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Abstract: Herein, the authors publish the complex design of a numerical coupled model of a
vibration-based harvester that transforms mechanical vibrations into electric energy. A numerical
model is based on usage of the finite element method, connecting analysis of the damped mechanical
oscillation, electromagnetic field and electrical circuit. The model was demonstrated on the design of
a microgenerator (MG), and then experimentally tested. The numerical model allows us to execute
optimization of the design with many degrees of freedom. The transformation of the wave spreading in
the form of mechanical vibrations was solved in the area of resonance of the electromechanical system.

Keywords: harvesting; low-power applications; vibration; micro-generator; optimized solution;
magnetic circuit; mechanical model; effective power density

1. Introduction

The extraction of residual energy (harvesting) has been a subject of scientific research in the latest
decade. In many projects and publications [1-19], the arrangement of a system generating electric
power is sought as a suitable or optimized solution of design proposals. A very satisfactory tool of
basic research is numerical modeling [2—4,8,17-19]. It can be very robust [2], but also can only be used
as a tool for partially solving the hybrid modeling approach [8].

One of the prerequisites for the design of the electromechanical system is a correct way of grasping
the physical principle for maximum description of phenomena and processes; it is fundamental in
harvesting extraction, as cases in the theses and works [17-19]. When comparing the majority of
experimental methods and approaches [9,20], including hybrid design methods [6-8] with numerically
modeled coupled tasks, the realized design using finite element methods (FEM) [2] is difficult to
process but it leads to results with significant parameters relative to other quick approaches, as reported
in work [19], Table 1, column “Effective power density [W/m3]”.

In Figure 1, an example is shown of a principal design of a harvester model based on the principle
of electromagnetic induction using the Faraday induction law in its full range [2,19]. The analysis and
results evaluation were based on the numerical model solved by the FEM.
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Figure 1. The principal configuration of the core of the minigenerator a beam version (BV).

The critical parameter can be, for example, the boundary sensitivity of the generator to the
minimum vibration amplitude. For the studied design the acceleration value is G = 0.01 g — 0.05
¢ (g = 9.81 m/s2). Minimal external dimensions of the microgenerator (MG) had to be found and
simultaneously, the expected volume was in the range of Vg = (10 — 50) x 0.107® m®. Further, the range
of expected output effective power (RMS) was Pout =10-100mW, expected output voltage range Uyt
=2-20V and excitation frequency range fs =15-35 Hz. The principle of resonant arrangement of
the moving MG core was used to attain a high efficiency of the vibration transformation, Figure 1.
For moving path selection as linear part with non-linear magnetic braking system (Figure 2a),
this concept was fully numerically modeled using the associated FEM model (112) described below.
It has been shown that the technical solution of the MG core conductor designed within our approach
leads to an increase in the damping coefficient and it does not have sufficient sensitivity to lowest
acceleration values in the range G = 0.01 ¢ — 0.02 g. Therefore, the concept of beam version (BV) in the
arrangement, Figure 2b,c was approached in the solution. Thus the designed and tested MG achieved
the expected parameters in the range G = 0.01 g — 0.02 g.

A swinging arrangement (BV, Figures 1 and 2b,c) based on bearings with a minimum achievable
damping rate , has been proposed. The swinging arrangement was damped by a non-linear
element-magnetic dampers at the extreme positions, Figure 2b,c. For maximum sensitivity,
the electro-mechanical system was tuned to enter the resonance in the supposed frequency range f; of

mechanical vibrations.

Magnetic damping, magnetic bearings
«———

Figure 2. Cont.
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Figure 2. The geometrical model of microgenerator (MG), (a) a primary version (magnetic bearing),
(b) dimensions in mm for MG of BV, (c) experimental BV generator.

2. FEM Numerical Model

As mentioned in the principles and basics of the analytical design of the model [2,17-19], Figure 2,
it is possible to describe electromagnetic field more generally with the FEM numerical model (1-11).
The electromechanical vibrating harvester (34) works in special modes using resonances; its model
includes nonlinearities and material nonlinearities depending on the temperature etc. As the first
variant of the MG, the 3D structure with the application of magnetic damping elements was modeled
and simulated. This variant did not used the cantilever beam, Figure 2a. Later, the second variant with
cantilever beam swivel arrangement (BV) was also modeled a simulated.

The design of the numerical model was based on the reduced set of Maxwell equations in
Heaviside’s notation for quasi-stationary cases of electromagnetic field. MG elements with a high
degree of non-linearity and hysteresis (permanent magnet, ferromagnetic material of pole pieces, etc.)
were used in the model and the MG worked in resonance mode, which is a therefore strongly nonlinear
task [2]. The FEM model has taken into account all these criteria and the results of the analyzes were
used to find sensitive parameters of the mathematical model. It was necessary to take into account the
accuracy of the analysis and the parameters of the MG bond with the source of vibration.

In the numerical model of the discussed MG for quasi-stationary analysis, the effect of displacement
currents (Equations (4a) and (6a)) was further retained. This displacement current effect was not
used for the present MG model based on Faraday’s law of induction. It was taken in to account
within analysis of another type MG with different parameters (higher vibration frequency) based
on piezo-electric phenomenon. However, this piezo-electric generator is subject of other research.
Therefore, the displacement current effect will not be used in the analysis of MG, Figure 2b,c. Next, a brief
derivation of the numerical model for the tetrahedral, pentahedral and hexahedral elements of FEM
will be briefly introduced. This model is using the Galerkin method of functional minimization with
conversion to a mathematical problem. In the design of the basic model (Equation (12)) the relative
motion of the magnetic field generated by the permanent magnet with magnetization M and the
induction coil is considered as the source of excitation, Figure 1.
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Analysis of MG model can be accomplished by numerical solution, FEM. The electromagnetic

part of the model is based on the solution of reduced Maxwell equations in Heaviside notation
rotH = | 1)

divB = 0 )

where H is the magnetic field intensity vector, B is the magnetic flux density vector, | is the current
density vector.

rotE =0 (3a)
rotE = —%—1: (3b)
div] =0 (4a)
divD = p, (4b)

where E is the electric field intensity vector, D is the electric flux density vector, p, is the electric charge
density, which is equal to zero for the considered MG and the area ), )y peqs, v- Material relations are
represented by the equations, whose respect the application of permanent magnets with magnetization
M in both functional parts, the main part of the MG and their damping elements respectively.

B = poH + uoM Q)
J, =Ey (6a)
D = E¢pey (6b)

where [ is vacuum permeability, p, is relative permeability of environment, yu = pyug, M is
magnetization of permanent magnet, y is specific conductivity of environment, ¢ is permittivity of
vacuum, ¢, is relative permittivity, € = £p¢,. The temporal changes of the electric and magnetic fields
in the considered model of the MG, Figure 2, are negligible according to the expected parameters.
That means, the relations (4b), (6b) are not respected in the proposed numerical model. Vector functions
of electric and magnetic fields are expressed using scalar electric p. and vector magnetic potential A

24
dt
B =rotA (8)

E = —grad @, - (7)

The total current density from Equation (4a) J is superposed from the circuit’s excitation current
density Jeirc and the current density from the eddy currents J,. Movement is respected in the model by
current density in both parts, electrically conductive parts and electrical windings of the MG respectively

Juw=y(vxB) )

]:]v +]circ +]m (10)

The electromagnetic field model is formulated from Equations (1) to (10). Based on (1) and (10) is
rotH = J, + J; + J,, in the whole model Q). (11a)

For individual parts, Figure 1, of the model ) holds Q3cQ),U()s, where ()y is the region with
dominant eddy currents, according to Equation (6a) () is the region with known current density
distribution Js. In the model under consideration:

0 =0y (11b)
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Then, Equation (11a) can be modified using formulas from (1) to (10) with respect to the source
of the magnetic field or the damping elements based on permanent magnets that are represented by
magnetization M, Figure 1:

rotirotA - y( gradg, — &;) (gt X rotA) J + rot(M) in the area Qy, (12)
1 ds . =
rotﬁrotA RibTRe rotA | = Js + rot(M) in the area Qy, (13)

where v is the velocity of the motion area (), s is the displacement vector, M is the magnetization vector
and according to (4a) holds

div y(—gmdqbe - &8_?) = 0 in the area Q). (14)
From Equations (3a) and (3b), where the bond between the electric and magnetic field is captured

rotE = —%—l: in the area Q) (15)

and is expressed with the help of used potentials relation
JA JdA .
rot(—gradqﬁg - m) = —rotﬁ in the area Q). (16)
From the Equation (4b), where the distribution of the electric field is captured
. JA _ —
div | —gradp, — 57| = pein the area Q). (17)

The boundary and initial conditions will be determined as:

n- (y;i grade. ;) = 0 on the boundary I'q, where i, j stands for interface indexes,
n- ()/ gradge ;i —y; gradpe, ]) = 0 on the boundary I';;, i # j
n- (& grade. ;) = Ko on the boundary I',
n- (e gmd(pgl €j gradge, ]) Kj on the bounday I'jj, i # j
n- ()/ ) = 0 on the boundary I'q,
n- (7/, at Vi )—Oontheboundayfll, i # ],
n- (el at ) Kz on the boundary I'q,
18
n- (51 - —& o ) = K3 on the bounday I';;, i # | 18)
n (gmd(pe,l gmd(pe,j) = 0 on the bounday I'j;, i # j
n X (grade,;) = 0. on the boundary I'q.
n- (rot A; —rot A]) = Oon the bounday I'y;, i # j
n- (rot A i) = 0 on the boundary T'a,

Vi at X yi TotA; =y 8t X7 rotA]) = 0 on the bounday I';j, i # j

:

3
NN TN

Vi dtl X ;i rotA; ) = 0 on the boundary I'.
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where n is a normal vector perpendicular to the boundary of the surface area I', T;; is the interface
between the area 7 and the area j, ' is the interface at the outer edge of the area; the indexes i, j denotes
for the quantities their belonging to the areas (); # (). Then the initial conditions are

Pe(x,y,2,t0) = @e(x,y,2) t90=0, (xyz)C
A(x,y,z,t0) =Alx,y,z) t0=0 (v yz) cQ

Z(ia Y, z,)to) = z(x, 1)/12) th=0 (xvyz)cQ (19)
Y2k Y,
d::gtz j>: ;Aa%tyz ) =0 o) €0

X, Y,Z, XY,z

=T =0, (vyz)cQ

The discretization of relations (12) to (14) can be accomplished by approximating the scalar

electrical potential
N ¢

e =) GaWil(x,y,2), ¥(x,,2) c O (20)
k=1
where @, is the nodal value of the scalar electrical potential, W is the base function, N, is the number
of nodes of the discretization network,

Ns
s = Z SkWi(x,y,2), Y(x,y,2) cQ (21)
k=1

where S is the coordinate of the node, W is the base function, Ny is the number of nodes of the
discretization elements,

A
A= Z Wi (x,y,2), Y(x,y,z) cQ (22)
k=1
where a is the node value of the vector magnetic potential, W is the base function, N4 is the number of

nodes of the discretization network. Applying the approximation (20) to (22) and the Galerkin method
in relation (12) to (14) gives a semi-discrete solution for the region of (2, model

1 JA ds
rotﬁrotA - y( gradg, — 3 ) (Bt X rotA) Js + rot(M) (23)

[ w; (rot % - T0tA — gmd divA — y( gmd(pe) (35 X rotA) Js — rot(M))dQ =0,
o (24)
i=1,...,Nu

The Equation (24) is modified by application of 2nd Green’s formula and Gauss’s theorem
to expression

lroiEA rotW;- dQ) + f (nxrotA)-W; dl"—i—f —-divA gradW; dQ) — fﬁ[ divA W] ndl

Onl
+f w; y dQ + f W y gradp, dQ) — f W; )/(‘95 X rotA)dQ f W; -J,dQ + f W; -rot(M) dQ (23)
O O Om (oM

Respecting the boundary conditions of the problem according to the expressions (18), the relation
(25) changes to

f lrotA rotW;- dQ) + f LaivA gradw; dQ + f W;y atdQ + f W; y gradp. dQ)

O Qum Qp
_f w; - (as xrotA)dQ fWi JdQ + [ Wi -rot(M) dO (26)

HI Q m
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Applying the approximation (20) to (22) and the Galerkin method in relation (17a) gives a
semi-discrete solution for the region of (), model

fWi . (div e(—gmd(pg - %—?) - p)dQ =0,i=1,...,Nyn (27)

m

The expression (27) is modified by application of 2nd Green’s formula and Gauss’s theorem
to expression

—fdiU(Wi s-(% + gmd(pg)) aa + fe-(% + gmd(pe)gmdwidﬂ— f WipdQ) = 0
o)t Oy ot
after modification
§ W( + grad (pg) endll  + f (gmd(pg—i- )gde a0 - lep aQ =0
a0y oy (28)
Respecting the boundary condltlons of the problem according to the expressions (18),
the relation (25) changes to
fe gradg,-gradW;dQ) + f e 52 gde dQ) — f WipdQd =0
0 0 0

Substituting approximation functions, A, s, ¢, according to (20) to (22) into (26) and (28) gives a

semi-discrete solution

1 Ny 1 4 Na Ny da
f Lyot z Weag |- rotW;- dQ + f Liiy z Weae | gradWidQ + [ Wiy [ ¥ WS JdQ
=1

QT
On‘l Qm
Ny
+ [ Wy gmd( Y. Wi ¢]) aQ - f W;- y(( YW, d_k) X rot(le Wgug))dﬂ = (29)
Qm k=1 =

| wi- (Z ijsm) i  + [ W rot(z WM, | dQ
Q O =1

Relation (29) can be rewritten to form

+agxf %rot (Wyi) - rotW; dQ —I—agxf %div(ng)gdei-(i—l-]'-&-k)dQ
Q Q”I

Z +agyf arot (Wej) -rotW; dQ |, I\ﬁ‘ +agy [ %div(ng)gde,w(i—l—j—i-k)dQ
{=1 Qp

+ang ~rot (W¢k) - rotW; dQ) +ang %div(ng)gde,--(iJerrk)dQ
in

(ng X rothuz_At) ao
_@% +&20 S” f Wi (i+j + k) )/(W[jXrothu;_At)dQ
=1

ds‘z f Wi (i+j+k) )/(W,gerothat At) Q 30)

d
fW i+j+k)- y( Xrotht)dQ
>< roth) aQ

N,
_(1_@)ZA +a€yfwi +]+k)-y(
Qm

+a, fWi(i-i-]'-i-k)')/(dg!t XrOthk)dQ
Q

+Z d“’ wiy Wedo + Z (p]fw, y gradWjda = Z, s flemdn—l— ): mnfw, rot(wy ) do,
Qm (@ Qp Qu

®c (0,1)
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The simplified notation of the system of Equations (30) is

Ny No
Elﬂf'(ki,f,m +kiga2— (1-0)kiga3) - ®Z B dips + 2 B Tipa+ Z Gk

Ny N,
= Y JsmZikgm + X MpZigm, i=1,...,Nyq.
m=1 n=1

(31)

B da; W, &
. gradW; dQ) +f Z%-gradwi a0 - fw,»ijpj Q=0 (32

=1 =
o o )

Ny
f € grad[z Weope

QO

The expression is easy to rewrite to form

No
Z(pgfegdeg-gdeidQ —|—Zd—" f&WkgdedQ Zp fWWdQ 0
=1 o k=1 o =170y
Simplified notation of the relation is (33)
Ny N,
Zﬂbt’sz@p +Z dt lix ap :lejzi,j,cp(p i=1,...,Ny

]:

To simplify the calculation algorithm in the numerical part of the solution of the system of
equations and its acceleration, the system (33) is converted to the form

[IA]]{a} + [kAq)]]{(P} = [Z(p(p]{P} ;o Bj=1,..,Ny (34)

The form of the coefficients is expressed in relations (30) and (31).

ka1x = f —rot (Wei) - rotW; dQ)

kat,y = f ﬁrot (Wej) - rotW; dQ)

Q (35)
ka1, = f %rot (W¢k) - rotW; dQ)
Qm
kare = [ ﬁdiv(wﬂ') gradW; - (i +j + k)dQ
Qp
kany = [ 3dio(Wej) gradWi- (i +j + k)dQ )
in
kazz = [ %div(ng) gradW; - (i +j + k)dQ
Qm
kAsx—fW (i+j+k)- y( xrothz)dQ
QI’H
kas,y = f Wi(i+j+k)- )/( >< roth]) aQ 37)
in
kazx = f Wi(i+j+k)-y ( X TOthk) dQ
Qﬂl
Is = f Wi(i+j+k) -y (Wgz X rothat At) a0
Qu
ls,y = f Wi (i+j+k) vy (Wg] X rotWal,”~ At) (@) (38)

Q)Vl
Is.= [ Wi(i+j+k) y(WckxrotWeal8t) dO

Qu



Appl. Sci. 2020, 10, 2725 9 0f 25

Ise= [ Wi(i+j+k) -y (WeixrotWeal ™) dO)
Ql’ﬂ

lax= [ Wiy (W) dQ
Q
" 39
= | Wiy (Wp)dn )
Qe
laz= [ Wiy (We)dQ
Q
ke —fWi-ygdej dQ (40)
Qﬂl
zjx = [ Wil dQ
in
Z],yz f WiWde
Qﬂ‘l
2]z = fWiWde (41)
in
ZM = le- -rot(W,, ) dQ)
QTH
lap = fWi-sgdej dQ (42)
Qp
kop = f e gradWi - gradW; dQ) (43)
Qp
24,4,: fW,W]dQ (44)
in

where i, j, k are the base vectors of the used Cartesian coordinate space. The algorithm for constructing
matrices of coefficients (35) to (44) is simplified when the system of Equations (31) is rewritten to form

[k + K — (- @)K J1a) + 14 {a) - [](S) + [ ]{} ]+ [z]im) . e=1..Neg  (5)

5 ]{a) + [k; W]{(p} = [wa]{p}, e=1,...,Neq (46)
The coefficients of the system of the Equations (45) and (46) are expressed in the relations
Koy = f Serot (Wid) -rotW; dQ i,j=1,...,N¢, e=1,...,Ney
k{eﬂ/y :Qfe Frot (Wif) - rotW; dO) (47)
Ko 2 :Qfe ”lgrot (Wik) - rotW; dQ)
Kiox = f 2w div(Wii) gradW; - (i +j + k)dQ
Kooy = f =div(Wyj) gradW; - (i 4 j + k)dQ) (48)

k. = f wdiv(Wik) gradW; - (i +j + k)dQ
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Koz x = fW i+j+k)- ye( X 1otW; z)dQ
Ky = fW i+j+k)- ye xrotW ]) dQ) (49)
fw i+j+k)- y“( xroth)dQ

fW i+j+k)- y(WlxrotWa t)dQ
fW i+j+k)- y( ]]XrotWa t)dQ (50)

fw i+ K) 9 (Wikx rotWyal8) d0

= f W,‘ )/e W] aQ
O(.’

li’y :d[ W,' ’)/E W] dQ (51)
= [ Wiy W;dQ
QL’
:fWi-ye gradW; dQ) (52)
zfm = fW rot(W )dQ
f WiW,dQ)
= f W,W,dO) %3)
QS
Z;/Z = leW]dQ
Qf
A¢fw & gradW; dQ) (54)
k2>4> = fee gradWi - gradW; dQ) (55)
Ze¢ = fWZW]dQ (56)
The system of Equations (45) and (46) is written in the form
Ly+La, O 0 a Ka1 + Ko — (1-0)Kygs 0 01(a
0 0 0 ¢ ¢+ 0 Ky +Kyp 0 ¢
—OL C
0 0 -OLg S 0 0 0 S (57)
bodee O [ 7 m

0 0 |(m
=0 0 oRpt+| 0 0 0[O
0 0 ofLoO

The procedure of quantification of the coefficients for tetrahedral, pentahedral and hexahedral
element is described in detail [3].
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The short description of the elements is shown in Figures 3-5. The tetrahedral element in Figure 3
has a base function W

1 .
Wi = m(ai - bix + Gy — diz)/ V(x/ y;Z) c Qer 1= 1/ o4 (58)
\
z The nodes number of the element 1,2,3,4
The area of element Q°
e
3 Nu= 4
—
o Y
X
1
2

Figure 3. The tetrahedral element and its symbolic description.

\ ¢

4
i’g 6 The nodes number of the element 1,2,3,4,5,6

The number of element Q°
o Coordinates € (0,1) ,me(0,1), e (-1,1)

Figure 4. The pentahedral element.

g__ |
jl c The nodes number of the element 1.2.3.4.5.6.7.8
5

The element number Q=

(r Coordinates £e(-1.1) ,ne(-11) ,&e(-11)
|
o i Ny =8

T

2

ST

4-\—-—

Figure 5. The hexagonal element.

Make use of

1 x1 1z

6aQy — | L 2 2 2 (59)
1 X3 y3 Z3
1 x4 yg 2z
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where the indexes at x, y, z coordinates are local node numbers according to Figure 3. The coefficients

of the function W can be expressed

Yio Vi Zj
ai =1 Xk Yk Zk i,j,k,l:1,...,4
XA
Ly oz
bi=|1 y z
Ty z
xji 1 zj
Ci = | X 1 Zje
X] 1 Z]
x]- y] 1
di=| X Yk
xoyo 1

(60)

(61)

(62)

(63)

where the indexes i, j, k, I change cyclically over a given interval. Index i is the natural number of the
element function, indexes j, k, [ are coordinate indexes of the element nodes. The coefficients of the

model are for the tetrahedral element of Figure 3

K= (aaep) [ ek = di) - [(¢ + )i+ (~dj + b)j + (=b; — ;K]
2

K, =3 A ) S A Crdii = ) - [ (e )i+ (=) + b)) + (=bj — k]2
o

ke

Alz (6Alﬂe )201; %(Cz‘i - bij) : [(C]' + dj)i + (—d]' + b]')j + (—b]' - C]')k]dQ

Ko x = (6A10“ )Zﬂf ﬁ_f(_bi) (_bj +ej- d]') Q)

Koy = (6;03)20] e (ci) (=bj +c; - dj) dO0

Koo = (6A1()")2f u%(_di) (_bj ¢ d]') dQ)

d S‘(*At

2 o :
Ky = (aaer) [ (0 =bix+cy—diz)(i+j+k)- VE( 3t

Of

x (—cjk - djj)) a0

X (+dji - b]-k)) a0

(64)

(65)

(66)
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Is.x (6Aof)3f —bix ey —diz)(i+j+ k) [(a; = by + ey —diz)ix| +al (b —d;) |[dO
o Jrat._mk(—b]‘ - Cj)

S,y

’s :(ﬁ)ii (a;i =bix +ciy—diz)(i+j+k) - ) (aj—bjx+cjy—djz)jx +a§./‘Atj(bj—dj) iQ  (67)

3 ’ —_ .
. = (gaer) [ (@i=bivtcy—dia)i+j+ k) | (= b+ ey —djzfkx | +at (b =dj) |ldo
’ aiMk(=bj =)
2
o= () Qf (ai = bix + ciy = diz) y* (aj = byx + ¢jy - djz) A
2
4, = (aaer) Qf (a; = byx + ey — diz) y° (a; = bjx + cjy — dz) dO) )
2
K. = (gaer) [ (@i=bix+ciy—diz) y* (aj = bjx + cjy — djz) dOY
QL’
1 ’ . . . .
K = (6AQe) f(“" —bix + ciy —diz) (i +j+K) - y°(=bji + cjj — djk) dO 69)
Qf
2
= (6A0€ J (@i =bix + ciy = diz) (a; = bjx +cjy - djz) dQ

0

2
) [ (ai = bix + iy — diz) (a]-—bjx+c]-y—djz)d()
0

2
2%, = (gy) [ (i—bix+cy—diz) (aj = bx +cjy - djz) dO
ok (70)
e (1Y b v —dz) (i k d; — kc;)dQ)
#u, _(me)m( —bix + ey —diz) (i +j+ k) - (~jd; - kc)
e (1Y b d k)-(id; — kb
ZMy_<6AQ")Qf( ~bix +ciy —diz) (i+j+ k) (’ - )
2 .
ZEM,Z:(éAlae Qf( i—bix+cy—dgz) (i+j+k) (zcj+jb)dQ
Lap = (6A08)f (a; = bix + ciy — d;z) ge(—bji—i—c]-j—djk)dﬂ (71)
1 )2 ,
kfp(p:(m) f(—biz—l—ci]—dik) Ee(—bjl+cj]—djk) (72)
QE
1\
zfp(p_(m)f(ai—bix+ciy—diz) (aj—bjx+c]-y—dj2)d0 (73)

QL’
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where the indexes i, j are node numbers of the element e. If a pentahedral element is selected according
to Figure 4 and the function W is displayed on it, then their writing at the selected local Cartesian
coordinate system o,&,7,C is as follows:

W, === n)i=0W = S (1= =) +€),
_ Ly _1
Wy = el=) s == &l1+¢)
W, = %77(1 LW, = %77(1 +¢), VEE(0,1),Vne(0,1),V¢ e (-1,1) -

and the gradient of the function W is expressed in the Cartesian coordinate system o, x, y, z
IW; j . .
gradW.:—xH——]—f——k i,j=1,...,N; (75)

After the transformation of the function W into the global Cartesian coordinate system o, x, y, z
from the local coordinate system o0,&,1,C from the expressions (30) and (33) are the coefficients of the
system of Equations (57). In them are

= |JI"d&dndc (76)

el = area () gaue (77)

8Rp IRy &Rp

¢ “ay ) o

In the (77) relation, the derivative of the position vector R, is represented by the
following expression

aRp aX 3y 3
i ==J —k 78
Je — i tad ta 78)

the coordinates x, y, z and their derivatives according to the local coordinates &,1,C are expressed

N¢ N¢ e Ne
Y oW, oW, oW,
r= YW, 5= %G 3—’5:.2 e 3—’c‘= L3
i=1 i=1 1:1 l
NE NE
1% Y OW;
y= 1§1 Wiyi ’ (g_g = 1>::1 3—5]/1', E ‘977 yu Z aC yz ’ (79)
N¢ Ne Ne
— Y W 2z _ vy Wi gz _ y W 2z _ vy W
z = i§‘1 lel ’ g = igl & Zi, an igl 8'7 Zz; JC lgl aC Zj
(W, IWN, ((IW; IW).  (OW;  OW;\. (W, W,
Kt e = fﬁ(a_y_W i(oy — = it o o k)i
Qe
i,j=1,...,N%, e=1,...,Noq
Kary = f (BZ_W ((W_Q_Z)I—F(Q_Z_W +(W—W"d0 (80)
AW, W, W, AW \. [(OW; IW;\. [(IW; W,
Kz = f i (W—W)k‘((a—/—a—z])“r(a—z]—a—;/ +(_x]__y])k)d0
— awl awz i J ] ] .
kilZ,x*f (3x+3y+¢9z)1 (3x1+ 3y +c9zk) (+]+k)d0
aw oW
Kooy = (ax +5 1 (ax]1+ ay] + Bz]k) (i+j+k)dQ 81)
W, aw oW
1 (2%
A2,z y_( dx + 8y ) (3xll+ ¢9y] ]+ az]k) ( +]+k)d0
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W, W\, ar . (W, W\ ar (W) W\, s
fW i+j+k)- y(Wlx((ay a—z’)tax,]. +((9Z ax)]y] +(a—x’—3—y’)kaz,j ))dﬂ

_ . s (200 Z Wi s -t (Wi WG (Wi OW e
l;,y—(iwwwﬁkwye(wﬂx((a—;—a—;)wx,j (T - St (B - G Jea )

= i L i IW;Y. At OW;  OW;\. s At oW, OW:
= [ WG+ (it (G = ot (= i+ (=

= [ Wiy W;dQ
Qe
= [ W;y* W;dQ
QF
L, = Qf Wi ° W; dQ

IW; IW,

IW;
— (4 . A€ ] . . ]
_le(t—F]—i-k) Vil it 8y]+ 5 k|dQ

Z = Qf WiW,dQ)
z, = Qf WiW;dQ)

ZeZ :d[WindQ

IW; ., IW;
Lpe= [ Wi '(a_l/f_a_z]k)dﬂ
QC’
Zmy = [ Wi (aw i+ ax] k) aq)
Q)Yl
ZeM,z:fWi'( '+—yl)
in
. ;I I
lA(p fWe E By]+8k0
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(83)

(84)

(85)

(86)

(87)

(88)

(89)
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When the hexahedral element from Figure 5 is selected, its base functions are written as
W, =3(1-81-n(1-0
W, =g5(1+&)(1-n)(1-0)
Ve, n,Ce(-1L1)
Wy =31+ +n)(1-0)
W, =5(1-8)1+n(1-0) (90)
Ws=5(1-8)(1-m(1+0)
Wy =5(1+&A-n1+0)
W, =51+ 1 +n)(1+0)
We = 5(1-8)(1+m(1+0)

For the hexahedral element, the sizes of the coefficients from the set of Equations (57) are calculated

from Equations (80)—(89) using the functions (90).

Integration in the relations (80) to (89) can be solved analytically. This method is difficult and time
consuming. Avoiding the use of analytically expressed integrals in most cases will not significantly
reduce the accuracy of the solution of the system of Equations (57). Another easier solution is to apply
the Gaussian quadrature. Its form, usage and properties are known [3]. The coefficients of the system
of Equations (57) are then calculated for a numerical solution

ngmg I IWi(Ea1mg2.Ce3)  IWi(Egq1mga,Ce3) |,
—ZZZHg1 ZHg3|:%'( ( gang g)_ (gacg ) ;.
" PBgsl
awj(églr’]ngCgS) _ W, (&g1152,Cg3) it IW;(Eq1.Mg2.Cg3) _ W, (Eq1me2.Ce3) .
an X T 5% /

Wi (Ee1m52,C3)

_'_(awj(ég;g]g%c@) _ d

an

i -

ngmg lg Wi(Eanplea)  IWi(Eunpis)
i\cgl/7g2/5¢3 i\cgl/1g2/6¢3) | .
Ky = L L LHaHeH, [ ( T T % v
83 82 gl
W, (Eqmeales)  IWi(Eqmeales) \. | [OW;(Eqmgales)  OW;(Eqimgales) .
j\eg11g2/6g j\6g1/Mg2/5 jlcgl g2ty j\cg1/g2/bg
{( o - 9T 1+ 9T - 9 i 1)
OW;(&e1,M2,C IW;(Eq1.Mg2,C -
+( /( g;élgz 33) _ ]( 3(197782 83))k}]|jc| 1
ngmg lg ¢9W-(5 C ) 8W-(5 C )
i\Cgl/1g2/6¢3 i\Gg1/1g2/5¢3
Al,z =LY ZHngg2Hg3[ e ( JE - an k:
g3 g2 gl
IW;(Eg1m52.Cea) _ W j(Eg1m52.5g3) i IW; (152, Cga) _ IW;(Eq1mg2.Cea) \ .
an aC ! aC 9Z i
W, (Eqmeales)  IW;i(Eq1ngalea) _
j\g111g2/Cg j\g1/11g2/C: 1
+( ER - an k ”CI
ngmg lg [ (Wi(Eanepls)  Wil(Eanale) | OWi(Eanemis)
_ l . i\Cgl/7g2/6¢3 i\Cgl/1g2/6¢3 i\Ccgl/7g2/6¢3 .
o= L1 L bl - Mligate] | Mllgato) | aulipato) )
Wi(caneio) . | (Wi (Eanaie)\. | (MWi(Eanal RPN P
{( ( g(lgggZ 123))1 +( ( g;r;ng g3))j +( ( 819282 g3))k} . (1+] +k) el 1
ngmg lg [ IW; (Eq1m42.C IW; (Eg1.m42,C IW; 5_1,17 2.Cg3) |
A2 — Z Z ZHnggZHg3 le ( g;ggz g3) + (sg; 2 gs) + ( gan g ) -
Y g3 g2 gl H n
awi(églr']ngCgB) . aWj(égl/']gZ/CQS) . awi(églrﬂngCgS) . . ] -1 (92)
ngmg Ig [ (Wi (Eanals)  Wi(Eanals) | OWi(Eanele)
_ 1 i\cgl/7g2/6¢3 i\cgl/7g2/6¢3 i\cgl/7g2/6¢3 .
Koo, = g23 gzz ZngngZHg?w e 9 + an C k
IW;(Eg1.M42,C . IW;(Eq1,Mg2,C . IW;(Eg1.M42,C . _
{( (8'(19;782 83))1+( ]( gér;w gS))l +( (g(lx’w 83))k}-(1—|—]+k)]|]c| 1
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ngmg lg Wl(é;g:lArt Ng2, CgB) (i +j+ k) :
A3x =XrXXr Hgl ZHgS ds; OW;(Eq1mg2.Cg3) (‘ggqungCg?)
83 82 gl at X an -
ngmg Ig Wi(‘gglr Ng2, Cg?:) (1 +j+ k) Y
A3,y = Z Z Z 1Hg2 d s;'_At ¢9W] (égllng2/cg3) aW 981/T1g2 Cg3 |]C (93)
83 82 gl ar X\~ % +
ngmg lg Wi(églf TNg2, Cg3) (i +j+ k) ’ Ve
Kas. = L L ZHnggZHg3 dsi [ Mileanale)  oWi(Eanate) |, Uc
g3 g2 gl dt Iz an
ngmg lg
= Z Z Z quHgZHg3
g3 g2
aw,-(.sggqu,cgg) _ 9Wf(5<;1 T C3) T N
n
L . . IW;(Eg1.142,C 5 C
Wi(églrngZ/CgCi) (i+j+k)-y° Wj(égl,ngz,lgs)lx +( il g;ggz @) - qu — )j [Je
+(3Wj(<§glf'1g2régs) W, (Eg1,n92.Cg3) )
& an
ngmg lg
- Z Z ZHnggZHg3
83 82 g1 i
(‘?Wj(égl/%Z/C@) IW;(£1m52.C3) ) At
5 - 7 ial
! g (94)
.. X IW;(Eg1.Mg2,C IW;(Eg1.m¢2,C . h
Wi(gglrnngCg?y) (i+j+k)- Wj(églz’]gZICgS)]X i( 3119(2732 ) _ awi( g})g’lgz gS))]aty,jAt I
+(‘9Wf(‘5g(19gx2/433) _ ‘9Wf(‘5g;r722/433) )k”i,_jm
ngmg lg
lg/z = Z Z ZHnggZHXS
83 82 gl )
W (Eangatea) Wi (Eanales) |, ar -
an - aC LAy
A IW;(Eq1Mg2,C IW;(Eg1Mg2,C
Wi(5g1,Ug2,Cg3) (1+]+k)~ )/" Wj(ggl,qu,ng)kx +( /( s}%’kz gs) _ /(egj?ggz gs))] ty]At IJe
+(3Wj(5g§glg2'lg3) _ 3Wj(5gl19;;7gz'lg3) )ka;jjﬂt
-1
ngmg lg
e = L1 L HaHoHygs [Wi&g1, 152, Ca) 7 Wi( g1, mg2, Cga) U
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— ) e AT
Wy ééé g1HgoHes [Wl(égbngz, Cg3) 14 W](ng?gz, Cg3) ]Uc (95)
ngmg lg !
gZ?’ gZZ gHgl g2Hgs [Wi(égl,ngL Ce3) 7 Wi(Eg1, g2, Cgs) ]I]c
-1
ng g Ig Wi ‘Sgl/ngZ/ Cg3g ('+j+k) Y
= Z Z Z HnggZ égllngZ/CgS OW;(Eqnale) . W, (& mgales) e (96)
g3 g2 gl i+ o y + 9C k




Appl. Sci. 2020, 10, 2725 18 0f 25

ngmg Ig -1

7, 23 % Zngng2Hg3[ i(Egl,T]gL Cgs) Wj(cfgl,flgz, Cgs) ]I]c
8588
ngmg Ig !
]y = % % leHgl ZHg3 [Wi(églr Mg2, CgB) Ve Wj(égll Ng2, Cg3) ]Uc
8° 8«8
ngmg lg -1
. =LLLH 1ffngig3[vwz(égl,ngz,cga) ¥ Wil&g1 g2, Cga) |1
g2 848
-1
ngmg lg (égl/ Ng2, Cg3 (1 +j+ k 97)
My = % % %HnggZH@ { (9W g1 1132 Ce3 )] ((9W Ea1 N2 lg3) )k} IE
g2 8- 8
ngmg lg (5glrr]g2/ Cg3 (i +]+k B
23 22 Zngl 2Hg3 { (aW le UgZ Cg3 (aw Egl T]gZ Cq?y) )k} |]C
858~ 8
ngmg lg (égll ngZI Cg3) (1 +] + k) -
=XrXr HpHgrHes W (game i)\, [Wi(Eameie) ).\ |Ue
83 82 gl an - &
B -1
g mg Ig Wi(églf Ng2, Cg?;g
= Z Z ZHngng 3 { (awj(zgé,ggz,égs )1 (aw Eq1 g2 C3) )7+ (aw Eq e le) )k} IJe (98)
g3 g2 gl ]
ng mg g { (8Wi(§g(;g]gz,Cg3) )i +( Sgl Y]qz ) )7 (QW, Eamgle) ) } e 1 1!
kg)(’? - Z Z ZA Hngngg3 aw/(églr"]gz,CgS) . ('55{1 Tg2/ CgS) IW; ("Al 152/ C¥3) k UC (99)
83 82 gl 9 1+ an j+ 9T
-1
ng mg
=2 Z tHg2Hos [Wi(Eg1, 192, Cg3) ¥ Wi(Eg1, g2, C3) e (100)
g3 g2 gl

The number of integration points of the local coordinates for the tetrahedral element was chosen
ng = mg = lg = 5. This number according to tests for accuracy and speed of quantification of quadrature
relation fits the mathematical model. The expression of the auxiliary function L is identical to the
function (58). By means of the L function, the coordinates of the integration points are determined
according to the formulas (102) to (104) below.

Set values of the auxiliary function L and the weight function H for 5 selected points within the
area (), are

1.point : L= 0.5, L, = L3 = Ly= 0.166, H;= 0.45

2.point : Ly=0.5,L; = L3 = Ly= 0.166, H;= 0.45

3. point : L3= 0.5, = L; = Ly= 0.166, H;= 0.45 (101)
4.point : L4=0.5,Ly = L3 = L;= 0.166, H;= 0.45

5.point : L1 = Ly = L3 = Ly= 0.25, H;= —0.80

The coordinates of the integration point are determined for the tetrahedral element

Eq1 = Z L1&s (102)

Ng2 = Z Lons (103)

(3= ) Lalis (104)
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Six points of integration ng = mg = I; = 6 were chosen for the pentahedral element. The number
corresponds to the required accuracy and speed of the quadrature calculation. The coordinates of the
points are determined

Eq1 = £0.577350269189626, H;= 1.0,
Ng2 = £0.577350269189626, (105)
Ce3 = £0.577350269189626 .

Similarly, for a hexahedral element, where ng = mg = lg = 8. The coordinates of the point for
calculating the quadrature according to (n102) to (n104) is expressed by the auxiliary function L

1. point : Li= 0.1314458557658, H;= 1.0,
2. point : Ly= 0.4905626121623,
3.point: L3 =Ly,

4. point : Ly= 0.03522081090086,
5.point : Ls = Ly,

6.point: Lg = Ly,

7.point: Ly = Ly,

8. point : Lg= 0.09437387837656 .

(106)

The electromagnetic part of the model of the task MG can be characterized by the expression (57).
The description of the mechanical part of the model by means of the FEM is known for example from
theses and works [1,2] and the system [21], then the electromechanically bounded equation is written

in the form 5

. J%s
(A1 4 2Ap)grad divs — Ayrot rots +J X B+ Poa +f,=0 (107)

f

where f is the vector of specific force, A7, A, are auxiliary scalar functions. For the geometrical model,
Figure 2, the external mechanical load was not considered. Such presumption will lead to fy = 0.
But, to respect the position of the MG in the earth’s gravitational field, with the acceleration g a static
force, it was considered f,, = AVL;_ g, where my is the mass of the MG core, Vy is the volume of the MG
core. The specific magnetic force f;, is expressed as

f,=] xB (108)

There are valid boundary and initial conditions for the model, for example known [21]. Similar to
the above, mentioned derivation of the electromagnetic part of the model, the coupled dynamical
mechanical-electromagnetic model can be written in the form

—(M1+2A2) [(i4]+k) - gradWidivs dQ + (A +2A2) § W; - grad divs - ndT
Qr Tr
-y f rotW; - rots dQ) — )L255 W;:[n X rots| dT’ + f W,--[y (—%—‘? - gmdqb) X rotA] a0
Qr I'r O
+ [ pWrZ5dO + [ WifydQ=0, i=1,...,Nuq
Qf Qf

(109)

ot?
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and the corresponding semi-discrete model solution

N, N;
(A1 42M) [ i+ +Kk)-gradWidio| Y. WS, |dQ =21y [ rotW;- rof| 3. WS, | dO
j g
Qr k=1 Qr k=1
Npn Ng 2 Nr
+(/\1+2/\2)55Wi-('2, Wip,; ]dl"+ fpw,-.(z wk%)dn = —fwi-(z Wka)dQ
NrF j=1 Qr k=1 N Qr k=1 (110)
Po e R
+/\2§Wi-(lewéngf)dl"+(/\1+2/\2) [ gradw; - lemETgm-(i+j+k) dQ
T = Q m=
F F NA
Y, Wnun) dQy.
1

n=

Na d Na NW
+f W,»-[y ( Y, Wn%)xrot( Y Wmum)] QO+ f Wiy grad| Y, Wy, Xrot(
QF n=1 m=1 QF 0=1

After deriving and quantifying the corresponding coefficients of the system of equations, we obtain
the overall FEM model with the corresponding matrices of coefficients K, M.

000 0 a 0 0 0 0 a
000 0 ||¢ Lo 0 0 0 o |
000 0 fe 0 0 0 0 te
0 0 0 M ||§ ~Kra ~Krp 0 Kpi—Kp || S
0 00 0 1( o
0 00 0 0 (111)
0 00 0 0

0 0 0 0 F
0 0 0 0 0 0 0 v,

0 0 0 0 P,

—Krs Kps —Kpz Kre | | Er.

where {a} is the column matrix of unknown magnetic vector potentials in the discretization network
nodes, {ii} is a column matrix of unknown second derivatives of vector magnetic potentials over time
in the discretization network nodes, {S} is a column matrix of unknown specific shift in nodes of the
discretization network, {é } is a column matrix of unknown second derivatives according to the time
shift at the nodes of the discretization network, {t} is a column matrix of unknown temperature in

nodes of discretization network, {t} is a column matrix of unknown second derivatives according to
time of unknown temperature in nodes of discretization network, {gb} is column matrix of unknown

scalar electrical potentials in nodes of discretization network, {gb} column matrix of unknown second
derivatives according to time of scalar electric potentials in nodes of discretization network, {F} is
column matrix of forces, {p U} is column matrix of vectors of tangential pressure components, {pn} is

column matrix of vectors of normal pressure components {ET e} is a column matrix of modulus vectors
of specific deformation in temperature dependence of material.

Then the overall numerical FEM model of the electromechanical coupled task of the vibration MG
is written as a system of equations

00 0 0 F Ly+Ly, 0 0 0 a 0 Ko 0 0 a
0 0 0 o0 ) . 0 0o 0 ol ¢ . 0 K HK, KGO 0 o |
0 0 0 0 te 0 0 0 o e 0 0 0 0 te
0 0 0 M S 0 0 0 o S —Kgy -Krp 0 Kp -Kpp S
0 0 0 0 0
0 0 0 0 0 (112)
0 0 0 0 0

0 0 0 0 F +[7pplp)
0 0 o 0 0 0 0 o

0 0 0 0 Py

~Krs  Kpg —Kpz Kpe Ere
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This problem can be solved in ANSYS [21] using programming tools and the APDL internal language.

The designed 3D model (112) was used to analyze and evaluate the transient excitation state of
MG Figures 2a and 6. Then, a steady state analysis of resonance and the corresponding electrical load
Ry, was performed [18,19]. Sensitive parts of the MG model design have emerged from 3D analyzes
and experiments. Due to the magnitude and amount of cumulative computations, absolutely not all
details are given, but only the key details (the magnetic field in the MG core region). In order to find a
suitable (optimal) direction of the magnetic arrangement solution, an accelerated 2D FEM model and a
magneto-static field design were used, which in turn lead to maximizing the induced voltage u(t) in
the winding of the MG coil.

The magnetic yoke
MG core, \

MG winding MG core

a)

AR 16 2003

10143

HICAL 50LUTIOR
el

MG core (permanets magnet red, blue)

MG magnetic bearings

NODAL SOLUTION
TEP=1

SUB =599999
THE=1

HSUN (ave)

SMN =.1S6E-03

SHX =.298E407
)

. ST

Figure 6. The 3D model, analysis of the primary version MG (magnetic bearing) and MG realization,
(a) geometrical model components, (b) conception, (c) field distribution of magnetic flux density module B
[T], (d) field distribution of magnetic field intensity module H [A/m], (e) built MG sample prepared for test.

The 3D model was designed as the primary version of MG, Figure 6, which was not optimally
arranged in the electro-mechanical conceptual design. It was solved both for start-up as a transient
task and for the so-called steady-state regime in the resonant state by the model (112).

Given the previous experience with the complex analysis of the associated 3D model of the first
version of MG, Figure 6, it became clear that critical part is the design of magnetic circuit of the
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MG (Figure 1 and Figure 8). For the chosen concept of the beam version of MG, Figure 7, only 2D
static non-linear problem with hysteresis, Figure 8a was analyzed because of the higher speed of
connected simulation. A conceptual solution of the magnetic circuit was proposed, using the results
of performed analyzes, Figure 8b. Thus, a design with a maximum magnetic flux density B(t) and
maximum amplitude of the electric voltage u(t) on the output of the MG’s winding has been achieved
in a relatively rapid manner, Figure 7. According to these auxiliary FEM models and analyzes, the final

concept of MG was designed, Figures 2b, 7 and 8.

The vibration

- The swinging arm
The body of MG The limit position spring
The electric coil (winding)

Figure 7. The basic magnetic circuit of MG, structural design with magnetic damping in the limit
position of the rocking arm.
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MG coupled analysis result, dim. 25x25x50 mm
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Figure 8. The example of the beam MG model magnetic field analysis (a), 2D detailed distribution

of the magnetic flux density module B [T] (b) the modeled part of generator, (c) coupled 3D model
analysis result, output -root mean square (RMS) voltage Uout [V].
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3. Modeling the MG

A free-arm system (BV) and its magnetic damping (non-linear) [19], Figure 7, has been designed.

Details of the MG evaluation of the analysis can be demonstrated for example in the magnetic field
the distribution of the magnetic flux density module B [T] in Figure 8. The realized MG function sample,
Figures 7 and 8, was tested for the frequency range f; = 30—45Hz. Typical frequency dependencies of
output voltage and output power of the MG are shown in Figure 9. The graph shows the effective
value of the output power P_RMS and the effective electric voltage V_RMS at the MG’s winding output
loaded by Ry, = 2.7K() at the vibration G = 0.5 g rums.

—V_RMS[V] —P_RMS [mW]
5,0 T T T 5

3,5 / 3,5
3,0 3 3
3
2,5 2,5.8
:
2,0 2 8
1,5 1,5
1

0,5 0,5

”/.’/-//
T -t tttt——+—+ 0

0,0  Frrrrrrre
»
30 31 32 33 34 35 36 37 38 39 40 41 42 43 .2l 45

Frequency [Hz]

Figure 9. The MG experimental measurement, root mean square (RMS) output voltage V_RMS,
power P_RMS vs. frequency, frequency sweep with Ry = 2.7kOhm, G = 0.5 g r\ms, main operational
resonant frequency.

4. Conclusions

The paper presents a detailed design of a numerical model of a FEM mini-generator for harvesting
energy from vibrations within the range of G = 0.05 g — 0.08 g, for the frequency range of f; = 10-100 Hz,
fmain = 36-41 Hz.

Based on the proposed beam version MG models and their analyses, evaluation of the parameters,
qualitative conclusions were applied to design of the swinging arm of mini-generator, Figure 7.
Some partial specific results from this systematic approach to generator design were published in
theses and works [17-19]. This article describes a complete FEM numerical model that was used
for vibration MG analysis. The results of the generator analysis were experimentally verified and
subsequently utilized to build the functional MG.

A specific harvesting system for mechanical energy extraction was proposed. It utilizes the
principle of transformation of propagating mechanical wave to electrical energy. The designed
numerical model was implemented in ANSYS simulation software [21]. The simulated effective
transformed mass and volume power densities of the generator are peg = 266 Wm™3 and
Petrv = 0.31 Wkg_l respectively.

The FEM model showed the key moment in the design of the first versions of MG concept and its
design solutions. It also pointed out the key parameters of the model and directed the modifications of
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the MG’s equipment to the optimal solution of the harvester. An associated model (112), was able to
detect the sensitive points of the task. This was proved by measurement results from experiments
with the MG sample. FEM models of lower geometrical levels (2D) and simplified models (non-linear
with hysteresis, etc.) were used as a necessary tool for quick estimation of the changes of design or
concept changes.
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