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1  Introduction
Image processing technology has led to advancements in various fields, such as biom-
etrics, security, surveillance, and personal identification. Among these applications, 
facial recognition (FR) systems have emerged as a crucial tool, offering both conveni-
ence and enhanced security. However, the robustness and accuracy of these systems 
are often challenged by various real-world conditions, such as facial expression or par-
tially occluded faces [1, 2]. These scenarios can significantly degrade the performance of 
facial recognition systems, requiring innovative solutions to improve their resilience and 
effectiveness.

Generative Adversarial Networks (GANs) have shown remarkable potential in 
addressing these challenges through their ability to reconstruct missing or occluded 
parts of images [3–5]. This study explores the application of GANs to reconstruct dam-
aged or partially obscured facial images and restore them to a state that is both visually 
plausible and suitable for processing by FR algorithms. The objective is to bridge the gap 
between the ideal conditions under which these systems are developed and the imperfect 
real-world scenarios in which they are deployed. Such pre-processing approaches for 
FR systems can bring significant benefits to public safety. In contrast to diffusion-based 
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approaches, the significant advantage of the GAN-based solution is the inference time, 
which allows the reconstruction algorithm to be used in near-real time [6].

In addition to image reconstruction, this study employs state-of-the-art image 
enhancement approaches to enhance the quality of the reconstructed images. These 
enhancement methods are designed to refine the images’ visual detail and overall clarity, 
which could potentially increase the accuracy of FR systems when dealing with compro-
mised inputs.

This research proposes a comprehensive solution for improving the robustness of 
facial recognition technologies against a range of image impairments. The approach 
combines GAN-based reconstruction and advanced image enhancement. However, this 
approach has higher computational requirements, which necessitates a division into two 
independent parts.

In summary, the following research questions were defined:

•	 What impact do alterations to the neural network of a GAN have on the quality of 
facial image reconstruction?

•	 What is the impact of algorithms utilized for facial image reconstruction on the 
accuracy of facial recognition?

•	 Can state-of-the-art image enhancement methods improve FR accuracy?

2 � Related works
The existing literature on facial recognition (FR) systems is rich with diverse approaches 
to overcoming the challenges posed by image imperfections [3, 7].

Research in this area ranges from sophisticated algorithms for reconstructing facial 
features in damaged or occluded images to advanced techniques for improving image 
quality. These solutions approach the problem from an image quality perspective, 
employing metrics for Image Quality Assessment (IQA) such as peak signal-to-noise 
ratio [8] and Structural Similarity Index [9] metrics.

However, this approach may not be sufficient for biometrics, which we address in a 
subsequent section of this study. Our focus is on facial image reconstruction, based 
on our previous paper, Facial Image Reconstruction and Its Influence on Face Recogni-
tion [10]. We extend this study by investigating whether enhancement techniques can 
be employed to improve the accuracy of facial recognition (FR) further, and we employ 
other algorithms for facial image reconstruction.

2.1 � Facial image reconstruction

The reconstruction of facial images, also commonly referred to as facial image 
inpainting [11], is a challenging task that has been addressed by several innovative 
approaches documented in the scientific literature. However, for real-time facial rec-
ognition, inference time is a critical factor that has led to a reduction in the number 
of approaches. While diffusion-based methods offer impressive image reconstruction 
capabilities, this study focuses primarily on the feedforward neural network architec-
ture, which allows for faster inference compared to diffusion-based approaches that 
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suffer from computational cost [12]. During the course of our research, we encoun-
tered a number of different approaches, each of which offered a distinct perspective 
on the problem.

The first algorithm, based on the Generative Adversarial Network, G-NST [3] uses 
two discriminators alongside a semantic parsing network, where one discriminator 
functions to generate missing parts utilizing local loss, and the second ensures the 
coherence of these parts within the overall image structure. This algorithm incorpo-
rates neural style transfer to enhance visual coherence, involving a first step of image 
style clustering based on facial feature recognition, followed by applying style trans-
fer via the VGG-16 network to ensure visually satisfying results. DFNet [4] uses the 
established U-net architecture and integrates a specialized fusion block connected to 
multiple decoder layers, emphasizing the filling in of missing image sections rather 
than generating a whole image, which distinguishes it from other techniques.

In contrast to previous approaches, the U-network architecture serves as the basis for 
the model proposed in [13], which is known as Image Inpainting via Conditional Texture 
and Structure Dual Generation. This architecture employs a two-stream network. In 
this architecture, the generator incorporates components that are responsible for both 
structure-constrained texture synthesis and texture-guided structure reconstruction. 
The output features are combined by bidirectional gated feature fusion (Bi-GFF) and a 
contextual feature aggregation (CFA) module [13]. The first module provides consist-
ency enhancement, while the second module is designed to provide more vivid details.

In LaMa [7], the authors propose an architecture aimed at reconstructing large 
missing areas, complex geometric structures, and high-resolution images. The core of 
the architecture is Fast Fourier Convolution (FCC) [7], which allows the use of global 
context in early layers. This operator splits the channels into two parallel branches, 
the local branch and the global branch. For training, the design loss function was 
derived from the adversarial loss [14].

The last chosen model for reconstructing high-resolution images is called Aggre-
gated Contextual-Transformation (AOT-GAN) [15], from a high-level perspective, 
the architecture is derived from GAN. However, unlike GAN, it uses the Aggregated 
Contextual-Transformation (AOT) instead of the Residual block in the generator, 
which is able to gather both informative distant contexts and rich patterns of interest.

2.2 � Image enhancement

One possible method of increasing the effectiveness of FR systems is to enhance 
reconstructed facial images. In this study, four advanced image enhancement meth-
ods were employed: CodeFormer [16], DifFace [17], GFPGAN [18] and DFDNet [19], 
that were trained on FFHQ dataset [20]. Those are popular, state-of-the-art solutions, 
each contributing uniquely to improving the quality of facial images.

CodeFormer [16] uses a transformer-based architecture [21] to restore highly 
degraded images by modeling global interrelations and dependencies in the data. It 
includes a pre-trained quantized autoencoder with a discrete codebook [22], which, 
when combined with the Transformer, significantly reduces restoration uncertainty 
and facilitates the mapping of degraded to high-quality features.
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The DifFace [17] method represents an innovative approach to blind face restoration 
(BFR), leveraging the capabilities of diffusion models without necessitating the training 
of these models under multiple constraints.

The DifFace method establishes a transition distribution that effectively models the 
transition from a low-quality (LQ) image to an intermediate diffused state of a pre-
trained diffusion model, subsequently transitioning to the high-quality (HQ) target. This 
method primarily involves a neural network trained with L1 loss [23] on synthetic data, 
considerably simplifying the training process. The core advantage of DifFace lies in its 
error contraction mechanism, which systematically reduces the residual error during 
the transition phase, thus enhancing the robustness of the model against unknown and 
complex degradations. This approach streamlines the process by avoiding complex loss 
configurations and achieves notable robustness and efficiency, particularly in severe deg-
radation scenarios.

GFPGAN [18], which stands for Generative Facial Prior Generative Adversarial Net-
work, is a method designed to enhance facial images. It uses generative adversarial 
networks that are fine-tuned with a rich latent space of facial features to restore facial 
components in detail. The process begins by identifying degraded facial regions, which 
the network then enhances by drawing on its learned priors. This ensures that each 
reconstructed feature respects human faces’ natural variations and structures [18]. The 
strength of GFPGAN lies in its capacity to reconstruct realistic textures and details often 
lost in damaged or low-quality images, particularly from a visual perspective.

DFDNet (Deep Face Dictionary Network) [19] represents an innovative approach to 
restoring faces from low-quality images. Unlike traditional approaches, DFDNet does 
not require a reference image of the same identity. Instead, it leverages deep multi-scale 
component dictionaries constructed using K-means clustering on high-quality images 
to guide the restoration process. DFDNet matches the degraded input with the closest 
features from these dictionaries and employs a Dictionary Feature Transfer (DFT) block 
to enhance the input by transferring high-quality details. Component Adaptive Instance 
Normalization (CAdaIN) is employed to harmonize style differences (e.g., illumination, 
skin tone) between the input and dictionary features. Furthermore, the method incorpo-
rates a confidence score to adaptively fuse the dictionary features with the input, which 
is further refined through a progressive restoration approach from coarse to fine. Exten-
sive testing demonstrates that DFDNet can effectively generate realistic and high-quality 
facial image restorations across various degraded conditions, substantially outperform-
ing existing methods that rely on identity-specific reference images.

Each method enhances the reconstructed facial image’s clarity, resolution, and fidel-
ity. This provides a robust set of tools for improving facial image quality, which could 
increase FR systems’ performance accuracy under various challenging conditions.

2.3 � Facial recognition

Over the past decade, there have been notable advancements in the capabilities of facial 
recognition (FR) technology. In 2014, the introduction of DeepFace [24] represented 
a significant turning point, signifying the adoption of neural network architectures to 
address the complexities of facial recognition. The proposed results indicate that it is the 
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first algorithm for FR to demonstrate performance that surpasses that of humans in an 
unconstrained scenario.

This approach was soon surpassed by FaceNet [25], which demonstrated higher accu-
racy. At the same time, the research community has been dedicated to collecting larger 
datasets of facial images to improve algorithmic accuracy further. One notable direction 
for improving these algorithms has been to modify the loss function used to train neural 
networks for FR.

The contemporary loss functions, including A-Softmax [26], AM-Softmax [27], Cos-
Face [28], ArcFace [29], and SFace [30] use a modified Softmax loss based on the obser-
vation that feature vectors show angular distribution. These loss functions facilitate 
further enhancement of FR accuracy.

In addition to these methods, a novel approach called MagFace was introduced in 2021 
[31]. This approach, like its predecessors, focuses on the feature distribution of the vec-
tors. Moreover, MagFace uniquely used the size of the feature vectors to enforce higher 
diversity for inter-class samples and similarity for intra-class samples. The modifications 
to the loss function resulted in enhanced accuracy on LFW [32], CFP-FP [33], AgeDB-30 
[34], and CPLFW [35] datasets when compared to the results obtained by ArcFace [31].

Besides tuning a loss function and data to train a neural network model, FR accuracy 
can be improved by using a different metric for comparison. This idea led the authors of 
[36] to create a new metric called Quality Aware Metric, which extends the capabilities 
of the algorithm by using a comparison metric based on both cosine similarity and qual-
ity weight function. This approach outperforms a combination of MagFace and cosine 
similarity used for matching between feature vectors.

Current research focuses on improving FR accuracy, especially in challenging scenar-
ios involving damaged images, occlusions, difficult poses, and varying lighting condi-
tions [37].

In our research, we use FR algorithms to find out how face reconstruction algorithms 
affect FR accuracy. Although the performance of these FR algorithms is affected by fac-
tors such as the backbone used, the loss function, the amount of training data, etc., these 
aspects are not critical for evaluating the impact of reconstruction on FR.

3 � Facial image reconstruction
This section outlines approaches to reconstructing corrupted facial images. Initially, we 
developed a baseline model for facial image reconstruction. Subsequently, we conducted 
a detailed examination of various modifications designed to enhance the quality of the 
reconstructed images. These modifications were based on the work proposed in [38]. 
Each proposed modification was evaluated independently to ascertain its impact on the 
reconstruction process. This enabled the identification of the model that exhibited the 
most promising potential for subsequent FR experiments. Furthermore, a dataset was 
developed to simulate corrupted facial images, which served to train and assess the effi-
cacy of our enhanced reconstruction process.

3.1 � Architecture of proposed neural network

Firstly, a base net was constructed and trained as a model for subsequent extensions. 
Then, we systematically explored various modifications in the architecture and evaluated 
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their impact on the reconstruction quality. The architecture was finalized by integrat-
ing modifications that were proven to enhance the quality of the result, thus creating a 
model optimized for high-quality image restoration.

The structure of the model, inspired by autoencoder architecture described in [39], 
consists of encoder and decoder blocks arranged symmetrically to process image data 
efficiently. An architecture overview of this base autoencoder is shown in Fig.  1. The 
encoder segment comprises four blocks, each with a convolutional layer for feature 
extraction and a MaxPooling layer for dimensionality reduction. The sequential arrange-
ment concludes with two dense layers that serve as a bridge to the decoder segment. The 
decoder then uses a sequence of convolutional and transposed convolutional layers to 
reconstruct the image from the encoded representations effectively.

In our initial architectural improvement, we explored eliminating fully connected lay-
ers within the generator and replacing them with convolutional layers. This modifica-
tion produced a model with significantly fewer parameters, allowing for the inclusion 
of more filters in the convolutional layers. Increasing the filter count was to improve the 
model’s ability to extract spatial features, which is crucial for accurately reconstructing 
image details. This modification is a significant step towards optimizing the network’s 
architecture for more efficient and effective image restoration.

The second architectural improvement involved replacing pooling layers with convo-
lutional layers that use strategic stride settings. This modification maintains the model’s 
down-sampling capabilities while preserving important information. Strided convolu-
tions, unlike deterministic pooling, enable the network to learn optimal spatial down-
sampling methods [40]. This modification further enhances the models’ ability to extract 
spatial features, representing another step toward improving image reconstruction 
quality.

In another attempt to refine our model, we increased the number of convolutional lay-
ers within each encoder block. This was done to enhance the feature extraction capabili-
ties. However, this adjustment unexpectedly resulted in a degradation of the quality of 
the reconstruction results. As a result, we decided not to include this modification in the 
final model design. This highlights the challenge of achieving an optimal architecture for 
image restoration tasks.

Previous designs have aimed to improve the generator’s effectiveness by introducing 
various architectural modifications. These adjustments have been suggested as potential 

Fig. 1  Architecture of base autoencoder model used as a base model for all modifications
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solutions to the challenges affecting the generator’s performance. The final proposed 
model examines the possible advantages of integrating separate modifications into a sin-
gle model. It also explores the synergy potential of these combined modifications when 
implemented together. As a result, we created the architecture of a combined model 
shown in Fig. 2.

A series of exploratory analyses were carried out using a set of models from the Keras 
U-Net collection [41]. These models were updated to incorporate the modifications out-
lined earlier in the text. This design aims to explore and determine the optimal architec-
ture for facial image reconstruction.

Another critical component of the GAN model is the discriminator [42]. The discrimi-
nator receives both original and generated images as input, and its primary objective is 
to determine which image is real and which is fake [43]. The generator’s effectiveness 
is inversely proportional to the discriminator’s ability to discriminate between the two 
image types, so a less distinguishable output means an increase in generator output 
image quality. This evaluative feedback from the discriminator is essential for refining 
the generative process. To accomplish this task, a convolutional neural network (CNN) 
is used to extract features from the input and classify them into two distinct classes. The 
detailed architecture of this discriminator is shown in Fig. 3.

3.2 � Dataset

For this work, we used the CelebA dataset [44] as a basis for image reconstruction 
algorithms and their evaluation in the context of facial recognition. Due to the lack of 
damaged images in this dataset, modifications were necessary to meet the research 
requirements.

To simulate occlusion in facial images, we created a modified version of the dataset 
called CelebA-C . This variant was generated by adding 30 randomly placed lines with 

Fig. 2  An overview of a generator architecture that includes all modifications that improved the quality of 
the generated images [10]

Fig. 3  Final discriminator design [10]
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widths between 8 and 13 pixels and lengths between 10 and 20 pixels, filled with RGB 
Gaussian noise N (128, 35) , to the face region of each image from the original CelebA 
dataset. Algorithm 1 shows the pseudocode of how the drawn occlusion was created.

Algorithm 1  Draw random occlusion to an image

Existing image reconstruction solutions use the NVIDIA Irregular Mask Dataset [45]. 
For a pertinent comparison of our solution with existing solutions, we also decided to 
use this dataset for the evaluation. From the dataset, we used a test set from which we 
selected masks that covered at most 50 % of the content. Since the test set itself con-
tained only 12000 mask images, we had to duplicate some of them. For ease of repli-
cation, we performed the mask duplication by resetting the index after exhausting the 
original set and applying the masks from the beginning. Examples of each mask dataset 
and their combination with original data are shown in Fig. 4.

4 � Experiments and results
Firstly, the performance of the facial image reconstruction algorithm was assessed and 
compared using the IQA metrics, as described in Subsection 4.2. While these metrics are 
widely recognized for evaluating the effectiveness of image reconstruction algorithms, 
they may not consider the potential impact on biometric recognition capabilities. With 
FR algorithms, the changes in latent space can be evaluated to examine the effect of 
reconstruction on FR accuracy. A more detailed examination of how FR is employed to 
assess image quality in generated images is presented in Subsection 4.2. The assessment 
of these two approaches can provide insight into the performance of the algorithm in 
terms of image quality, which has implications for biometric verification processes.

4.1 � Training

In order to achieve the most accurate comparison results across architectures, uniform 
parameters were employed to train all models. For training purposes, an A40 GPU was 
utilized, with each model undergoing training for a total of 20 epochs with a batch size 
of 32 images.
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The generator was trained using a combination of binary cross-entropy and mean 
square error with weights of 1 and 100 as the loss function, and Adam was employed 
as the optimizer, with a learning rate of 0.0001 and β1 of 0.5. The discriminator was 
trained using the binary cross-entropy loss function with the optimizer Adam, with 
the learning rate set to 0.00025 and β1 set to 0.5.

4.2 � Performance metrics

Although this study is primarily focused on evaluating the quality of reconstruction 
by FR algorithms and corresponding metrics, we also performed an evaluation with 
common metrics to calculate Image Quality Assessment (IQA). In order to evalu-
ate the capability of the proposed neural network for image reconstruction, we have 
chosen commonly used metrics, namely peak signal-to-noise ratio (PSNR) [8], Struc-
tural Similarity Index (SSIM) [9] metrics, Learned Perceptual Image Patch Similarity 
(LPIPS) [46], Feature Similarity Index (FSIM) [47], Multi-scale Structural Similarity 
(MS-SSIM) [48], Fréchet Inception Distance (FID) [49], which facilitate direct com-
parison between the proposed solution and existing methods.

The first metric, PSNR, expresses the ratio between the maximum possible power 
of a signal and the power of the interfering noise. For a reference image f and a pro-
cessed image g, it is given by [8]:

where MSE denotes the mean squared error, which represents the average squared 
difference between the pixels of the original and the processed images. The variable n 

PSNR(f , g) = 10× log10

(

(2n − 1)2

MSE(f , g)

)

,

Fig. 4  (a) Example image from the CelebA dataset, (b) corresponding to our drawn masks, (c) combination of 
the drawn masks with the CelebA dataset, referred to as CelebA-C, (d) example of NVIDIA irregular masks, and 
(e) combination of NVIDIA irregular masks with the CelebA dataset
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denotes the number of bits per pixel, typically set to 8, reflecting the standard bit depth 
in image processing [8].

Another metric, SSIM, is defined by the relationship between the means, variances, 
and covariance of the original and processed images [9]. This metric is formally defined 
as follows:

where µI and µI ′ represent the means of the original and modified images, respec-
tively. The term σII ′ denotes the covariance between the two images, while σ 2

I  and σ 2
I ′ 

correspond to the variances of the original and processed images, illustrating the vari-
ability within each image. To normalize the measurement and control the stability of 
the division with weak denominators, constants C1 and C2 are introduced, defined as 
C1 = (k1L)

2 and C2 = (k2L)
2 , where k1 = 0.01 and k2 = 0.03 . The term L represents 

the dynamic range of pixel values, typically set to 255 for 8-bit images. This formula-
tion emphasizes the composite evaluation of luminance, contrast, and structural similar-
ity between the compared images, providing a comprehensive assessment beyond mere 
pixel-by-pixel differences [50].

A subsequent metric, designated as Multi-Scale Structural Similarity (MS-SSIM), was 
proposed in [48]. This metric, derived from SSIM, aims to determine contrast c and 
structure s similarity across varying scales. Luminance comparisons l are calculated only 
at Scale MM. The multi-scale structural similarity measurement is defined as follows:

where αM , βM and γM are parameters to control importance of different components.
In contrast to traditional methods that prioritize pixel differences, the metric Feature 

Similarity Index for Image Quality Assessment (FSIM) [47] is based on perceptual fea-
tures such as edges and textures that closely align with human vision. The algorithm is 
divided into phases, with the first phase determining significant image features using the 
phase congruency (PC) model. Furthermore, the gradient magnitude (GM) is calculated 
as the secondary feature to encode contrast information. In the initial stage, a local simi-
larity map is calculated, while the subsequent stage performs pooling of the similarity 
map to yield a single similarity score. Formally, the similarity between PC1(x) and PC2(x) 
is given by [47]:

where T1 represents a positive constant that is employed to control stability.
In the case of GM, the similarity is defined by:

SSIM(I , I ′) =
(2µIµI ′ + C1)(2σII ′ + C2)

(

µ2
I + µ2

I ′ + C1

)(

σ 2
I + σ 2

I ′ + C2

) ,

(1)SSIM(x, y) = [lM(x, y)]αM ·

M
∏

j=1

[

cj(x, y)
]βj

[

sj(x, y)
]γj ,

(2)SPC(x) =
2PC1(x) · PC2(x)+ T1

PC2
1 (x)+ PC2

2 (x)+ T1

,

(3)SG(x) =
2G1(x) · G2(x)+ T2

G2
1(x)+ G2

2(x)+ T2

,
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where T2 is a positive constant depending on the dynamic range of the GM value. The 
partial similarity SPC(x) and SG(x) are combined to obtain the similarity SL(x) of f1(x) 
and f2(x) , which is expressed as follows:

where α and β are parameters to adjust the relative importance of PC and GM features. 
Overall, the FSIM index for grayscale or luminance components of color images is for-
mally expressed as follows:

where � denotes the entire spatial domain of a image, PCm is defined as 
max(PC1(x),PC2(x)) to weight the importance of SL(x) . However, this definition does 
not take color IQA into account.

In contrast to the preceding metric, which was designed for single-channel images, the 
authors proposed an approach for evaluating the similarity between color images [47]. This 
necessitates the conversion of the RGB channels to YIQ space [47], after which the similar-
ity between the I and Q chromatic components is computed using the following equations:

where T3 and T4 are positive constants. Then, the similarity of I and Q can be modified to 
express the chrominance similarity:

Overall, the FSIM index extended for color images is defined by:

where � is a constant that controls the importance of the chrominance components.
Another possible approach to compare images by similarity is to use a learned neural net-

work model. A representative of this group is Learned Perceptual Image Patch Similarity 
[46]. This is a metric that uses deep features to compute similarity metrics. The distance 
between the reference x and the distorted patches is given by the following equation [46]:

where Wl and Hl are the width and height of the lth layer, and Cl is the number of chan-
nels. The extracted features for the layer l are described as ŷl , ŷl0 ∈ RHl×Wl×Cl . Prior to 
calculating the L2 norm distance, the activations are scaled by wl ∈ R

Cl . Otherwise, the 
features are unit normalized in the channel dimension. The authors of this metric have 

(4)SL(x) = [SPC(x)]
α · [SG(x)]

β ,

(5)FSIM =

∑

x∈� SL(x) · PCm(x)
∑

x∈� PCm(x)
,

(6)
SI (x) =

2I1(x) · I2(x)+ T3

I21 (x)+ I22 (x)+ T3

,

SQ(x) =
2Q1(x) · Q2(x)+ T4

Q2
1(x)+ Q2

2(x)+ T4

,

(7)SC(x) = SI (x) · SQ(x).

(8)FSIMC =

∑

x∈� SL(x) · [SC(x)]
� · PCm(x)

∑

x∈� PCm(x)
,

(9)d(x, x0) =
∑

l

1

HlWl

∑

h,w

∥

∥

∥
wl ⊙

(

ŷlhw − ŷl0hw

)∥

∥

∥

2

2
,
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proposed two models, the first of which is based on VGG and AlexNet architectures 
[46]. For training, the authors have proposed a dataset containing various image distor-
tions, including those resulting from ghosting and compression.

In [49] another metric, called Fréchet Inception Distance, was introduced, which can 
be considered a widely used metric for evaluating the quality of generated images, usu-
ally generated by GAN. The mathematical representation of FID is based on the squared 
Wasserstein distance between two multidimensional Gaussian distributions, obtained 
by analyzing the activations of a pre-trained Inception v3 model without a classification 
layer. This pre-trained model was trained on a large dataset, resulting in the model’s abil-
ity to capture different aspects of image features.

Each distribution represents the mean m and the covariance C of the activations for 
an image. Then (m, C) represents the distribution of the generated images and (mw ,Cw) 
represents the ground truth. The FID distance is given by:

where Tr is the trace operator.
From a biometric perspective, the metrics used to measure visual similarity between 

images are less relevant than evaluating FR performance on reconstructed images. Our 
experiments are primarily focused on evaluating the impact of reconstruction on FR.

To perform face detection, we choose the RetinaFace detector [51]. Two selected face 
recognition neural networks were used to generate embeddings: Arcface, which was 
chosen as a representative of angle-based FR approaches, and QMagFace, which is based 
on the MagFace neural network and uses a quality-aware metric to match two embed-
dings. This algorithm was chosen under the assumption that face quality can be affected 
by reconstruction algorithms. In this study, ArcFace uses Resnet50 [52], and QMagFace 
uses IResnet100 [53] to extract features from a face image. Overall, the L2 norm distance 
is used to compare the embeddings provided by ArcFace, and a custom similarity metric 
is used for QMagFace with coefficients α = 0.077428 and β = 0.125926 . Unlike [10], the 
face images were aligned by mapping the five detected face keypoints to reference points 
through affine transformations [54].

4.3 � Evaluation of image quality assessment

Our approach to testing individual modifications against the base network architecture 
(base net) resulted in filtering out insufficient modifications. Table  1 compares each 
modification against the baseline model, clearly assessing their impact on model per-
formance. Firstly, we utilized only PSNR and SSIM image quality assessment metrics to 
compare our designs with existing solutions presented in Table 3.

A novel model was developed that demonstrated superior quality in the generated 
images compared to a model based on the base net. Furthermore, these modifications 
were applied to U-net architectures from the Keras library to evaluate their effectiveness 
in facial image reconstruction tasks. The results are summarized in Table 2. For both the 
PSNR and SSIM metrics, the V-net achieved the best results.

In order to conduct a more detailed investigation, we selected the most recent models 
from previous evaluations. When utilizing existing solutions, we endeavored to leverage 

(10)d2((m,C), (mw ,Cw)) = �m−mw�
2
2 + Tr

(

C + Cw − 2(CCw)
1/2

)

,
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their pre-trained models to achieve the most accurate outcomes. In cases where a given 
solution lacked a pre-trained model on the CelebA dataset, we fine-tuned the model on 
that specific dataset. The parameters utilized in the fine-tuning were consistent with 
those described in the original paper, ensuring the highest degree of consistency. We 
then proceeded to compute the reconstruction on these models for two different mask 
datasets: our CelebA-C and NVIDIA Irregular Mask Dataset. We further computed 
more detailed metrics such as MS-SSIM, FSIM, LPIPS, and FID for the images recon-
structed on these datasets. All of those metrics were initialized with default parameters 
as described in their papers. The performance of each solution displayed using these 
metrics on both datasets can be seen in Tables 4 and 5.

A comparative analysis of the performance of the above architectures, including exist-
ing solutions, is presented in Tables 3, 4 and 5. We used standard IQA metrics to com-
pare the quality of our designs with other approaches. As we can see from the results, all 

Table 1  A comparison of influence models with individual modifications against a model based on 
the base net [10]

Model PSNR SSIM

Base net 22.641 0.710

No dense layers 28.814 0.893

Strided convolutions 24.015 0.751

Skip connections 25.227 0.916

Table 2  A comparison of image quality metrics (PSNR and SSIM) for various modified U-Net 
architectures from the Keras U-Net library

Base model PSNR SSIM

Swin-UNet (2022) [55] 33.405 0.965

Unet3plus (2020) [56] 33.714 0.971

U-Net (2015) [57] 33.737 0.969

V-Net (2016) [58] 34.326 0.972
U-net++ (2018) [59] 29.744 0.905

Table 3  Comparison of performance of our model with existing solutions [10] on CelebA-C dataset. 
The first three rows show the performance of our final models

Model PSNR SSIM

Modified U-Net 33.737 0.969

Modified V-Net 34.326 0.972

Modified base net - MBNet 33.659 0.969

Generative face completion (2017) [5] 19.500 0.784

G-NST (2020) [3] 29.655 0.937

DFNet (2019) [4] 31.662 0.965

CTSDG (2021) [13] 27.920 0.925

AOT-GAN (2020) [15] 23.606 0.905

LaMa (2022) [7] 33.209 0.969



Page 14 of 21Pleško et al. EURASIP Journal on Image and Video Processing          (2025) 2025:9 

of our designs surpassed the performance of existing solutions when comparing PSNR 
and SSIM metrics, with the modified V-Net leading the way. A comparison of our best 
model with other solutions using MS-SSIM, FSIM, LPIPS, and FID metrics on our Cel-
ebA-C, see Subsection 3.2, as shown in Table 4, reveals that our model outperforms the 
majority of the solutions and is comparable to the LaMa model. In addition, our model 
was compared to other solutions using the NVIDIA irregular mask dataset. The com-
parison results are presented in Table 5. As can be observed, the results are comparable 
to those presented in Table 4. The results demonstrated that our model outperformed 
the majority of existing solutions. A comparative analysis of our model with LaMa indi-
cates a slight decrease in performance. However, our model exhibits several advantages. 
Firstly, it is half the size of LaMa, comprising 26 million parameters, whereas LaMa has 
51 million parameters. Secondly, our model uses only the corrupted image as input, 
whereas LaMa requires both the corrupted image and the mask to reconstruct.

For a visual representation of the outputs from our models and a comparison with 
ground truth, please refer to Fig. 5. Moreover, Fig. 6 illustrates the difference in recon-
struction quality between our Modified V-Net model and the LaMa model. Additionally, 
the figure illustrates the difference in reconstruction quality between the CelebA-C data-
set and the NVIDIA irregular mask dataset.

4.4 � Evaluation of face recognition performance

The current state of image reconstruction solutions employs IQA metrics to assess the 
accuracy of image reconstruction. However, this approach may be inadequate for bio-
metric purposes. This paper primarily aims to investigate the impact of facial image 
reconstruction on facial recognition. The following results were obtained to address this 
question.

Initially, based on previous findings, we selected our and LaMa models to assess 
the impact of image reconstruction on the accuracy of face recognition algorithms. 
The subsequent experiments were conducted on the CelebA-C dataset and a dataset 

Table 4  Additional metrics comparison of existing solutions trained and tested on CelebA-C dataset

Model MS-SSIM FSIM LPIPS FID

Modified V-Net 0.984 0.905 0.026 1.704

CTSDG 0.934 0.881 0.066 16.159

AOT-GAN 0.878 0.828 0.075 14.282

LaMa 0.980 0.935 0.015 0.508

Table 5  Additional metrics comparison of existing solutions trained and tested on NVIDIA Irregular 
Mask Dataset

Model MS-SSIM FSIM LPIPS FID

Modified V-Net 0.952 0.822 0.068 4.161

CTSDG 0.911 0.824 0.106 13.783

AOT-GAN 0.771 0.733 0.215 29.963

LaMa 0.952 0.872 0.038 1.990
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generated using NVIDIA masks. Firstly, experiments were conducted utilizing the 
CelebA-C dataset. The results are presented in Table 6. It is obvious that facial image 
reconstruction has a significant impact on facial recognition. From the perspective 
of the false positive rate (FPR), facial recognition of damaged images shows a higher 
value. After reconstruction, the true positive rate (TPR) shows a slight decrease 
compared to undamaged facial images. Furthermore, a comparison of the LaMa 
model with the Modified V-Net model reveals that, despite the LaMa model’s supe-
rior performance in terms of the metrics presented in Table 4, it exhibited a notable 

Fig. 5  Comparison of three different generators for generating damaged facial parts. We compare our 
combined model with tested modifications implemented into U-Net and V-Net architectures [10]

Fig. 6  Comparison of results on different mask datasets. The first row shows LaMa and Modified V-Net 
reconstruction on the CelebA-C dataset, and the second row shows reconstruction on the NVIDIA irregular 
masks dataset
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deficiency in this experiment. This indicates that, from a biometrics perspective, the 
IQA metrics are inadequate and that a greater emphasis should be placed on facial 
image reconstruction from a face recognition perspective.

As part of the experiments, we also aimed to determine whether our solution for 
facial image reconstruction focuses only on the missing parts and does not damage 
the known areas, which could lead to a reduction in recognition accuracy. To accom-
plish this, we took the initially corrupted area from the reconstructed photo and 
inserted it back into the original photo. A comparison of the Modified V-Net and 
Inpainted V-Net in Table 6 shows little to no difference in accuracy between facial 
recognition systems when using reconstructed or inpainted images. Therefore, there 
is no need to remove the reconstructed area from the generated image and reinsert 
it into the original.

When compared to the more extensive corruptions from the NVIDIA irregular 
mask database, as shown in Table  7, it is evident that the LaMa model exhibits an 
improvement in accuracy. However, it is crucial to highlight that despite this, when 
we examine the false positive rate, it is observed to be worse than that of the Modi-
fied V-Net model and across all experiments.

In Fig.  7, we utilized the modified V-Net model to reconstruct occluded images 
and calculated the probability density function to illustrate the improvement in FR 
accuracy relative to occluded images and the deviation from ideal conditions rep-
resented by original images. It should be noted that, based on previous results, the 
QMagFace model performs significantly more effectively in facial recognition on 
images of reduced quality than the ArcFace model.

Table 6  ArcFace and QMagFace performance comparison on CelebA-C dataset to show how facial 
image reconstruction using V-Net and LaMa models affects facial recognition accuracy

ArcFace QMagFace

ACC​ FPR TPR ACC​ FPR TPR

Original 0.9864 0.0039 0.9029 0.9950 0.0033 0.9565

Damaged 0.9225 0.0172 0.3983 0.9620 0.0101 0.7193

Modified V-Net 0.9747 0.0074 0.8194 0.9875 0.0035 0.9089

Inpainted V-Net 0.9747 0.0074 0.8194 0.9876 0.0033 0.9089

LaMa 0.9408 0.0332 0.8958 0.9632 0.0148 0.9250

Table 7  ArcFace and QMagFace performance comparison on NVIDIA irregular mask dataset to 
show how facial image reconstruction using V-Net and LaMa models affects facial recognition 
accuracy

ArcFace QMagFace

ACC​ FPR TPR ACC​ FPR TPR

Original 0.9864 0.0039 0.9029 0.9950 0.0033 0.9565

Damaged 0.7877 0.1183 0.6245 0.8727 0.0602 0.7562

Modified V-Net 0.9090 0.0411 0.8223 0.9363 0.0224 0.8647

LaMa 0.9210 0.0454 0.8628 0.9379 0.0276 0.8780
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4.5 � Image enhancement

Additionally, we investigated whether image enhancement of reconstructed images 
could improve FR results. We used pre-trained models from advanced image 
enhancement techniques—CodeFormer [16], DifFace [17], GFPGAN [18], and DFD-
Net [19]—to improve the quality of the reconstructed images. All mentioned methods 
were trained on the FFHQ dataset [20]. Using those methods allowed us to directly 
assess the impact of existing state-of-the-art image enhancement techniques on iden-
tity changes in enhanced images. By applying these pre-trained enhancement models 
to our reconstructed images, we aimed to refine the visual details of the images and 
improve their suitability for face recognition tasks.

Examples of enhanced images, including comparisons with the original images, are 
shown in Fig. 8. Previous evaluations have shown that the IQA metrics and face rec-
ognition metrics are not correlated. Therefore, we have only utilized the FR metrics in 
this comparison, allowing us to observe how these enhancement methods affect the 
accuracy of the FR algorithms. In Table 8, we can see that the image quality enhance-
ment methods do not contribute to increasing the recognition accuracy of the FR 
algorithms. Although the performance of the DFDNet output is comparable to that 
of the unenhanced image, none of the TPR, FPR, or ACC metrics showed superior 

Fig. 7  Genuine and impostor score distributions obtained using ArcFace (a) and QMagFace (b). Distributions 
were obtained for original, damaged, and reconstructed data. Graphs from top to bottom accordingly
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performance. Therefore, the use of these enhancers does not have a positive impact 
on FR performance.

5 � Conclusion
This paper primarily assesses the impact of neural network-based facial image recon-
struction on facial recognition. While image quality assessment (IQA) metrics are 
commonly used to evaluate algorithm performance, the evaluation based on facial rec-
ognition is of greater importance from a biometric perspective. The results demonstrate 
that these two approaches do not correlate.

In order to evaluate the performance of our models for the reconstruction of facial 
images, experiments were conducted with the existing solution and with image enhanc-
ers. The model proposed in this study is based on advanced generative adversarial net-
works (GANs). With regard to the assumptions underlying the theoretical framework, 
the results are significantly affected by the training process. The approaches employed in 
this study were trained from scratch using a modified CelebA dataset, which was named 
CalebA-C. With regard to the existing solutions, we employed pre-trained models that 
were subsequently fine-tuned with the CalebA-C dataset.

Table 8  The enhanced images were also evaluated by FR algorithms to determine whether the 
enhancement techniques can increase their accuracy

ArcFace QMagFace

ACC​ FPR TPR ACC​ FPR TPR

CodeFormer 0.9667 0.0104 0.7710 0.9742 0.0032 0.9183

DFDNet 0.9717 0.0093 0.8069 0.9855 0.0008 0.9533

DifFace 0.9454 0.0156 0.6074 0.9433 0.0111 0.7419

GFPGAN 0.9653 0.0096 0.7475 0.9729 0.0032 0.9076

Fig. 8  Comparison of the results of four different image enhancement methods
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Experiments conducted on the test subset of the CalebA-C dataset demonstrate that 
our models yield significant enhancements. In this case, the facial recognition metrics 
demonstrate superior results compared to the second model, LaMa. However, when the 
dataset was generated using NVIDIA masks, the LaMa model exhibited a higher accu-
racy than our approach. It is noteworthy that the LaMa model demonstrated a higher 
false acceptance rate in all cases than our proposed model based on V-Net. A higher 
false positive rate can potentially compromise the security of a biometric system.

Furthermore, a study was conducted to determine the influence of image enhancement 
on the accuracy of face-based recognition. The results indicated that the application of 
image enhancers after the reconstruction phase was not beneficial. The highest accu-
racy was achieved with DFDNet, although the results were slightly worse than before the 
enhancement.

Another noteworthy outcome of the experiments is that the QMagFace algorithm 
exhibits superior performance in facial recognition on corrupted images in comparison 
to the ArcFace model.

In conclusion, GAN-based approaches present a promising avenue for facial image 
reconstruction. However, our findings indicate that the use of facial recognition metrics, 
as opposed to IQA metrics, is of paramount importance when assessing performance.

Future research could focus on approaches that utilize identity loss, which would 
require the assumption of the perseverance of identity for reconstruction. One such 
approach could be the diffusion model, which could be used to solve this task.
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