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Bayesian Inference of Total Least-Squares With Known Precision

Dominik Friml! and Pavel Véclavek?

Abstract— This paper provides a Bayesian analysis of the
total least-squares problem with independent Gaussian noise
of known variance. It introduces a derivation of the likelihood
density function, conjugate prior probability-density function,
and the posterior probability-density function. All in the shape
of the Bingham distribution, introducing an unrecognized
connection between orthogonal least-squares methods and di-
rectional analysis. The resulting Bayesian inference expands on
available methods with statistical results. A recursive statistical
identification algorithm of errors-in-variables models is laid-
out. An application of the introduced inference is presented
using a simulation example, emulating part of the identification
process of linear permanent magnet synchronous motor drive
parameters. The paper represents a crucial step towards
enabling Bayesian statistical methods for problems with errors
in variables.

I. INTRODUCTION

One of the most widely used linear regression methods is
the linear regression of the model y = HO + ey, where 0 is
an unknown deterministic estimand or vector of parameters.
H is the design matrix, and e, is the Gaussian noise vector
[1]. This model is still used in cases where the noise is not
only present in the measurements of the observation vector
v, but also in the design matrix. The method’s popularity in
such cases is explained by the number and convenience of
the available statistical methods for this model.

Although there are some attempts to incorporate design
matrix perturbations into the least-squares algorithms, mainly
through robust least-squares [2], [3] or minimax mean
squared error [4], the proper way of finding the solution
is by rephrasing the model to the errors-in-variables (EIV)
problem. In such a case, the design matrix H is known up
to the additional Gaussian noise matrix Eg [5]. It has been
shown [6] that for an independent, identically distributed
Gaussian noise matrix Ey, the maximum likelihood solution
of such model coincides with the total least-squares estimator
introduced by [7].

While a detailed analysis of the maximum likelihood
solution has shown progress in recent years [8], a Bayesian
analysis of the EIV problem has proved to be difficult,
achieving impractically complicated [9], [10] or quasi so-
Iutions [11], making statistical research of EIV problems
to continue falling behind the rapidly evolving research of
statistical methods based on ordinary least-squares.
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This paper offers an alternative approach of analyzing the
total least-squares problem, achieving a practical Bayesian
statistical inference with the conjugate prior, allowing for
recursive identification because the likelihood, prior, and
posterior functions are shown to take the shape of the
Bingham distribution. The result represents an important
step towards Bayesian statistical methods in EIV problems
with known precision, by discovering a connection between
orthogonal regression and directional statistics.

II. BINGHAM DISTRIBUTION

The Bingham distribution naturally arises from a zero-
mean multivariate normal random variable in R? constrained
to lie on the unit sphere S9!, It was first introduced by [12]
as an antipodally symmetric distribution on the sphere S?,
later generalized to higher-dimensional spheres S9~!. The
density function is

p(z|A) = c(A)exp (—2"Az), (1)

where z € RY, 7z =1 and A is a g X ¢ symmetric,
positive definite matrix. The c(A) is an intractable integration
constant, the main complication of the Bingham distribution.

This distribution has particular applications in, for exam-
ple, paleomagnetic studies [13], wind speed modelling [14],
biomedical image analysis, [15], crystal orientations analysis
[16] or orientation estimation [17].

The covariance matrix A can be spectrally decomposed
to A=TAI7T, where T is an orthogonal matrix constructed
from the eigenvectors of A, and A = diag(A,,...,A,) is the
diagonal matrix of the eigenvalues of A. Without loss of
generality, we can assume that concentration parameters A
fulfill the identifiability constraint A; > --- > 24,1 > 4, =0.
These constraints ensure identifiability, as the density does
not change if a positive constant is added to the A;s.

By decomposing covariance matrix A, concentration pa-
rameter matrix A and concentration matrix I'= [y, %,..., %]
are obtained, where ¥;,%,...,%-1 are concentration
axes vectors with corresponding concentration parameters
A, A2, .., Ay—1. The 7, is the mean concentration vector or
the modus vector.

The standard form of the distribution is

—1
pzIA) = c(A) " exp { —qZ M?} )
i=1

with respect to a uniform measure on the sphere and

q—1
c(A) = / expd Yz pdSTN@). (3)
z€S9-1 i=1



Note, that the standard form does not include concentra-
tion vectors I', which conveniently follows from the rotation
of the distribution such that the concentration vectors are
aligned with the main axes. If Z follows a Bingham distri-
bution with density p(z|A), then W =T'X follows a Bingham
distribution with density p(z|A), see [18] and [12] for a more
detailed explanation.

Suppose Z™) to be a set of N samples of unit vectors
in S9! sampled from a Bingham distribution with density
p(z|A). The likelihood function is obtained as

L(A) =c(A) Nexp { -y A i
. =

qg—1
= c(A) Vexp { -y m} : )
i=1

where T; = %):1}/: 1 (z’])z The sufficient statistics for A is
the set of {N,7y,..., 7,1}

Moments of the Bingham distribution have, up to the
authors’ knowledge, not yet been derived. There are moments
derived for von Misses and Fisher distributions using a
method which is expected to apply also to the Bingham
Distribution [19]. Numerically approximated moments can
be obtained, for example, using a fast algorithm introduced
by [20].

The establishment of confidence limits based on concen-
tration parameters has been proved to be complicated. An
approximate formula has been discovered by [12]. Another
notable method of establishing confidence limits popular in
paleomagnetism is presented in [21].

Although the cumulative distribution function of the Bing-
ham distribution can not be expressed due to the doubly in-
tractable normalizing constant [22], [23], sampling using the
Metropolis-Hastings algorithm is possible using an approx-
imation of the normalization constant [24]. Other methods
bypassing the normalizing constant altogether are presented
in [25] and [26]. In this paper, the reversible-jump MCMC
[27] method introduced by [24] is utilized for convenience
of the MATLAB implementation in libDirectional [28].

III. FORMULATION OF THE ERRORS-IN-VARIABLES
PROBLEM

An ordinary least-squares estimation is widely known for
being the best linear unbiased estimator for problems, where
the design matrix H is noiseless, and the noise ey of the
observation vector y is Gaussian with zero mean. This model
can be expressed by

F=Y+ey=HO+ey, eym N (¢,]0,4,7"), (6)

where y € RV, ey € RN, H € RV~ 1 the sought after
parameter vector 8 € R9~!, and Ay is the precision of the
Gaussian noise present on the observation vector.

However, this model is insufficient when the error is also
present in the design matrix. In such a case, it is required to
extend the model with

H=H +Ey, vec(Ey) ~ N (vec(Ex)|0,A5").  (7)

All observations and the design matrix contaminated with
noise can be expressed in a new observation matrix ¢ =

[I-NI ,)7} with additional Gaussian noise Eg, with zero mean

and precision matrix A;l. In combination with the extended

vector of unknown parameters ¥ = [9T7 71} T, the problem
can be reformulated as

(&: _ Acp) 9 =0, (8)

where A® € R¥*9 is the matrix of corrections, such that
the equation holds.

The widely used solution is obtained using orthogonal
regression, also known as total least-squares. The total least-
squares define the corrections as orthogonal distance to the
regression hyperplane. The total least-squares solution to the
problem is discussed in the following section.

The problem is solved under the assumption that the
observation noise variable e, and the design matrix noise
variable Ey are independent, and orthogonal to the model.
Using the normalized vector of true model 7 = Gk the
noise precision matrix can be provided as A4,7z/ = A,. This
assumption can be summarized into

G =0, +epi, epi =N (egi0,A1). )
IV. TOTAL LEAST-SQUARES

As stated in the previous section, total least-squares is
a widely used solution to the EIV problem [7], [29]. It is
also proved [30] to be an unbiased maximum likelihood
estimator of the sought-after parameters 8 within first-order
error terms.

The total least-squares utilizes the minimizing of
AD(P,¥) to obtain the optimal solution, leading to the
following minimization problem

A

6 :=minimize ‘ ‘A(ID(CTD, 19)H
0 F

subject to 0 = (ci —AD(D, 19)) ». (10)

In the total least-squares, the measure of distance AP is
defined as a function of the system parameters ¥ and the
observation matrix P.

_ gl
Api(¢;,0) = 5T

As apparent from , the distance measure AD(®, 9) is
an orthogonal euclidean distance of the observation vectors
¢; from the hyperplane orthogonal to ¥, further denoted as
the ¥-hyperplane. Orthogonal projection of the observation
vectors to the ¥-hyperplane are called nuisance variables

9, i€{l1,2,....N} (11)

N ( (h: - 617'19 .
i(@10) = @i~ o0, i€ {1,2,... N},

(12)



The following theorem formulated by [29] gives the TLS
solution and its uniqueness assumptions:

Theorem 1. Solution of the total least-squares problem.
Let

@ =VIVT, where ¥ = diag (o1,...,04)

be a singular value decomposition of @ and o;, i€
{1,2,...,q} be the singular values of ®. After defining the
partitioning

qg—1 1 qg—1 1

V= V]U V12 72: 21 0 ,
Vi %%} 0 Oy

a TLS solution exists if and only if vy is non-zero. In
addition, it is unique if and only if 6,1 # 04. In the case
when the TLS solution exists and is unique, it is given by
A =V
§— V2 ’
V22

the corresponding TLS correction matrix is
AP = —V diag (0,0, mi1) V7
and nuisance variables are
& = D+ AD =V diag (21,0)V7.

As total least-squares methods are readily used in many
applications [29], it has proved its value as an identification
method for EIV problems. It, however, does not provide any
information on the uncertainty of the model, which should
be taken into account.

In practical applications, singular value decomposition is
often avoided for its high computational complexity. The
solution is usually computed as the minimum of the Raleigh
quotient [31]

o7 (ciTEIS) B

5Ty (13)

Yy := minimize
¥

V. SAMPLING PROBABILITY-DENSITY FUNCTION

We start by considering only one observation vector @
from the system of equations (8), which will in this section
be abbreviated to just @. Defining the probability-density
function p(@|6), from which this observation was sampled,
is crucial for finding the likelihood function, as the likelihood
function is the product of the sampling densities for multiple
observations.

This probability has to fulfill the following properties: 1.
the maximum of the sampling probability must lay on the
U-hyperplane; II. the likelihood function maximum derived
from the sampling probability is required to coincide with the
maximum likelihood solution stated in the previous section.

It is possible to utilize the standard form of the sampling
probability function, known from the ordinary least-squares.

P(@]0,4,,0) =N (9]¢ —,A,"). (14)

Accounting for the stated properties, noise assumptions
presented in section and orthogonality of the nuisance
variables (12), the sampling probability is formulated as

p((ﬂ(pv/\me):p((ﬁMme)v (15)

which is easily shown to be a degenerate normal distribution

_ 1 Ao (DOT\T -
P(@|An,0) < A, exp <_2‘PT<19T19) 4’)7 (16)

where (-)" denotes pseudo-inverse.

VI. POSTERIOR DENSITY

In order to make statements about the probability of
parameters ¥ given the set of N measurement vectors ¢V) =
{@1,92,...,0n}, a model providing the posterior probability-
density function is required.

The unnormalized posterior density is a product of the
prior distribution p(z) and the product of sampling distribu-
tion densities for a given set of measurements, denoted as
the likelihood function

N
L(8]4n, @) < [T p(:120, 0), (17)
i=1
8T (dTD) ©
L8|, ™)) o< exp A ( ) (18)

2 9Ty ’

where the observation matrix @ is constructed by stacking
individual transposed measurement vectors ¢; underneath
each other. Compared to known likelihood functions for EIV,
this likelihood function does not suffer from dimensionality
growth due to nuisance variables [11].

Notice that the exponent is in the form of a scaled Rayleigh
quotient. Maximizing the logarithmic likelihood function is
identical to minimizing the Rayleigh quotient, which leads
to the maximum likelihood solution presented in section

Let us introduce the following substitutions:

& B

= :Z’ 19
9T |92 (19
M (EIBch) —A (20)
2 )

which changes the shape of the likelihood function to the
Bingham distribution

L(z|AM) o ¢(A) T exp (—z"Az) = B(z|A) (21)

under constraint ||z||, = 1, where ¢(A) is the normalization
function of A. The Bingham distribution is a known and
studied probability density function, which brings noticeable
advantages compared to existing TLS likelihood function
formulations [9].

Note that by this substitution, the understanding of the
sought-after extended parameter vector ¥ changed to z. Until
now, the likelihood function expressed the likelihood of %



has constrained to the last value of the vector equal to
—1. The new understanding expresses the likelihood for
vector z, lying on the unit circle. The vector 8 can be
obtained from z by normalization, using 6 = 711;%1. The
likelihood function £(zJA™)) expresses the likelihood of a
vector orthogonal to the sought-after hyperplane, defining the
hyperplane unambiguously.

In a further derivation, reproducibility B(z|X)B(z|Y) =
B(z|X +7Y) of the Bingham distribution is used.

The reproducible likelihood distribution function allows
the prior to be formulated in the form of the Bingham
distribution p(z) = B(B), making the posterior distribution
p(z]c™) also a Bingham distribution

pEC™) = B(zlAN 1+ B) o< L(zlAM)p(2).  (22)
Reproducibility also allows for recursive inference
pEICY ) o< LA p(2)p(dAsry),  (23)
where A
ANy = EnZT <¢(N+1)¢5v+1)> z (24)

VII. APPLICATION

Application of the presented inference can be demon-
strated using simulations, as the practical application is
now in the preparation phase. To indicate practical use,
we will simulate identification of parameters in a linear
permanent magnet synchronous motor drive with a locked
mover, meaning that mechanical speed v, = 0. The full
discrete model can be closely studied in [32]. For simplicity,
let us consider only the difference equation of the stator g
current component

iq(k-l- 1) = Gliq(k) + ezid(k)vm(k) + 603v,, + 94Mq(k), (25)

where iz and i, denote stator current components in the dg
frame and u, denotes the stator voltage g component. Since
vy, = 0, parameters 6, and 65 are unidentifiable and will not
be identified. This is convenient, because the low number
of estimated parameters allows for graphical visualization of
results.

The problem can be rearranged to (O) with a known
noise precision A, = 0.05. The observation matrix @ is
constructed by stacking transposed individual current and
voltage measurement vectors @; = [uy(j), iq(j), ig(j+1)]

= 2 — ”q(k)
: — iq(k)
. 0Ox
<
-2 J | | |
0 30 60 90 120

k[—]

Fig. 1.

underneath each other. The sought after parameter vector is
constructed as ¥ = [0y, —6;, —1]".

While the maximum likelihood estimate does not provide
any information regarding identification quality, the shape
of the posterior density does. The identification quality is
directly affected by the selected identification signal injected
as uy. The simulations are done with two identification
signals, one providing a poor and the other providing a better
identification quality, while the maximum likelihood solution
is similar. The first signal is a pseudorandom binary se-
quence (PRBS), while the latter is a pseudorandom gaussian
sequence (PRGS). The signals used can be studied in Fig. [I]

Simulation allows for a priori knowledge of the true pa-
rameters 6 = [0.3 — 0.4]. The maximum likelihood solution
obtained from a singular value decomposition for N = 1000
samples is:

éML,PRGS = [02988 — 039589}T,

BuLprBs = [0.29921 —0.39926)" ; (26)

for PRGS and PRBS identification signals, respectively.
Both maximum likelihood solutions seem to estimate the
actual parameters accurately, leading to the conclusion that
quality of identification for both signals is equivalent. This
is misleading, as seen from the posterior density.

To avoid subjectivity, the prior distribution function is
selected as B(Z|A(50)), where A®Y) denotes using only the
first 50 samples of the simulation, similarly to @ The
likelihood function takes the shape of B (z|A(]5Vl))).

The posterior density function is expressed as

p(TATT) e B(z[A(S)))B(z]ACY), @7)

with concentration parameters for signal PRBS and PRGS
respectively
Aprgs = diag (1.0920, 0.0100, 0),

Apgps = diag (4.3305,0.1686, 0). (28)

And mean directions for PRBS and PRGS respectively

11 =[—0.2678,0.3557, 0.8954]T ,

732 = [—0.2690, 0.3664, 0.8907]" . (29)

As follows from the construction of prior probability dis-
tribution, mean directions of the posterior density function

i [A], u [V]

k[—]

Comparison of simulated measurements for PRGS and PRBS on the left and right respectively.
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Fig. 2. Orthographic projection of the posterior density function contour plot for identification signals PRGS and PRBS on the left and right, respectively.
Mean direction is depicted in red, and concentration axes in violet. Sampled parameters are depicted in yellow. Superior identification quality of PRBS is
apparent from the lower variability of sampled parameters and tighter contours.

denormalized using 6 = —7/1},7"*1 from Theorem |1| coincide
with the maximum likelihood solutions presented 1n (26).

Low values of the concentration parameters Aprgs com-
pared to Aprgs show a higher uncertainty. PRGS, therefore,
achieves a lower identification quality than the PRBS. This
fact is also apparent from Fig. 2] where the wider contour
plot ellipses present the higher uncertainty in the case of the
PRGS compared to PRBS. Poor quality of identification in
the case of PRGS is also apparent from the wide variability
of sampled parameters.

This statement can be further supported by sampling from
the posterior density and plotting step responses using sam-
pled parameters. The resulting step responses of 20 samples
can be inspected in Fig. [3|

Bayesian inference of model parameters exposed the low
identification quality of the PRGS based signal used and
resulted in applicable estimation of parameters density.

VIII. CONCLUSIONS

This paper introduced a novel approach to statistical
identification of problems with errors in variables.

We have shown that the favoured solution to the errors-in-
variables problem, called total least-squares, can be reformu-

lated as a maximum likelihood solution. The formulation of
the likelihood function is different from available literature,
as orthogonality of the TLS method is exploited to achieve
likelihood in a distribution known from directional statistics,
the Bingham distribution.

The conjugate prior for the Bingham likelihood function
is derived, achieving Bayesian inference allowing for a re-
cursive statistical identification for errors in variables, which
up to the authors’ knowledge, has not been achieved yet.

Formulation of the posterior density function allows for
the derivation of Bayesian methods for EIV, allowing for
defining the maximum likelihood estimators, maximum a
posteriori estimators, establishing confidence limits, sam-
pling from the posterior density, and obtaining statistical
identification results. The form of the posterior density
function also allows for recursive identification, making this
readily usable in practice. We presented an example of
such possibilities on the identification of a linear permanent
magnet synchronous motor, simplified to allow the graphical
representation of results.

Further research will expand on this idea of using Bayesian
total least-squares methods, mainly in deriving the inference

0.4
<
= 02}
O '. | J
0 10 20
k[—]

Fig. 3. Step responses of the simulated current system using true parameters 0, maximum likelihood parameters 6y, and parameters 6 sampled from the
posterior density function for identification signals PRGS and PRBS on the left and right respectively. Better identification quality of the PRBS is apparent

from the lower variability of the responses.



for cases with an unknown precision A,. Other possibilities
are available, such as deriving smoothing, filtering, or es-
timating algorithms for EIV problems, or using total least-
squares Bayesian inference in the decision-making for EIV
problems.

ACKNOWLEDGMENT

This research has been financially supported by the Tech-
nology Agency of the Czech Republic, under the project
NCK KUI TN01000024.

The completion of this paper was made possible by
the grant No. FEKT-S-20-6205 - “Research in Automation,
Cybernetics and Artificial Intelligence within Industry 4.0,
financially supported by the Internal Science Fund of Brno
University of Technology.

The work was supported by the RICAIP that has re-
ceived funding from the European Union’s Horizon 2020
research and innovation programme under grant agree-
ment No. 857306, and from the Ministry of Education,
Youth and Sports under the OP RDE grant agreement No.
CZ.02.1.01/0.0/0.0/17_043/0010085.

REFERENCES

[1] U. Forssell and L. Ljung, “Closed-loop identification revisited,” Auto-
matica, vol. 35, no. 7, pp. 1215-1241, jul 1999.

[2] L. El Ghaoui and H. Lebret, “Robust solutions to least-squares
problems with uncertain data,” SIAM Journal on Matrix Analysis and
Applications, vol. 18, no. 4, pp. 1035-1064, jul 1997.

[3] S. Chandrasekaran, G. H. Golub, M. Gu, and A. H. Sayed, “Parameter
Estimation in the Presence of Bounded Data Uncertainties,” SIAM
Journal on Matrix Analysis and Applications, vol. 19, no. 1, pp. 235-
252, jul 1998.

[4] Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, “Robust mean-squared
error estimation in the presence of model uncertainties,” I[EEE Trans-
actions on Signal Processing, vol. 53, no. 1, pp. 168-181, jan 2005.

[5] T. Soderstrom, “Errors-in-variables methods in system identification,”
Automatica, vol. 43, no. 6, pp. 939-958, jun 2007.

[6] L. A. Stefanski, “Measurement error models,” in Statistics in the 21st
Century. Wiley, 2001, pp. 461-470.

[71 S. Van Huffel, “The Generalized Total Least Squares Problem :
Formulation, Algorithm and Properties,” in Numerical Linear Algebra,
Digital Signal Processing and Parallel Algorithms. Springer, Berlin,
Heidelberg, 1991, pp. 651-660.

[8] J. L. Crassidis and Y. Cheng, “Maximum likelihood analysis of
the total least squares problem with correlated errors,” Journal of
Guidance, Control, and Dynamics, vol. 42, no. 6, pp. 1204-1217, apr
2019.

[9] O. Nestares, D. J. Fleet, and D. J. Heeger, “Likelihood functions and

confidence bounds for total-least-squares problems,” in Proceedings

of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, vol. 1. 1EEE Computer Society, 2000, pp. 523—

530.

N. A. Rozliman, A. I. N. Ibrahim, and R. M. Yunus, “Bayesian ap-

proach to errors-in-variables in regression models,” in AIP Conference

Proceedings, vol. 1842, no. 1. AIP Publishing LLC AIP Publishing,

may 2017, p. 030018.

X. Fang, B. Li, H. Alkhatib, W. Zeng, and Y. Yao, “Bayesian inference

for the Errors-In-Variables model,” Studia Geophysica et Geodaetica,

vol. 61, no. 1, pp. 35-52, aug 2017.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

C. Bingham, “An Antipodally Symmetric Distribution on the Sphere,”
The Annals of Statistics, vol. 2, no. 6, pp. 1201-1225, 1974.

T. C. Onstott, “Application of the Bingham distribution function in
palaecomagnetic studies.” Journal of Geophysical Research, vol. 85,
no. B3, pp. 1500-1510, mar 1980.

S. L. Goh, M. Chen, D. H. Popovi¢, K. Aihara, D. Obradovic, and D. P.
Mandic, “Complex-valued forecasting of wind profile,” Renewable
Energy, vol. 31, no. 11, pp. 1733-1750, sep 2006.

F. Zhang, E. R. Hancock, C. Goodlett, and G. Gerig, “Probabilistic
white matter fiber tracking using particle filtering and von Mises-
Fisher sampling,” Medical Image Analysis, vol. 13, no. 1, pp. 5-18,
feb 2009.

M. A. Bingham, B. K. Lograsso, and F. C. Laabs, “A statistical
analysis of the variation in measured crystal orientations obtained
through electron backscatter diffraction,” Ultramicroscopy, vol. 110,
no. 10, pp. 1312-1319, sep 2010.

1. Gilitschenski, G. Kurz, S. J. Julier, and U. D. Hanebeck, “Unscented
Orientation Estimation Based on the Bingham Distribution,” IEEE
Transactions on Automatic Control, vol. 61, no. 1, pp. 172-177, jan
2016.

A. Kume and S. G. Walker, “Sampling from compositional and
directional distributions,” Statistics and Computing, vol. 16, no. 3, pp.
261-265, sep 2006.

T. Hillen, K. J. Painter, A. C. Swan, and A. D. Murtha, “Moments
of von Mises and Fisher distributions and applications,” Mathematical
Biosciences and Engineering, vol. 14, no. 3, pp. 673-694, dec 2017.
Y. Luo, J. Xu, and P. Zhang, “A Fast Algorithm for the Moments of
Bingham Distribution,” Journal of Scientific Computing, vol. 75, no. 3,
pp. 1337-1350, jun 2018.

J. J. Love, “Paleomagnetic Principles and Practice,” Eos, Transactions
American Geophysical Union, vol. 81, no. 16, pp. 172-172, 2000.

J. Mgller, A. N. Pettitt, R. Reeves, and K. K. Berthelsen, “Miscellanea
an efficient Markov chain Monte Carlo method for distributions with
intractable normalising constants,” Biometrika, vol. 93, no. 2, pp. 451—
458, jun 2006.

I. Murray, Z. Ghahramani, and D. J. MacKay, “MCMC for doubly-
intractable distributions,” in Proceedings of the 22nd Conference on
Uncertainty in Artificial Intelligence, UAI 2006, jun 2006, pp. 359—
366.

A. Kume and S. G. Walker, “On the Bingham distribution with large
dimension,” Journal of Multivariate Analysis, vol. 124, pp. 345-352,
feb 2014.

C. J. Fallaize and T. Kypraios, “Exact Bayesian inference for the
Bingham distribution,” Statistics and Computing, vol. 26, no. 1-2, pp.
349-360, jan 2016.

M. G. Tsionas, “Note on posterior inference for the Bingham distri-
bution,” Communications in Statistics - Theory and Methods, vol. 47,
no. 12, pp. 3022-3028, jun 2018.

P. J. Green, “Reversible jump Markov chain monte carlo computation
and Bayesian model determination,” Biometrika, vol. 82, no. 4, pp.
711-732, dec 1995.

G. Kurz, I. Gilitschenski, F. Pfaff, L. Drude, U. D. Hanebeck, R. Haeb-
Umbach, and R. Y. Siegwart, “Directional Statistics and Filtering
Using libDirectional,” Journal of Statistical Software, vol. 89, no. 4,
pp- 1-31, 2019.

I. Markovsky and S. Van Huffel, “Overview of total least-squares
methods,” Signal Processing, vol. 87, no. 10, pp. 2283-2302, oct 2007.
G. H. Golub and C. F. van Loan, “An Analysis of the Total Least
Squares Problem,” SIAM Journal on Numerical Analysis, vol. 17,
no. 6, pp. 883-893, jul 1980.

S. Rhode, F. Bleimund, and F. Gauterin, “Recursive generalized total
least squares with noise covariance estimation,” in /FAC Proceedings
Volumes (IFAC-PapersOnline), vol. 19, no. 3. Elsevier, jan 2014, pp.
4637-4643.

M. Kozubik and P. Vaclavek, “Speed Control of PMSM with Fi-
nite Control Set Model Predictive Control Using General-purpose
Computing on GPU,” in IECON Proceedings (Industrial Electronics
Conference), vol. 2020-Octob. IEEE Computer Society, oct 2020, pp.
379-383.



	9992409_VUT.pdf
	root.pdf
	INTRODUCTION
	Bingham Distribution
	Formulation of the Errors-in-Variables Problem
	Total Least-Squares
	Sampling Probability-Density Function
	Posterior Density
	Application
	CONCLUSIONS
	References


