can for example be addressed
by automated counters. These devices, typically placed at busy
locations, use a variety of methods to record the number of
cyclists [13]. Their disadvantage compared to manual counts
is precisely the absence of any details about cyclists. At the
same time, both methods are static-oriented, as the data
collected is location-specific.

In contrast, the data collected from various health and sport
applications generally contain the entire route, i.e. the cyclist's
movement over time. The disadvantage of these applications is
the higher degree of unreliability of the data, mainly due to the

imperfection of the different sensors. In addition, cycling data
can also be obtained through various surveys, but the quality
of the data obtained in this way depends on a well-chosen
sample of users [10]. In practice, most applications use at least
two different methods of collecting cycling data, which
typically requires the integration of the different datasets.
However, applications approach this integration differently.

Different data collection methods generate datasets
describing different aspects of cycling. Some research papers
use only one data source, such as the Strava mobile app, which
researchers try to use as much as possible [12]. A different
approach is to use the data for wvalidation of predicted
behaviour. In [11], the data from automated counters was used
to validate the accuracy of simulated system behavior.
However, the vast majority of studies use at least two different
data sources, which need to be linked before use. For example,
in the work of [8], sensor data is used together with a
questionnaire, while position records from GPS are used to
determine the speed of the bicycle. The integration of all 3
data sources is then based on timestamps. In the case of
cycling infrastructure management and planning, one of the
most powerful methods for integrating different data sources is
to use the geographic component of the data [14].

Geographic datasets can be integrated in different ways. The
traditional way is to use the ontology method, which consists
in defining common elements and their representations in
different datasets. In the case of geographic data, an ontology
can be defined for different data dimensions such as geometry,
topology or symbolic representation [17]. Then, for each
dataset an application ontology is created, which is linked to
the common ontology by abstract rules [16]. An example
would be an abstract definition of a street in the common
ontology, which is linked using abstract rules to the
application ontology of a particular dataset, which represents
the street as a set of two points. However, ontology-based
approaches are inadequate for handling geospatial data with
multiple representations [15].

In the case of geographic data, the ontology approach has to
deal with multiple object representations across different
datasets. As an example, an intersection may be represented
by a point in one dataset, while in another dataset, it is
represented as a set of points as is shown on Figure 2. From an
ontology perspective, these are the same category of objects,
but from a geographic representation and data usage
perspective, they are two completely different concepts [19].
One solution is to define separate ontologies for each dataset,
where these ontologies are constructed from scratch or
different international standards such as INSPIRE' are used.
The different ontologies are then linked by semantic relations.
However, some of the relationships between data, such as the
more substantial representation of objects, cannot be
addressed using semantic relations. As a solution, multiple
representation databases are used, which directly model the
relationships between different object representations in real
space [18]. By using ontologies, it is possible to integrate
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different datasets into one. A completely different way is to
integrate data using the concept of spatial join.
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Fig. 2, The heterogeneous application ontology makes it
difficult to integrate different datasets. While in the case of the
first dataset represented by solid lines, the crossroad is defined
by a single point, in the case of the second dataset represented
by dashed lines, the crossroad is a set of 4 points. Both
datasets work with the same concept, but implement it quite
differently.

In many cases, not only in the transport sector, it is necessary
to integrate point data with infrastructure elements or
administrative areas [20]. A similar problem is the integration
of several transport networks into one. These and similar tasks
can be solved using techniques implementing the spatial join
concept. It allows us to find all pairs of objects in the
multidimensional plane that satisfy a given relation [21]. One
of the most frequently solved problems using the spatial join
methodology is finding overlapping objects of two distinct
datasets. The advantage of the spatial join concept is precisely
the ability to take into account multiple dimensions, such as
elevation combined with area [22]. This feature of the spatial
join concept allows the integration of different geographical
datasets. It was also the problem of integrating datasets
working with different transport networks that had to be
solved first in the context of the Brno City Council's request to
use the available cycling data.

I11. PROBLEM DEFINITION

In order to make better use of cycling data in infrastructure
analysis and planning, it is necessary to integrate the available
datasets. However, there are specific cases where neither
ontology nor spatial join methods can be used on their own.
Besides the integration itself, its frequent repetition is also
problematic, which increases the computational requirements.
Thus, successful integration of atypical geographic datasets
requires solving two fundamental problems.

The first problem lies in the integration of the datasets
themselves. Since each dataset is generated by a different
methodology, the individual records have a different structure.

In addition, each dataset operates with its own, or none at all,
underlying infrastructure map, which again makes the
integration process difficult. At the same time, the different
datasets contain different types of geographic objects, which,
in addition to the ambiguous structure and underlying
network, requires the integration of point and line data.

The second issue is the applicability of the solution in the
longer term. While most works implement the integration of
cycling data once at the beginning of the analysis, new records
are added every day in the case of data describing the city of
Brno. This implies the need to potentially repeat the
integration on a regular basis, resulting in increased demands
on computational capacity, which will steadily increase as the
volume of data grows.

The nature of these two problems precluded the direct use of
ontology methods as well as spatial join at the beginning of
the solution design. The proposed solution shaped by these
problems therefore seeks to combine both proven and widely
used methods of geographic data integration in order to
integrate the available cycling datasets.

V. PROPOSED SOLUTION

The essence of the proposed solution was to create a tool for
regular automated integration of datasets describing bicycle
transport in Brno, which will enable better knowledge
extraction from these data. The result of the work is an
integration algorithm combining ontology and spatial join
methods. Then, the practical output is a set of scripts that
implement the individual steps of the algorithm. The algorithm
itself can be divided into several steps, as shown in Figure 3.
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Fig. 3, The proposed integration algorithm first divides the
input dataset records themselves into map sections.
Subsequently, a common base map is generated. The data
integration itself consists in creating a mapping of the
individual records to the underlying map, and the output of the
algorithm is this mapping.

In order to reduce the number of comparisons when
integrating datasets, the state space—the city of Brno—is
divided into square sections of equal size. This creates



sections into which individual points are then sorted based on
their coordinates. In the case of lines, where it is possible that
a line extends into more than one section, the bottom left point
of the line is decisive. In this way, all records from the input
datasets are sorted into sections. The purpose of introducing
sections is to optimize and speed up the integration itself,
since by assigning a record to a section, the record itself will
only be matched against a subset of the elements of the
common base infrastructure map.

The division into sections is followed by the generation of a
common base map. As the problem definition shows, the
purpose of using the data is to support the planning and
management of cycling infrastructure. Therefore, the proposed
solution integrates the input datasets into a common
underlying network representing the infrastructure. Since the
individual datasets work with different underlying networks,
the proposed solution transforms the datasets into a new
underlying network based on OpenStreetMap data. This
creates a source of truth, which is used by the proposed
solution as the basis for the data integration itself. Due to the
different types of geographic objects in the input datasets, the
proposed solution splits the integration into two steps.

In the first step, point data, typically represented by
automatic counters, are integrated. First, each element of the
common underlying map as well as the integrated dataset is
tagged with a unique ID. Then, for each record, the absolute
distance to all elements that are in the section to which the
record has been assigned is calculated. Based on the selection
of the smallest distance, a mapping between the IDs of the
individual elements and records of the dataset is gradually
created. The output is thus an accurate mapping of which
records belong to which infrastructure elements. Only the
newly added records are then mapped during updates.
However, this approach requires some consistency in the
tagging of records from the input datasets.

In the second step, line data, where the most typical example
is the recording of the cyclist's ride progress from a sports
application, are integrated. Similar to point data integration,
line data integration works with unique IDs. The unique ID of
the infrastructure elements in the common underlying map is
shared obtained from the previous step. The essence of the
proposed algorithm is to assign a record, a street, to one of the
candidates from the common base map. The selection of the
most correct infrastructure element that the examined record
describes consists of several sub-steps.

At the beginning, geographic coordinates are rounded to 5
decimal places. This rounding represents a negligible loss of
precision in the context of this work, but greatly simplifies the
removal of parallel objects that actually represent the same
object. An example is a pair of streets that are parallel in terms
of input data, but in reality represent a single object. By
rounding the geographic coordinates, the similarity score is
increased and the objects can be related to each other. The
second sub-step is to constrain the angle that the compared
objects take.

An important assumption of this sub-step is that different
representations of the same object have very similar
orientations in space. Since most of the line objects in practice
are represented by a set of lines, it is not possible to simply
compare the angle between two lines. Therefore, the proposed

solution works with a bounding box enclosing each line. The
angle itself is then computed based on the diagonals of the
bounding boxes of the compared objects, as the example in
Figure 4 shows. If the angle is greater than 45° then the
comparison is stopped. However, the actual determination of
the similarity to the candidate infrastructure elements is only
determined in the last sub—step.
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Fig. 4, Determine the similarity of objects A and B based on
the angle o formed by the lines A and B, which are the
diagonals of the bounding boxes of each object. A smaller
angle in this case means a higher probability that the objects
represent a single real infrastructure element.

While the first two substeps mainly aim at candidate
reduction, the actual similarity score is only determined in the
third sub—step. Thus, the similarity of the examined record to
the candidate infrastructure features is determined based on
the overlap of the individual bounding boxes. Thus, the
examined record is generally assigned to the infrastructure
element with which its bounding box overlaps the most, as
illustrated in Figure 5. The result, as in the case of point data,
is a set of ID pairs that determines the relationships between
the common underlying map and the integrated dataset. In the
case of a mapping update, only new objects cannot be
mapped, since individual records within datasets are not
identified by a persistent id. Thus, the output of the entire
algorithm is a common underlying map that contains for each
dataset the mapping of individual records to infrastructure
elements.

The integration of geographic data using ontology or spatial
join methods is well researched and widespread. However,
there are cases that require a specific approach combining
these methods. One such case is the integration of data
describing the bicycle transport of Brno city.
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Fig. 5, The final assignment of a record from the input dataset
to an element of the underlying map depends on the degree of
overlap of the bounding boxes. The left part of the figure
shows the bounding boxes of the investigated record as well as
the candidate elements from the underlying map A and B. The
right part then shows the overlap, in which case the examined
element would be assigned to element B.

The proposed solution exploits the capabilities of geographic
data integration methods, which are combined by the proposed



algorithm in order to integrate different structured and
ontologically heterogeneous datasets.

V. RESULTS AND EVALUATION

Since the solution itself was designed based on the
requirements of the Brno City Council, testing of the proposed
algorithm and its implementation were carried out in
cooperation with the planning department. Within the testing,
both the accuracy of the generated mapping and the usability
of the integrated data were investigated by means of the
implementation of an analytical dashboard.

OpenStreeMap data were used for modelling the common
base map, while more than 65 000 streets were processed
within the Brno agglomeration. Integration testing was
performed over 4 publicly available and 1 proprietary dataset.
The datasets available included multi-year data from 19
bicycle counters, anonymised data from the Strava app,
multi-year data from the BKOM survey, data from the RSD
road survey and from the Bike to Work campaign.

The implementation of the proposed algorithm consists of a
set of Python scripts using Jupyter Notebook technology. The
NumPy and GeoPandas libraries are also used in the
implementation. The source code as well as the documentation
for the whole tool can be found in the public repository®. The
analytical dashboard was then implemented using ArcGIS, as
this system is widely used within the Brno City Council.
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Fig. 6, Two charts from the dashboard displaying numbers of
cyclists detected on Kralovopolska street in the May of 2022.

Verifying the accuracy of the generated mapping required
manual annotation of the data, as this is the only way to verify
the accuracy of the automatically generated mapping.
However, manual annotation of 65,000 streets would be very
difficult. Therefore, a small representative sample of 21
elements was selected. The individual elements were selected
with an emphasis on as much variability as possible. Thus,
streets from the centre of Brno with multiple parallel streets as
well as country roads from the suburbs were included. Each
selected element had a different length, angle and trajectory.
The annotation itself consisted in visualizing the selected
features in all tested datasets to make the selection of
matching records as accurate as possible.

2 https://github.com/Radluy/Cycling-traffic-intensity-Brno

The results of the comparison of the expected and actual
mappings agreed on average 78% after testing. While for
example the Bike to Work dataset the agreement averaged
around 76%, for the BKOM census the success rate was 81%.
Particularly, the streets whose trajectory was very close to the
horizontal or vertical direction proved to be problematic,
which meant a significant reduction in the content of their
bounding box. The second problematic group of streets where
the generated mapping did not match the expected mapping
included streets with parallel pavement. In these cases, the
algorithm tied the mapping to the sidewalk instead of the
street.

Different views of the integrated data were modelled as a
part of the analytical dashboard implementation using ArcGIS.
While basic visualizations included, for example, the total
number of bicyclists crossing a selected street at a specific
time shown in Figure 6, more advanced analyses focused on,
for example, comparing bicycle traffic volumes between
weekday and weekend, or heatmap of cycling intensity as
shown on Figure 7 and Figure 8.
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Fig. 7, Comparison of cycling numbers during one workday
and one weekend day in 2022 from the City Census datasets.
The red indicator represents that workday numbers have the
majority while blue is the other way around. The rest is
defined as a spectrum between these two colors shown in the
legend.

VI. DiscussioN

The result of this work is an algorithm that allows the
integration of different datasets describing bicycle transport in
Brno. The proposed solution has been validated by
implementing the algorithm and testing it on a selected set of
manually annotated data. The usability of the integrated data
was then tested by implementing an interactive dashboard.
The resulting algorithm can generate reusable mappings of
different geographic datasets to a common underlying network
with an accuracy of 78%. Due to its generality, the proposed
algorithm can also be used in other cases of geographic dataset
integration. The solution itself simplifies the process of regular
integration of new data, which can contribute to simplify the
accessibility and increase the quality of planning and
management of cycling infrastructure. On the other hand, the
proposed algorithm is not yet able to deal successfully with
some anomalies such as very close parallel streets.



Further development of the proposed solution should focus
on two areas. The first area is to increase the reliability of the
algorithm itself, for example by introducing a bounding box in
the form of an oval, instead of a rectangle. Such a solution
could help to increase the overall accuracy, especially in
specific cases with significantly smaller bounding box sizes.
The second area of further development should focus on
defining a custom method for indexing records of integrated
datasets. Custom indexing would allow better detection of new
objects, thus reducing the proportion of generated mappings
that need to be updated.
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Fig. 8, Heatmap visualizing the number of cyclists from the
City Census dataset in one workday of 2022.

VII CONCLUSION

The aim of this work was to find a way to integrate different
datasets describing cycling data of Brno city. The proposed
solution consisted in the design of an algorithm that combines
two of the most commonly used methods for the integration of
geographic data. The output of the algorithm is a mapping that
allows the repeated integration of different datasets into a
single underlying traffic network. The design of the solution
has been validated by implementing the algorithm and testing
with annotated data. Subsequently, the usability of the
integrated data was tested by implementing an interactive
dashboard in close cooperation with the Brno City Council.
The resulting solution demonstrates the way in which a
combination of ontology and spatial join methods can be used
to solve problems that are not solvable using only one of these
methods. The proposed algorithm enables automated
integration of different datasets, thus simplifying the process
of planning and management of cycling infrastructure, which
can contribute to increasing the satisfaction and safety of
cyclists.

REFERENCES

[11 G. Romanillos, M. Zaltz Austwick, D. Ettema, and J. De Kruijf, “Big
Data and Cycling,” Transport Reviews, vol. 36, no. 1, pp. 114-133, Sep.
2015, doi: 10.1080/01441647.2015.1084067.

[2]1 A. Hull and C. O’Holleran, “Bicycle infrastructure: can good design
encourage cycling?,” Urban, Planning and Transport Research, vol. 2,
no. 1, pp. 369-406, Jan. 2014, doi: 10.1080/21650020.2014.955210.

[31 J. Dill, “Bicycling for Transportation and Health: The Role of
Infrastructure,” Journal of Public Health Policy, vol. 30, no. S1, pp.
S$95-S110, Jan. 2009, doi: 10.1057/jphp.2008.56.

[4] “Spatial Join of Big Data,” Encyclopedia of GIS, pp. 2032-2032, 2017,
doi: 10.1007/978-3-319-17885-1_101270.

(3]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

M. Dozza, “Crash risk: How cycling flow can help explain crash data,”
Accident Analysis &amp; Prevention, vol. 105, pp. 21-29, Aug. 2017,
doi: 10.1016/j.aap.2016.04.033.

H. Charvatova, A. Prochazka, S. Vaseghi, O. VySata, and M. Vali§,
“GPS-based analysis of physical activities using positioning and heart
rate cycling data,” Signal, Image and Video Processing, vol. 11, no. 2,
pp. 251-258, Jun. 2016, doi: 10.1007/s11760-016-0928-z.

A. Prochazka, O. Vysata, O. Tupa, M. Yadollahi, and M. Valis,
“Discrimination of axonal neuropathy using sensitivity and specificity
statistical measures,” Neural Computing and Applications, vol. 25, no. 6,
pp. 1349-1358, May 2014, doi: 10.1007/s00521-014-1622-0.

S. Joo and C. Oh, “A novel method to monitor bicycling environments,”
Transportation Research Part A: Policy and Practice, vol. 54, pp. 1-13,
Aug. 2013, doi: 10.1016/j.tra.2013.07.001.

P. Ryus et al., “Guidebook on Pedestrian and Bicycle Volume Data
Collection,” Jan. 2014, doi: 10.17226/22223.

K. Lee and I. N. Sener, “Emerging data for pedestrian and bicycle
monitoring: Sources and applications,” Transportation Research
Interdisciplinary Perspectives, vol. 4, p. 100095, Mar. 2020, doi:
10.1016/j.trip.2020.100095.

G. Wallentin and M. Loidl, “Agent-based Bicycle Traffic Model for
Salzburg City,” GI_Forum, vol. 1, pp. 558-566, 2015, doi:
10.1553/giscience2015s558.

FRANCKE, Angela; LIBNER, Sven. Big data in bicycle traffic.
Technical Paper BMVI, 2017.

E. S. Willberg, H. Tenkanen, A. Poom, M. Salonen, and T. Toivonen,
“Comparing spatial data sources for cycling studies — a review,” Jan.
2021, doi: 10.31235/0sf.io/ruy3j.

K. Janowicz, “The role of space and time for knowledge organization on
the Semantic Web,” Semantic Web, vol. 1, no. 1,2, pp. 25-32, 2010, doi:
10.3233/sw-2010-0001.

L. van den Brink, P. Janssen, W. Quak, and J. Stoter, “Towards a high
level of semantic harmonisation in the geospatial domain,” Computers,
Environment and Urban Systems, vol. 62, pp. 233-242, Mar. 2017, doi:
10.1016/j.compenvurbsys.2016.12.002.

H. Uitermark, “Ontology Construction for Geographic Data Set
Integration,” The Ontology and Modelling of Real Estate Transactions,
pp. 149-161, Oct. 2017, doi: 10.4324/9781315237978-11.
RODRIGUEZ, F. Hernandez; ARANDA, G. Bravo; NAVARRO, A.
Martin. An ontology-based approach to spatial information modelling.
In: Advances in GIS Research II: Proceedings of the Seventh
International Symposium on Spatial Data Handling. London, Taylor and
Francis. 1996. p. 13-26.

C. B. Jones, D. B. Kidner, L. Q. Luo, G. LI. Bundy, and J. M. Ware,
“Database design for a multi-scale spatial information system,”
International journal of geographical information systems, vol. 10, no. 8,
pp. 901-920, Dec. 1996, doi: 10.1080/02693799608902116.

W. Huang, K. Kazemzadeh, A. Mansourian, and L. Harrie, “Towards
Knowledge-Based Geospatial Data Integration and Visualization: A
Case of Visualizing Urban Bicycling Suitability,” IEEE Access, vol. 8,
pp. 85473-85489, 2020, doi: 10.1109/access.2020.2992023.

S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join query
processing in Cloud,” 2015 31st IEEE International Conference on Data
Engineering ~ Workshops,  pp. 3441, Apr. 2015, doi:
10.1109/icdew.2015.7129541.

E. H. Jacox and H. Samet, “Spatial join techniques,” ACM Transactions
on Database Systems, vol. 32, no. 1, p. 7, Mar. 2007, doi:
10.1145/1206049.1206056.

H. M. Veenhof, P. M. G. Apers, and M. A. W. Houtsma, “Optimization
of spatial joins using filters,” Advances in Databases, pp. 136-154,
1995, doi: 10.1007/bfb0000545.



