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Abstract: Herein, the authors publish the complex design of a numerical coupled model of a
vibration-based harvester that transforms mechanical vibrations into electric energy. A numerical
model is based on usage of the finite element method, connecting analysis of the damped mechanical
oscillation, electromagnetic field and electrical circuit. The model was demonstrated on the design of
a microgenerator (MG), and then experimentally tested. The numerical model allows us to execute
optimization of the design with many degrees of freedom. The transformation of the wave spreading in
the form of mechanical vibrations was solved in the area of resonance of the electromechanical system.

Keywords: harvesting; low-power applications; vibration; micro-generator; optimized solution;
magnetic circuit; mechanical model; effective power density

1. Introduction

The extraction of residual energy (harvesting) has been a subject of scientific research in the latest
decade. In many projects and publications [1–19], the arrangement of a system generating electric
power is sought as a suitable or optimized solution of design proposals. A very satisfactory tool of
basic research is numerical modeling [2–4,8,17–19]. It can be very robust [2], but also can only be used
as a tool for partially solving the hybrid modeling approach [8].

One of the prerequisites for the design of the electromechanical system is a correct way of grasping
the physical principle for maximum description of phenomena and processes; it is fundamental in
harvesting extraction, as cases in the theses and works [17–19]. When comparing the majority of
experimental methods and approaches [9,20], including hybrid design methods [6–8] with numerically
modeled coupled tasks, the realized design using finite element methods (FEM) [2] is difficult to
process but it leads to results with significant parameters relative to other quick approaches, as reported
in work [19], Table 1, column “Effective power density [W/m3]”.

In Figure 1, an example is shown of a principal design of a harvester model based on the principle
of electromagnetic induction using the Faraday induction law in its full range [2,19]. The analysis and
results evaluation were based on the numerical model solved by the FEM.
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Figure 1. The principal configuration of the core of the minigenerator a beam version (BV). 

The critical parameter can be, for example, the boundary sensitivity of the generator to the 
minimum vibration amplitude. For the studied design the acceleration value is G = 0.01 g − 0.05 g (g 
= 9.81 m/s−2). Minimal external dimensions of the microgenerator (MG) had to be found and 
simultaneously, the expected volume was in the range of VMG = (10 - 50) ×0.10−6 m3. Further, the range 
of expected output effective power (RMS) was Pout =10–100mW, expected output voltage range Uout 

=2–20V and excitation frequency range fs =15–35 Hz. The principle of resonant arrangement of the 
moving MG core was used to attain a high efficiency of the vibration transformation, Figure 1. For 
moving path selection as linear part with non-linear magnetic braking system (Figure 2a), this 
concept was fully numerically modeled using the associated FEM model (112) described below. It 
has been shown that the technical solution of the MG core conductor designed within our approach 
leads to an increase in the damping coefficient and it does not have sufficient sensitivity to lowest 
acceleration values in the range G = 0.01 g − 0.02 g. Therefore, the concept of beam version (BV) in the 
arrangement, Figure 2b,c was approached in the solution. Thus the designed and tested MG achieved 
the expected parameters in the range G = 0.01 g − 0.02 g. 

A swinging arrangement (BV, Figures 1 and 2b,c) based on bearings with a minimum achievable 
damping rate lb has been proposed. The swinging arrangement was damped by a non-linear element 
- magnetic dampers at the extreme positions, Figure 2b,c. For maximum sensitivity, the electro-
mechanical system was tuned to enter the resonance in the supposed frequency range fs of mechanical 
vibrations. 

 

Figure 1. The principal configuration of the core of the minigenerator a beam version (BV).

The critical parameter can be, for example, the boundary sensitivity of the generator to the
minimum vibration amplitude. For the studied design the acceleration value is G = 0.01 g − 0.05
g (g = 9.81 m/s−2). Minimal external dimensions of the microgenerator (MG) had to be found and
simultaneously, the expected volume was in the range of VMG = (10− 50)× 0.10−6 m3. Further, the range
of expected output effective power (RMS) was Pout =10–100mW, expected output voltage range Uout

=2–20V and excitation frequency range f s =15–35 Hz. The principle of resonant arrangement of
the moving MG core was used to attain a high efficiency of the vibration transformation, Figure 1.
For moving path selection as linear part with non-linear magnetic braking system (Figure 2a),
this concept was fully numerically modeled using the associated FEM model (112) described below.
It has been shown that the technical solution of the MG core conductor designed within our approach
leads to an increase in the damping coefficient and it does not have sufficient sensitivity to lowest
acceleration values in the range G = 0.01 g − 0.02 g. Therefore, the concept of beam version (BV) in the
arrangement, Figure 2b,c was approached in the solution. Thus the designed and tested MG achieved
the expected parameters in the range G = 0.01 g − 0.02 g.

A swinging arrangement (BV, Figures 1 and 2b,c) based on bearings with a minimum achievable
damping rate lb has been proposed. The swinging arrangement was damped by a non-linear
element-magnetic dampers at the extreme positions, Figure 2b,c. For maximum sensitivity,
the electro-mechanical system was tuned to enter the resonance in the supposed frequency range f s of
mechanical vibrations.
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2, it is possible to describe electromagnetic field more generally with the FEM numerical model (1–
11). The electromechanical vibrating harvester (34) works in special modes using resonances; its 
model includes nonlinearities and material nonlinearities depending on the temperature etc. As the 
first variant of the MG, the 3D structure with the application of magnetic damping elements was 
modeled and simulated. This variant did not used the cantilever beam, Figure 2a. Later, the second 
variant with cantilever beam swivel arrangement (BV) was also modeled a simulated. 

The design of the numerical model was based on the reduced set of Maxwell equations in 
Heaviside’s notation for quasi-stationary cases of electromagnetic field. MG elements with a high 
degree of non-linearity and hysteresis (permanent magnet, ferromagnetic material of pole pieces, etc.) 
were used in the model and the MG worked in resonance mode, which is a therefore strongly 
nonlinear task [2]. The FEM model has taken into account all these criteria and the results of the 
analyzes were used to find sensitive parameters of the mathematical model. It was necessary to take 
into account the accuracy of the analysis and the parameters of the MG bond with the source of 
vibration. 

In the numerical model of the discussed MG for quasi-stationary analysis, the effect of 
displacement currents (Equations (4a) and (6a)) was further retained. This displacement current effect 
was not used for the present MG model based on Faraday’s law of induction. It was taken in to 
account within analysis of another type MG with different parameters (higher vibration frequency) 
based on piezo-electric phenomenon. However, this piezo-electric generator is subject of other 
research. Therefore, the displacement current effect will not be used in the analysis of MG, Figure 
2b,c. Next, a brief derivation of the numerical model for the tetrahedral, pentahedral and hexahedral 
elements of FEM will be briefly introduced. This model is using the Galerkin method of functional 

Figure 2. The geometrical model of microgenerator (MG), (a) a primary version (magnetic bearing),
(b) dimensions in mm for MG of BV, (c) experimental BV generator.

2. FEM Numerical Model

As mentioned in the principles and basics of the analytical design of the model [2,17–19], Figure 2,
it is possible to describe electromagnetic field more generally with the FEM numerical model (1–11).
The electromechanical vibrating harvester (34) works in special modes using resonances; its model
includes nonlinearities and material nonlinearities depending on the temperature etc. As the first
variant of the MG, the 3D structure with the application of magnetic damping elements was modeled
and simulated. This variant did not used the cantilever beam, Figure 2a. Later, the second variant with
cantilever beam swivel arrangement (BV) was also modeled a simulated.

The design of the numerical model was based on the reduced set of Maxwell equations in
Heaviside’s notation for quasi-stationary cases of electromagnetic field. MG elements with a high
degree of non-linearity and hysteresis (permanent magnet, ferromagnetic material of pole pieces, etc.)
were used in the model and the MG worked in resonance mode, which is a therefore strongly nonlinear
task [2]. The FEM model has taken into account all these criteria and the results of the analyzes were
used to find sensitive parameters of the mathematical model. It was necessary to take into account the
accuracy of the analysis and the parameters of the MG bond with the source of vibration.

In the numerical model of the discussed MG for quasi-stationary analysis, the effect of displacement
currents (Equations (4a) and (6a)) was further retained. This displacement current effect was not
used for the present MG model based on Faraday’s law of induction. It was taken in to account
within analysis of another type MG with different parameters (higher vibration frequency) based
on piezo-electric phenomenon. However, this piezo-electric generator is subject of other research.
Therefore, the displacement current effect will not be used in the analysis of MG, Figure 2b,c. Next, a brief
derivation of the numerical model for the tetrahedral, pentahedral and hexahedral elements of FEM
will be briefly introduced. This model is using the Galerkin method of functional minimization with
conversion to a mathematical problem. In the design of the basic model (Equation (12)) the relative
motion of the magnetic field generated by the permanent magnet with magnetization M and the
induction coil is considered as the source of excitation, Figure 1.



Appl. Sci. 2020, 10, 2725 4 of 25

Analysis of MG model can be accomplished by numerical solution, FEM. The electromagnetic
part of the model is based on the solution of reduced Maxwell equations in Heaviside notation

rotH = J (1)

divB = 0 (2)

where H is the magnetic field intensity vector, B is the magnetic flux density vector, J is the current
density vector.

rotE = 0 (3a)

rotE = −
∂B
∂t

(3b)

divJ = 0 (4a)

divD = ρe (4b)

where E is the electric field intensity vector, D is the electric flux density vector, ρe is the electric charge
density, which is equal to zero for the considered MG and the area Ωs, Ωv ρeΩs, Ωv. Material relations are
represented by the equations, whose respect the application of permanent magnets with magnetization
M in both functional parts, the main part of the MG and their damping elements respectively.

B = µ0H + µ0M (5)

Jv = Eγ (6a)

D = Eε0εr (6b)

where µ0 is vacuum permeability, µr is relative permeability of environment, µ = µrµ0, M is
magnetization of permanent magnet, γ is specific conductivity of environment, ε0 is permittivity of
vacuum, εr is relative permittivity, ε = ε0εr. The temporal changes of the electric and magnetic fields
in the considered model of the MG, Figure 2, are negligible according to the expected parameters.
That means, the relations (4b), (6b) are not respected in the proposed numerical model. Vector functions
of electric and magnetic fields are expressed using scalar electric ϕe and vector magnetic potential A

E = −grad ϕe −
∂ A
∂ t

(7)

B = rot A (8)

The total current density from Equation (4a) J is superposed from the circuit’s excitation current
density Jcirc and the current density from the eddy currents Jv. Movement is respected in the model by
current density in both parts, electrically conductive parts and electrical windings of the MG respectively

Jm = γ(v×B) (9)

J = Jv + Jcirc + Jm (10)

The electromagnetic field model is formulated from Equations (1) to (10). Based on (1) and (10) is

rotH = Jv + Js + Jm in the whole model Ω. (11a)

For individual parts, Figure 1, of the model Ω holds Ω⊂Ωv∪Ωs, where Ωv is the region with
dominant eddy currents, according to Equation (6a) Ωs is the region with known current density
distribution Js. In the model under consideration:

Ωs ≡ Ωv (11b)



Appl. Sci. 2020, 10, 2725 5 of 25

Then, Equation (11a) can be modified using formulas from (1) to (10) with respect to the source
of the magnetic field or the damping elements based on permanent magnets that are represented by
magnetization M, Figure 1:

rot
1
µ

rotA− γ
(
−gradϕe −

∂A
∂t

)
−γ

(
∂s
∂t
× rotA

)
= Js + rot(M) in the area Ωv, (12)

rot
1
µ

rotA− γ
(
∂s
∂t
× rotA

)
= Js + rot(M) in the area Ωv, (13)

where v is the velocity of the motion area Ω, s is the displacement vector, M is the magnetization vector
and according to (4a) holds

div γ
(
−gradφe −

∂A
∂t

)
= 0 in the area Ω. (14)

From Equations (3a) and (3b), where the bond between the electric and magnetic field is captured

rotE = −
∂ B
∂ t

in the area Ω (15)

and is expressed with the help of used potentials relation

rot
(
−gradφe −

∂A
∂ t

)
= −rot

∂ A
∂ t

in the area Ω. (16)

From the Equation (4b), where the distribution of the electric field is captured

div ε
(
−gradϕe −

∂A
∂ t

)
= ρe in the area Ωv. (17)

The boundary and initial conditions will be determined as:

n · (γi gradϕe,i) = 0 on the boundary ΓΩ, where i, j stands for interface indexes,
n ·

(
γi gradϕe,i − γ j gradϕe, j

)
= 0 on the boundary Γi,j, i , j

n · (εi gradϕe,i) = K0 on the boundary ΓΩ,
n ·

(
εi gradϕe,i − ε j gradϕe, j

)
= K1 on the bounday Γi,j, i , j

n ·
(
γi

∂Ai
∂t

)
= 0 on the boundary ΓΩ,

n ·
(
γi

∂Ai
∂t − γ j

∂A j
∂t

)
= 0 on the bounday Γi,j, i , j,

n ·
(
εi

∂Ai
∂t

)
= K2 on the boundary ΓΩ,

n ·
(
εi

∂Ai
∂t − ε j

∂A j
∂t

)
= K3 on the bounday Γi,j, i , j

n ×
(
gradϕe,i − gradϕe, j

)
= 0 on the bounday Γi,j, i , j

n × (gradϕe,i) = 0. on the boundary ΓΩ.
n ·

(
rot Ai − rot A j

)
= 0on the bounday Γi,j, i , j

n · (rot Ai) = 0 on the boundary ΓΩ,

n ·
(
γi

∂si
∂t × γi rotAi − γ j

∂s j
∂t × γ j rotA j

)
= 0 on the bounday Γi,j, i , j

n ·
(
γi

dsi
dt × γi rotAi

)
= 0 on the boundary ΓΩ.

(18)
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where n is a normal vector perpendicular to the boundary of the surface area Γ, Γi,j is the interface
between the area i and the area j, ΓΩ is the interface at the outer edge of the area; the indexes i, j denotes
for the quantities their belonging to the areas Ωi , Ωj. Then the initial conditions are

ϕe(x, y, z, t0) = ϕe(x, y, z) t0 = 0, (x, y, z) ⊂ Ω
A(x, y, z, t0) = A(x, y, z) t0 = 0, (x, y, z) ⊂ Ω
r(x, y, z, t0) = r(x, y, z) t0 = 0, (x, y, z) ⊂ Ω
ds(x,y,z,t0)

dt =
ds(x,y,z)

dt t0 = 0, (x, y, z) ⊂ Ω
dA(x,y,z,t0)

d t =
dA(x,y,z)

d t t0 = 0, (x, y, z) ⊂ Ω

(19)

The discretization of relations (12) to (14) can be accomplished by approximating the scalar
electrical potential

ϕe =

Nϕ∑
k=1

φekWk(x, y, z), ∀(x, y, z) ⊂ Ω (20)

where ϕe is the nodal value of the scalar electrical potential, W is the base function, Nϕ is the number
of nodes of the discretization network,

s =

Ns∑
k=1

SkWk(x, y, z), ∀(x, y, z) ⊂ Ω (21)

where S is the coordinate of the node, W is the base function, Ns is the number of nodes of the
discretization elements,

A =

NA∑
k=1

akWk(x, y, z), ∀(x, y, z) ⊂ Ω (22)

where a is the node value of the vector magnetic potential, W is the base function, NA is the number of
nodes of the discretization network. Applying the approximation (20) to (22) and the Galerkin method
in relation (12) to (14) gives a semi-discrete solution for the region of Ωm model

rot
1
µ

rotA− γ
(
−gradϕe −

∂A
∂t

)
−γ

(
∂s
∂t
× rotA

)
= Js + rot(M) (23)

∫
Ωm

Wi ·
(
rot 1

µ · rotA− 1
µ · grad divA− γ

(
−
∂A
∂ t − gradϕe

)
− γ

(
∂s
∂ t × rotA

)
− Js − rot(M)

)
dΩ = 0,

i = 1, . . . , NuΩ

(24)

The Equation (24) is modified by application of 2nd Green’s formula and Gauss’s theorem
to expression∫

Ωm

1
µ rotA · rotWi· dΩ +

∮
Γm

1
µ (n × rot A) ·Wi dΓ +

∫
Ωm

1
µ divA gradWi dΩ −

∮
Γm

[
1
µdivA W

]
· n dΓ

+
∫

Ωm

Wi γ
∂A
∂ t dΩ +

∫
Ωm

Wi γ gradϕe dΩ −
∫

Ωm

Wi · γ
(
∂s
∂ t × rotA

)
dΩ =

∫
Ωm

Wi · Js dΩ +
∫

Ωm

Wi · rot(M) dΩ
(25)

Respecting the boundary conditions of the problem according to the expressions (18), the relation
(25) changes to∫

Ωm

1
µ rotA · rotWi· dΩ +

∫
Ωm

1
µdivA gradWi dΩ +

∫
Ωm

Wi γ
∂A
∂ t dΩ +

∫
Ωm

Wi γ gradϕe dΩ

−

∫
Ωm

Wi · γ
(
∂s
∂ t × rotA

)
dΩ =

∫
Ωm

Wi · Js dΩ +
∫

Ωm

Wi · rot(M) dΩ
(26)
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Applying the approximation (20) to (22) and the Galerkin method in relation (17a) gives a
semi-discrete solution for the region of Ωm model∫

Ωm

Wi ·

(
div ε

(
−gradϕe −

∂A
∂t

)
− ρ

)
dΩ = 0, i = 1, . . . , NuΩ (27)

The expression (27) is modified by application of 2nd Green’s formula and Gauss’s theorem
to expression

−

∫
ΩJ

div
(
Wi ε ·

(
∂A
∂ t + gradϕe

))
dΩ +

∫
ΩJ

ε ·
(
∂A
∂ t + gradϕe

)
· gradWidΩ−

∫
ΩJ

Wiρ dΩ = 0

after modification∮
∂ΩJ

Wi
(
∂ A
∂ t + grad ϕe

)
· εn dΓ +

∫
ΩJ

ε
(
gradϕe +

∂ A
∂ t

)
·gradWi dΩ −

∫
ΩJ

Wiρ dΩ = 0

Respecting the boundary conditions of the problem according to the expressions (18),
the relation (25) changes to∫
ΩJ

ε gradϕe·gradWidΩ +
∫

ΩJ

ε ∂ A
∂ t ·gradWidΩ −

∫
ΩJ

Wiρ dΩ = 0

(28)

Substituting approximation functions, A, s, ϕε according to (20) to (22) into (26) and (28) gives a
semi-discrete solution∫

Ωm

1
µ rot

(NA∑
`=1

W`a`

)
· rotWi· dΩ +

∫
Ωm

1
µdiv

(NA∑
`=1

W`a`

)
gradWidΩ +

∫
Ωm

Wiγ

(NA∑
`=1

W`
d a`
d t

)
dΩ

+
∫

Ωm

Wiγ grad

Nφ∑
j=1

W jφ j

 dΩ −
∫

Ωm

Wi · γ

(( NS∑
k=1

Wk
dSk
d t

)
× rot

(NA∑
`=1

W`a`

))
dΩ =

∫
Ωm

Wi ·

 N j∑
m=1

Wmjsm

 dΩ +
∫

Ωm

Wi · rot
(

Nn∑
n=1

WnMn

)
dΩ

(29)

Relation (29) can be rewritten to form

NA∑
`=1


+a`x

∫
Ωm

1
µ rot (W`i) · rotWi dΩ

+a`y
∫

Ωm

1
µ rot (W`j) · rotWi dΩ

+a`z
∫

Ωm

1
µ rot (W`k) · rotWi dΩ


+

NA∑
`=1


+a`x

∫
Ωm

1
µ div(W`i)gradWi · (i + j + k)dΩ

+a`y
∫

Ωm

1
µ div(W`j)gradWi · (i + j + k)dΩ

+a`z
∫

Ωm

1
µ div(W`k)gradWi · (i + j + k)dΩ



−Θ
NA∑
`=1



+ d S`x
d t

∫
Ωm

Wi (i + j + k) · γ
(
W`i× rotW`at−∆t

`

)
dΩ

+
d S`y

d t

∫
Ωm

Wi (i + j + k) · γ
(
W`j× rotW`at−∆t

`

)
dΩ

+ d S`z
d t

∫
Ωm

Wi (i + j + k) · γ
(
W`k× rotW`at−∆t

`

)
dΩ



−(1−Θ)
NA∑
`=1



+a`x
∫

Ωm

Wi (i + j + k) · γ
(

d St−∆t
`

d t × rotW`i
)

dΩ

+a`y

∫
Ωm

Wi (i + j + k) · γ
(

d St−∆t
`

d t × rotW`j
)

dΩ

+a`z
∫

Ωm

Wi (i + j + k) · γ
(

d St−∆t
`

d t × rotW`k
)

dΩ


+

NA∑
`=1

da`
dt ·

∫
Ωm

WiγW`dΩ +
Nφ∑
j=1

φ j
∫

Ωm

Wi · γ gradW j dΩ =
NJ∑

m=1
js,m ·

∫
Ωm

Wi WmdΩ +
Nn∑

n=1
mn

∫
Ωm

Wi · rot(Wn ) dΩ ,

Θ ∈ 〈0, 1〉

(30)
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The simplified notation of the system of Equations (30) is

NA∑
`=1

a` · (ki,`,A1 + ki,`,A2 − (1−Θ)ki,`,A3) −Θ
NA∑
`=1

dS`
dt · li,`,S +

NA∑
`=1

da`
dt · li,`,A +

Nφ∑
j=1

φ jk j,`,φ

=
NJ∑

m=1
js,m·zi,k,Jm +

Nn∑
n=1

mn·zi,n,M , i = 1, . . . , NuΩ.

(31)

∫
ΩJ

ε grad


Nφ∑
`=1

W`φ`

 · gradWi dΩ +

∫
ΩJ

ε
NA∑
k=1

dakWk
d t

· gradWi dΩ −
∫
ΩJ

Wi

Nρ∑
j=1

W jρ j dΩ= 0 (32)

The expression is easy to rewrite to form

Nφ∑
`=1

φ`
∫

Ωj

ε gradW` · gradWi dΩ +
NA∑
k=1

dak
d t ·

∫
Ωj

ε Wk gradWi dΩ −
Nρ∑
j=1

ρ j ·
∫

Ωj

W j Wi dΩ= 0

Simplified notation of the relation is
Nφ∑
`=1

φ`ki,` φφ +
NA∑
k=1

dak
d t · li,k Aφ =

Nρ∑
j=1

ρ j zi, j, φφ i = 1, . . . , Nu

(33)

To simplify the calculation algorithm in the numerical part of the solution of the system of
equations and its acceleration, the system (33) is converted to the form[

lAJ

]{ .
a
}
+

[
kAφJ

]{
φ
}

=
[
zφφ

]{
ρ
}

, i, j = 1, . . . , Nu (34)

The form of the coefficients is expressed in relations (30) and (31).

kA1,x =
∫

Ωm

1
µ rot (W`i) · rotWi dΩ

kA1,y =
∫

Ωm

1
µ rot (W`j) · rotWi dΩ

kA1,z =
∫

Ωm

1
µ rot (W`k) · rotWi dΩ

(35)

kA2,x =
∫

Ωm

1
µdiv(W`i) gradWi · (i + j + k)dΩ

kA2,y =
∫

Ωm

1
µdiv(W`j) gradWi · (i + j + k)dΩ

kA2,z =
∫

Ωm

1
µdiv(W`k) gradWi · (i + j + k)dΩ

(36)

kA3,x =
∫

Ωm

Wi (i + j + k) · γ
(

d St−∆t
`

d t × rotW`i
)

dΩ

kA3,y =
∫

Ωm

Wi (i + j + k) · γ
(

d St−∆t
`

d t × rotW`j
)

dΩ

kA3,x =
∫

Ωm

Wi (i + j + k) · γ
(

d St−∆t
`

d t × rotW`k
)

dΩ

(37)

lS,x =
∫

Ωm

Wi (i + j + k) · γ
(
W`i× rotW`at−∆t

`

)
dΩ

lS,y =
∫

Ωm

Wi (i + j + k) · γ
(
W`j× rotW`at−∆t

`

)
dΩ

lS,z =
∫

Ωm

Wi (i + j + k) · γ
(
W`k× rotW`at−∆t

`

)
dΩ

(38)
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lS,x =
∫

Ωm

Wi (i + j + k) · γ
(
W`i× rotW`at−∆t

`

)
dΩ

lA,x =
∫

Ωm

Wi γ (W`) dΩ

lA,y =
∫

Ωm

Wi γ (W`) dΩ

lA,z =
∫

Ωm

Wi γ (W`) dΩ

(39)

kφ =

∫
Ωm

Wi · γ gradW j dΩ (40)

zJ,x =
∫

Ωm

WiWkdΩ

zJ,y =
∫

Ωm

WiWkdΩ

zJ,z =
∫

Ωm

WiWkdΩ

zM =
∫

Ωm

Wi · rot(Wn ) dΩ

(41)

lAφ =

∫
Ωm

Wi · ε gradW j dΩ (42)

kφφ =

∫
Ωm

ε gradWi · gradW j dΩ (43)

zφφ =

∫
Ωm

WiW jdΩ (44)

where i, j, k are the base vectors of the used Cartesian coordinate space. The algorithm for constructing
matrices of coefficients (35) to (44) is simplified when the system of Equations (31) is rewritten to form[

ke
A1 + ke

A2 − (1−Θ)ke
A3

]
{a}+

[
le
A

]{ .
a
}
−

[
Θle

S

]{ .
S
}
+

[
ke
φ

]{
φ
}
=

[
ze

J

]{
js

}
+

[
ze

M

]
{m} , e = 1, . . . , NeΩ (45)[

le
AJ

]{ .
a
}
+

[
ke

AφJ

]{
φ
}

=
[
ze
φφ

]{
ρ
}

, e = 1, . . . , NeΩ (46)

The coefficients of the system of the Equations (45) and (46) are expressed in the relations

ke
A1,x =

∫
Ωe

1
µe rot (Wii) · rotW j dΩ i, j= 1, . . . , Ne

u , e= 1, . . . , NeΩ

ke
A1,y =

∫
Ωe

1
µe rot (Wij) · rotW j dΩ

ke
A1,z =

∫
Ωe

1
µe rot (Wik) · rotW j dΩ

(47)

ke
A2,x =

∫
Ωe

1
µe div(Wii) gradW j · (i + j + k)dΩ

ke
A2,y =

∫
Ωe

1
µe div(Wij) gradW j · (i + j + k)dΩ

ke
A2,z =

∫
Ωe

1
µe div(Wik) gradW j · (i + j + k)dΩ

(48)
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ke
A3,x =

∫
Ωe

Wi (i + j + k) · γe
(

d St−∆t
j

d t × rotW ji
)

dΩ

ke
A3,y =

∫
Ωe

Wi (i + j + k) · γe
(

d St−∆t
j

d t × rotW jj
)

dΩ

ke
A3,z =

∫
Ωe

Wi (i + j + k) · γe
(

d St−∆t
`

d t × rotW jk
)

dΩ

(49)

leS,x =
∫

Ωe
Wi (i + j + k) · γe

(
W ji× rotW jat−∆t

j

)
dΩ

leS,y =
∫

Ωe
Wi (i + j + k) · γe

(
W jj× rotW jat−∆t

j

)
dΩ

leS,z =
∫

Ωe
Wi (i + j + k) · γe

(
W jk× rotW jat−∆t

j

)
dΩ

(50)

leA,x =
∫

Ωe
Wi γ

e W j dΩ

leA,y =
∫

Ωe
Wi γ

e W j dΩ

leA,z =
∫

Ωe
Wi γ

e W j dΩ

(51)

ke
φ =

∫
Ωe

Wi · γ
e gradW j dΩ (52)

ze
M =

∫
Ωe

Wi · rot
(
W j

)
dΩ

ze
J,x =

∫
Ωe

WiW jdΩ

ze
J,y =

∫
Ωe

WiW jdΩ

ze
J,z =

∫
Ωe

WiW jdΩ

(53)

leAφ =

∫
Ωe

Wi · ε
e gradW j dΩ (54)

ke
φφ =

∫
Ωe

εe gradWi · gradW j dΩ (55)

ze
φφ =

∫
Ωe

WiW jdΩ (56)

The system of Equations (45) and (46) is written in the form
LA + LAϕ 0 0

0 0 0
0 0 −ΘLS




.
a
.
φ
.
S

+


KA1 + KA2 − (1−Θ)KA3 0 0

0 Kϕ + Kϕϕ 0
0 0 0




a
φ
S


=


‡J ‡φφ 0
0 0 0
0 0 0




js
ρ
0

+


‡M 0 0
0 0 0
0 0 0




m
0
0


(57)

The procedure of quantification of the coefficients for tetrahedral, pentahedral and hexahedral
element is described in detail [3].
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The short description of the elements is shown in Figures 3–5. The tetrahedral element in Figure 3
has a base function W

Wi =
1

6∆Ωe (ai − bix + ciy− diz), ∀(x, y, z) ⊂ Ωe, i = 1, . . . , 4 (58)
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where the indexes i, j are node numbers of the element e. If a pentahedral element is selected 
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and the gradient of the function W is expressed in the Cartesian coordinate system o, x, y, z 
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After the transformation of the function W into the global Cartesian coordinate system o, x, y, z 
from the local coordinate system o,ξ,η,ζ from the expressions (30) and (33) are the coefficients of the 
system of Equations (57). In them are 
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6∆Ωe =

∣∣∣∣∣∣∣∣∣∣∣
1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣ (59)
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where the indexes at x, y, z coordinates are local node numbers according to Figure 3. The coefficients
of the function W can be expressed

ai =

∣∣∣∣∣∣∣∣∣
x j y j z j
xk yk zk
xl yl zl

∣∣∣∣∣∣∣∣∣ i, j, k, l = 1, . . . , 4 (60)

bi =

∣∣∣∣∣∣∣∣∣
1 y j z j
1 yk zk
1 yl zl

∣∣∣∣∣∣∣∣∣ (61)

ci =

∣∣∣∣∣∣∣∣∣
x j 1 z j
xk 1 zk
xl 1 zl

∣∣∣∣∣∣∣∣∣ (62)

di =

∣∣∣∣∣∣∣∣∣
x j y j 1
xk yk 1
xl yl 1

∣∣∣∣∣∣∣∣∣ (63)

where the indexes i, j, k, l change cyclically over a given interval. Index i is the natural number of the
element function, indexes j, k, l are coordinate indexes of the element nodes. The coefficients of the
model are for the tetrahedral element of Figure 3

ke
A1,x =

(
1

6∆Ωe

)2 ∫
Ωe

1
µe (−cik− dij) ·

[(
c j + d j

)
i +

(
−d j + b j

)
j +

(
−b j − c j

)
k
]
dΩ

ke
A1,y =

(
1

6∆Ωe

)2 ∫
Ωe

1
µe (+dii− bik) ·

[(
c j + d j

)
i +

(
−d j + b j

)
j +

(
−b j − c j

)
k
]
dΩ

ke
A1,z =

(
1

6∆Ωe

)2 ∫
Ωe

1
µe (cii− bij) ·

[(
c j + d j

)
i +

(
−d j + b j

)
j +

(
−b j − c j

)
k
]
dΩ

(64)

ke
A2,x =

(
1

6∆Ωe

)2 ∫
Ωe

1
µe (−bi)

(
−b j + c j − d j

)
dΩ

ke
A2,y =

(
1

6∆Ωe

)2 ∫
Ωe

1
µe (ci)

(
−b j + c j − d j

)
dΩ

ke
A2,z =

(
1

6∆Ωe

)2 ∫
Ωe

1
µe (−di)

(
−b j + c j − d j

)
dΩ

(65)

ke
A3,x =

(
1

6∆Ωe

)2 ∫
Ωe

(ai − bix + ciy− diz)(i + j + k) · γe
(

d St−∆t
j

d t ×
(
−c jk− d jj

))
dΩ

ke
A3,y =

(
1

6∆Ωe

)2 ∫
Ωe

(ai − bix + ciy− diz)(i + j + k) · γe
(

d St−∆t
j

d t ×
(
+d ji− b jk

))
dΩ

ke
A3,z =

(
1

6∆Ωe

)2 ∫
Ωe

(ai − bix + ciy− diz)(i + j + k) · γe
(

d St−∆t
j

d t ×
(
+c ji− b jj

))
dΩ

(66)
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leS,x =
(

1
6∆Ωe

)3 ∫
Ωe

(ai − bix + ciy− diz)(i + j + k) · γe


(
a j − b jx + c jy− d jz

)
i×


at−∆t

j,x i
(
c j + d j

)
+at−∆t

j,y j
(
b j − d j

)
+at−∆t

j,z k
(
−b j − c j

)

 dΩ

leS,y =
(

1
6∆Ωe

)3 ∫
Ωe

(ai − bix + ciy− diz)(i + j + k) · γe


(
a j − b jx + c jy− d jz

)
j×


at−∆t

j,x i
(
c j + d j

)
+at−∆t

j,y j
(
b j − d j

)
+at−∆t

j,z k
(
−b j − c j

)

 dΩ

leS,z =
(

1
6∆Ωe

)3 ∫
Ωe

(ai − bix + ciy− diz)(i + j + k) · γe


(
a j − b jx + c jy− d jz

)
k×


at−∆t

j,x i
(
c j + d j

)
+at−∆t

j,y j
(
b j − d j

)
+at−∆t

j,z k
(
−b j − c j

)

 dΩ

(67)

leA,x =
(

1
6∆Ωe

)2 ∫
Ωe

(ai − bix + ciy− diz) γe
(
a j − b jx + c jy− d jz

)
dΩ

leA,y =
(

1
6∆Ωe

)2 ∫
Ωe

(ai − bix + ciy− diz) γe
(
a j − b jx + c jy− d jz

)
dΩ

leA,z =
(

1
6∆Ωe

)2 ∫
Ωe

(ai − bix + ciy− diz) γe
(
a j − b jx + c jy− d jz

)
dΩ

(68)

ke
ϕ =

( 1
6∆Ωe

)2∫
Ωe

(ai − bix + ciy− diz) (i + j + k) · γe
(
−b ji + c jj− d jk

)
dΩ (69)

ze
J,x =

(
1

6∆Ωe

)2 ∫
Ωe

(ai − bix + ciy− diz)
(
a j − b jx + c jy− d jz

)
dΩ

ze
J,y =

(
1

6∆Ωe

)2 ∫
Ωe

(ai − bix + ciy− diz)
(
a j − b jx + c jy− d jz

)
dΩ

ze
J,z =

(
1

6∆Ωe

)2 ∫
Ωe

(ai − bix + ciy− diz)
(
a j − b jx + c jy− d jz

)
dΩ

ze
M,x =

(
1

6∆Ωe

)2 ∫
Ωe

(ai − bix + ciy− diz) (i + j + k) ·
(
−jd j − kc j

)
dΩ

ze
M,y =

(
1

6∆Ωe

)2 ∫
Ωm

(ai − bix + ciy− diz) (i + j + k) ·
(
id j − kb j

)
dΩ

ze
M,z =

(
1

6∆Ωe

)2 ∫
Ωm

(ai − bix + ciy− diz) (i + j + k) ·
(
ic j + jb j

)
dΩ

(70)

le
Aϕ =

( 1
6∆Ωe

)2∫
Ωe

(ai − bix + ciy− diz) εe
(
−b ji + c jj− d jk

)
dΩ (71)

ke
ϕϕ =

( 1
6∆Ωe

)2∫
Ωe

(−bii + cij− dik) εe
(
−b ji + c jj− d jk

)
(72)

ze
ϕϕ =

( 1
6∆Ωe

)2∫
Ωe

(ai − bix + ciy− diz)
(
a j − b jx + c jy− d jz

)
dΩ (73)
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where the indexes i, j are node numbers of the element e. If a pentahedral element is selected according
to Figure 4 and the function W is displayed on it, then their writing at the selected local Cartesian
coordinate system o,ξ,η,ζ is as follows:

1 
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    1110101
2
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=11
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1
=
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52
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





WW

WW

WW

 (74)

and the gradient of the function W is expressed in the Cartesian coordinate system o, x, y, z

grad Wi =
∂Wi
∂x

i +
∂Wi
∂y

j +
∂Wi
∂z

k i, j = 1, . . . , Ne
u (75)

After the transformation of the function W into the global Cartesian coordinate system o, x, y, z
from the local coordinate system o,ξ,η,ζ from the expressions (30) and (33) are the coefficients of the
system of Equations (57). In them are

dΩ = |Jc|
−1dξdηdζ (76)

|Jc| =

∣∣∣∣∣∣
(
∂Rp

∂ξ
×
∂Rp

∂η

)
·
∂Rp

∂ζ

∣∣∣∣∣∣ area Ω gaue (77)

In the (77) relation, the derivative of the position vector Rp is represented by the
following expression

∂Rp

∂ξ
=
∂x
∂ξ

i +
∂y
∂ξ

j +
∂z
∂ξ

k (78)

the coordinates x, y, z and their derivatives according to the local coordinates ξ,η,ζ are expressed

x =
Ne

u∑
i=1

Wixi , ∂x
∂ξ =

Ne
u∑

i=1

∂Wi
∂ξ xi, ∂x

∂η =
Ne

u∑
i=1

∂Wi
∂η xi, ∂x

∂ζ =
Ne

u∑
i=1

∂Wi
∂ζ xi ,

y =
Ne

u∑
i=1

Wiyi , ∂y
∂ξ =

Ne
u∑

i=1

∂Wi
∂ξ yi,

∂y
∂η =

Ne
u∑

i=1

∂Wi
∂η yi,

∂y
∂ζ =

Ne
u∑

i=1

∂Wi
∂ζ yi ,

z =
Ne

u∑
i=1

Wizi , ∂z
∂ξ =

Ne
u∑

i=1

∂Wi
∂ξ zi, ∂z

∂η =
Ne

u∑
i=1

∂Wi
∂η zi, ∂z

∂ζ =
Ne

u∑
i=1

∂Wi
∂ζ zi

(79)

ke
A1,x =

∫
Ωe

1
µe

(
∂Wi
∂y −

∂Wi
∂z

)
i ·

((
∂W j
∂y −

∂W j
∂z

)
i +

(
∂W j
∂z −

∂W j
∂x

)
j +

(
∂W j
∂x −

∂W j
∂y

)
k
)

dΩ

i, j= 1, . . . , Ne
u , e= 1, . . . , NeΩ

ke
A1,y =

∫
Ωe

1
µe

(
∂Wi
∂z −

∂Wi
∂x

)
j ·

((
∂W j
∂y −

∂W j
∂z

)
i +

(
∂W j
∂z −

∂W j
∂x

)
j +

(
∂W j
∂x −

∂W j
∂y

)
k
)

dΩ

ke
A1,z =

∫
Ωe

1
µe

(
∂Wi
∂x −

∂Wi
∂y

)
k ·

((
∂W j
∂y −

∂W j
∂z

)
i +

(
∂W j
∂z −

∂W j
∂x

)
j +

(
∂W j
∂x −

∂W j
∂y

)
k
)

dΩ

(80)

ke
A2,x =

∫
Ωe

1
µe

(
∂Wi
∂x +

∂Wi
∂y +

∂Wi
∂z

)
i ·

(
∂W j
∂x i +

∂W j
∂y j +

∂W j
∂z k

)
· (i + j + k)dΩ

ke
A2,y =

∫
Ωe

1
µe

(
∂Wi
∂x +

∂Wi
∂y +

∂Wi
∂z

)
j ·

(
∂W j
∂x i +

∂W j
∂y j +

∂W j
∂z k

)
· (i + j + k)dΩ

ke
A2,z =

∫
Ωe

1
µe

(
∂Wi
∂x +

∂Wi
∂y +

∂Wi
∂z

)
k ·

(
∂W j
∂x i +

∂W j
∂y j +

∂W j
∂z k

)
· (i + j + k)dΩ

(81)
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ke
A3,x =

∫
Ωe

Wi (i + j + k) · γe
(

d St−∆t
j

d t ×

(
∂W j
∂y −

∂W j
∂z

)
i
)

dΩ

ke
A3,y =

∫
Ωe

Wi (i + j + k) · γe
(

d St−∆t
j

d t ×

(
∂W j
∂z −

∂W j
∂x

)
j
)

dΩ

ke
A3,z =

∫
Ωe

Wi (i + j + k) · γe
(

d St−∆t
j

d t ×

(
∂W j
∂x −

∂W j
∂y

)
k
)

dΩ

(82)

leS,x =
∫

Ωe
Wi (i + j + k) · γe

(
W ji×

((
∂W j

∂y −
∂W j

∂z

)
i at−∆t

x, j +
(
∂W j

∂z −
∂W j

∂x

)
jat−∆t

y, j +
(
∂W j

∂x −
∂W j

∂y

)
kat−∆t

z, j

))
dΩ

leS,y =
∫

Ωe
Wi (i + j + k) · γe

(
W jj×

((
∂W j

∂y −
∂W j

∂z

)
i at−∆t

x, j +
(
∂W j

∂z −
∂W j

∂x

)
jat−∆t

y, j +
(
∂W j

∂x −
∂W j

∂y

)
kat−∆t

z, j

))
dΩ

leS,z =
∫

Ωe
Wi (i + j + k) · γe

(
W jk×

((
∂W j

∂y −
∂W j

∂z

)
i at−∆t

x, j +
(
∂W j

∂z −
∂W j

∂x

)
jat−∆t

y, j +
(
∂W j

∂x −
∂W j

∂y

)
kat−∆t

z, j

))
dΩ

(83)

leA,x =
∫

Ωe
Wi γ

e W j dΩ

leA,y =
∫

Ωe
Wi γ

e W j dΩ

leA,z =
∫

Ωe
Wi γ

e W j dΩ

(84)

ke
ϕ =

∫
Ωe

Wi (i + j + k) · γe
(
∂W j

∂x
i +

∂W j

∂y
j +

∂W j

∂z
k
)

dΩ (85)

ze
J,x =

∫
Ωe

WiW jdΩ

ze
J,y =

∫
Ωe

WiW jdΩ

ze
J,z =

∫
Ωe

WiW jdΩ

ze
M,x =

∫
Ωe

Wi ·

(
∂W j
∂y j−

∂W j
∂z k

)
dΩ

ze
M,y =

∫
Ωm

Wi ·

(
∂W j
∂z i +

∂W j
∂x k

)
dΩ

ze
M,z =

∫
Ωm

Wi ·

(
−
∂W j
∂x j +

∂W j
∂y i

)
dΩ

(86)

le
Aϕ =

∫
Ωe

Wi ε
e
(
∂W j

∂x
i +

∂W j

∂y
j +

∂W j

∂z
k
)

dΩ (87)

ke
ϕϕ =

∫
Ωe

(
∂Wi
∂x

i +
∂Wi
∂y

j +
∂Wi
∂z

k
)
εe

(
∂W j

∂x
i +

∂W j

∂y
j +

∂W j

∂z
k
)

dΩ (88)

ze
ϕϕ =

∫
Ωe

WiW jdΩ (89)
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When the hexahedral element from Figure 5 is selected, its base functions are written as

W1 = 1
8 (1− ξ)(1− η)(1− ζ)

W2 = 1
8 (1 + ξ)(1− η)(1− ζ)

∀ξ, η, ζ ∈ 〈−1, 1〉
W3 = 1

8 (1 + ξ)(1 + η)(1− ζ)
W4 = 1

8 (1− ξ)(1 + η)(1− ζ)
W5 = 1

8 (1− ξ)(1− η)(1 + ζ)

W6 = 1
8 (1 + ξ)(1− η)(1 + ζ)

W7 = 1
8 (1 + ξ)(1 + η)(1 + ζ)

W8 = 1
8 (1− ξ)(1 + η)(1 + ζ)

(90)

For the hexahedral element, the sizes of the coefficients from the set of Equations (57) are calculated
from Equations (80)–(89) using the functions (90).

Integration in the relations (80) to (89) can be solved analytically. This method is difficult and time
consuming. Avoiding the use of analytically expressed integrals in most cases will not significantly
reduce the accuracy of the solution of the system of Equations (57). Another easier solution is to apply
the Gaussian quadrature. Its form, usage and properties are known [3]. The coefficients of the system
of Equations (57) are then calculated for a numerical solution

ke
A1,x =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3

[
1
µe ·

(
∂Wi(ξg1,ηg2,ζg3)

∂η −
∂Wi(ξg1,ηg2,ζg3)

∂ζ

)
i·{(

∂W j(ξg1,ηg2,ζg3)
∂η −

∂W j(ξg1,ηg2,ζg3)
∂ζ

)
i +

(
∂W j(ξg1,ηg2,ζg3)

∂ζ −
∂W j(ξg1,ηg2,ζg3)

∂ξ

)
j

+

(
∂W j(ξg1,ηg2,ζg3)

∂ξ −
∂W j(ξg1,ηg2,ζg3)

∂η

)
k
}]
|Jc|

−1

ke
A1,y =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3

[
1
µe ·

(
∂Wi(ξg1,ηg2,ζg3)

∂ζ −
∂Wi(ξg1,ηg2,ζg3)

∂ξ

)
j·{(

∂W j(ξg1,ηg2,ζg3)
∂η −

∂W j(ξg1,ηg2,ζg3)
∂ζ

)
i +

(
∂W j(ξg1,ηg2,ζg3)

∂ζ −
∂W j(ξg1,ηg2,ζg3)

∂ξ

)
j

+

(
∂W j(ξg1,ηg2,ζg3)

∂ξ −
∂W j(ξg1,ηg2,ζg3)

∂η

)
k
}]
|Jc|

−1

ke
A1,z =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3

[
1
µe ·

(
∂Wi(ξg1,ηg2,ζg3)

∂ξ −
∂Wi(ξg1,ηg2,ζg3)

∂η

)
k·{(

∂W j(ξg1,ηg2,ζg3)
∂η −

∂W j(ξg1,ηg2,ζg3)
∂ζ

)
i +

(
∂W j(ξg1,ηg2,ζg3)

∂ζ −
∂W j(ξg1,ηg2,ζg3)

∂ξ

)
j

+

(
∂W j(ξg1,ηg2,ζg3)

∂ξ −
∂W j(ξg1,ηg2,ζg3)

∂η

)
k
}]
|Jc|

−1

(91)

ke
A2,x =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3

[
1
µe ·

(
∂Wi(ξg1,ηg2,ζg3)

∂ξ +
∂Wi(ξg1,ηg2,ζg3)

∂η +
∂Wi(ξg1,ηg2,ζg3)

∂ζ

)
i·{(

∂Wi(ξg1,ηg2,ζg3)
∂ξ

)
i +

(
∂W j(ξg1,ηg2,ζg3)

∂η

)
j +

(
∂Wi(ξg1,ηg2,ζg3)

∂ζ

)
k
}
· (i + j + k)

]
|Jc|

−1

ke
A2,y =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3

[
1
µe ·

(
∂Wi(ξg1,ηg2,ζg3)

∂ξ +
∂Wi(ξg1,ηg2,ζg3)

∂η +
∂Wi(ξg1,ηg2,ζg3)

∂ζ

)
j·{(

∂Wi(ξg1,ηg2,ζg3)
∂ξ

)
i +

(
∂W j(ξg1,ηg2,ζg3)

∂η

)
j +

(
∂Wi(ξg1,ηg2,ζg3)

∂ζ

)
k
}
· (i + j + k)

]
|Jc|

−1

ke
A2,z =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3

[
1
µe ·

(
∂Wi(ξg1,ηg2,ζg3)

∂ξ +
∂Wi(ξg1,ηg2,ζg3)

∂η +
∂Wi(ξg1,ηg2,ζg3)

∂ζ

)
k·{(

∂Wi(ξg1,ηg2,ζg3)
∂ξ

)
i +

(
∂W j(ξg1,ηg2,ζg3)

∂η

)
j +

(
∂Wi(ξg1,ηg2,ζg3)

∂ζ

)
k
}
·(i + j + k)]|Jc|

−1

(92)
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ke
A3,x =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3


Wi

(
ξg1, ηg2, ζg3

)
(i + j + k) · γe(

d St−∆t
j

d t ×

(
∂W j(ξg1,ηg2,ζg3)

∂η −
∂W j(ξg1,ηg2,ζg3)

∂ζ

)
i
) |Jc

∣∣∣∣∣∣∣∣∣
−1

ke
A3,y =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3


Wi

(
ξg1, ηg2, ζg3

)
(i + j + k) · γe(

d St−∆t
j

d t ×

(
−
∂W j(ξg1,ηg2,ζg3)

∂ξ +
∂W j(ξg1,ηg2,ζg3)

∂ζ

)
i
) |Jc

∣∣∣∣∣∣∣∣∣
−1

ke
A3,z =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3


Wi

(
ξg1, ηg2, ζg3

)
(i + j + k) · γe(

d St−∆t
j

d t ×

(
∂W j(ξg1,ηg2,ζg3)

∂ξ −
∂W j(ξg1,ηg2,ζg3)

∂η

)
k
) ∣∣∣Jc

∣∣∣∣∣∣∣∣∣
−1

(93)

leS,x =
ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3
Wi

(
ξg1, ηg2, ζg3

)
(i + j + k) · γe


W j

(
ξg1, ηg2, ζg3

)
i×



(
∂W j(ξg1 ,ηg2 ,ζg3)

∂η −
∂W j(ξg1 ,ηg2 ,ζg3)

∂ζ

)
i at−∆t

x, j

+

(
∂W j(ξg1 ,ηg2 ,ζg3)

∂ζ −
∂W j(ξg1 ,ηg2 ,ζg3)

∂ξ

)
jat−∆t

y, j

+

(
∂W j(ξg1 ,ηg2 ,ζg3)

∂ξ −
∂W j(ξg1 ,ηg2 ,ζg3)

∂η

)
kat−∆t

z, j






|Jc

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

leS,y =
ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3
Wi

(
ξg1, ηg2, ζg3

)
(i + j + k) · γe


W j

(
ξg1, ηg2, ζg3

)
j×



(
∂W j(ξg1 ,ηg2 ,ζg3)

∂η −
∂W j(ξg1 ,ηg2 ,ζg3)

∂ζ

)
i at−∆t

x, j

+

(
∂W j(ξg1 ,ηg2 ,ζg3)

∂ζ −
∂W j(ξg1 ,ηg2 ,ζg3)

∂ξ

)
jat−∆t

y, j

+

(
∂W j(ξg1 ,ηg2 ,ζg3)

∂ξ −
∂W j(ξg1 ,ηg2 ,ζg3)

∂η

)
kat−∆t

z, j






|Jc

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

leS,z =
ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3
Wi

(
ξg1, ηg2, ζg3

)
(i + j + k) · γe


W j

(
ξg1, ηg2, ζg3

)
k×



(
∂W j(ξg1 ,ηg2 ,ζg3)

∂η −
∂W j(ξg1 ,ηg2 ,ζg3)

∂ζ

)
i at−∆t

x, j

+

(
∂W j(ξg1 ,ηg2 ,ζg3)

∂ζ −
∂W j(ξg1 ,ηg2 ,ζg3)

∂ξ

)
jat−∆t

y, j

+

(
∂W j(ξg1 ,ηg2 ,ζg3)

∂ξ −
∂W j(ξg1 ,ηg2 ,ζg3)

∂η

)
kat−∆t

z, j






|Jc

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

(94)

leA,x =
ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3
[
Wi

(
ξg1, ηg2, ζg3

)
γe W j

(
ξg1, ηg2, ζg3

) ]
|Jc

∣∣∣∣∣∣
−1

leA,y =
ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3
[
Wi

(
ξg1, ηg2, ζg3

)
γe W j

(
ξg1, ηg2, ζg3

) ]
|Jc

∣∣∣∣∣∣
−1

leA,z =
ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3
[
Wi

(
ξg1, ηg2, ζg3

)
γe W j

(
ξg1, ηg2, ζg3

) ]
|Jc

∣∣∣∣∣∣
−1

(95)

ke
ϕ =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3

 Wi
(
ξg1, ηg2, ζg3

)
(i + j + k) · γe{ (

∂W j(ξg1,ηg2,ζg3)
∂ξ

)
i +

(
∂W j(ξg1,ηg2,ζg3)

∂η

)
j +

(
∂W j(ξg1,ηg2,ζg3)

∂ζ

)
k
} |Jc

∣∣∣∣∣∣∣∣
−1

(96)
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ze
J,x =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3
[
Wi

(
ξg1, ηg2, ζg3

)
W j

(
ξg1, ηg2, ζg3

) ]
|Jc

∣∣∣∣∣∣
−1

ze
J,y =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3
[
Wi

(
ξg1, ηg2, ζg3

)
γe W j

(
ξg1, ηg2, ζg3

) ]
|Jc

∣∣∣∣∣∣
−1

ze
J,z =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3
[
Wi

(
ξg1, ηg2, ζg3

)
γe W j

(
ξg1, ηg2, ζg3

) ]
|Jc

∣∣∣∣∣∣
−1

ze
M,x =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3


Wi

(
ξg1, ηg2, ζg3

)
(i + j + k)·{ (

∂W j(ξg1,ηg2,ζg3)
∂ζ

)
j−

(
∂W j(ξg1,ηg2,ζg3)

∂η

)
k
} |Jc

∣∣∣∣∣∣∣∣∣
−1

ze
M,y =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3


Wi

(
ξg1, ηg2, ζg3

)
(i + j + k)·{ (

∂W j(ξg1,ηg2,ζg3)
∂ζ

)
i +

(
∂W j(ξg1,ηg2,ζg3)

∂ξ

)
k
} |Jc

∣∣∣∣∣∣∣∣∣
−1

ze
M,z =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3


Wi

(
ξg1, ηg2, ζg3

)
(i + j + k)·{ (

∂W j(ξg1,ηg2,ζg3)
∂η

)
i−

(
∂W j(ξg1,ηg2,ζg3)

∂ξ

)
j
} |Jc

∣∣∣∣∣∣∣∣∣
−1

(97)

leAϕ =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3

 Wi
(
ξg1, ηg2, ζg3

)
εe{ (

∂W j(ξg1,ηg2,ζg3)
∂ξ

)
i +

(
∂W j(ξg1,ηg2,ζg3)

∂η

)
j +

(
∂W j(ξg1,ηg2,ζg3)

∂ζ

)
k
} |Jc

∣∣∣∣∣∣∣∣
−1

(98)

ke
ϕϕ =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3


{ (

∂Wi(ξg1,ηg2,ζg3)
∂ξ

)
i +

(
∂Wi(ξg1,ηg2,ζg3)

∂η

)
j +

(
∂Wi(ξg1,ηg2,ζg3)

∂ζ

)
k
}
· εe{ (

∂W j(ξg1,ηg2,ζg3)
∂ξ

)
i +

(
∂W j(ξg1,ηg2,ζg3)

∂η

)
j +

(
∂W j(ξg1,ηg2,ζg3)

∂ζ

)
k
}

|Jc

∣∣∣∣∣∣∣∣∣∣
−1

(99)

ze
ϕϕ =

ng∑
g3

mg∑
g2

lg∑
g1

Hg1Hg2Hg3
[
Wi

(
ξg1, ηg2, ζg3

)
γe W j

(
ξg1, ηg2, ζg3

) ]
|Jc

∣∣∣∣∣∣∣∣
−1

(100)

The number of integration points of the local coordinates for the tetrahedral element was chosen
ng = mg = lg = 5. This number according to tests for accuracy and speed of quantification of quadrature
relation fits the mathematical model. The expression of the auxiliary function L is identical to the
function (58). By means of the L function, the coordinates of the integration points are determined
according to the formulas (102) to (104) below.

Set values of the auxiliary function L and the weight function H for 5 selected points within the
area Ωe are

1. point : L1= 0.5, L2 = L3 = L4= 0.166, Hi= 0.45
2. point : L2= 0.5, L1 = L3 = L4= 0.166, Hi= 0.45
3. point : L3= 0.5, L2 = L1 = L4= 0.166, Hi= 0.45
4. point : L4= 0.5, L2 = L3 = L1= 0.166, Hi= 0.45
5. point : L1 = L2 = L3 = L4= 0.25, Hi= −0.80

(101)

The coordinates of the integration point are determined for the tetrahedral element

ξg1 =

Ne
u∑

is=1

L1ξis (102)

ηg2 =

Ne
u∑

is=1

L2ηis (103)

ζg3 =

Ne
u∑

is=1

L3ζis (104)
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Six points of integration ng = mg = lg = 6 were chosen for the pentahedral element. The number
corresponds to the required accuracy and speed of the quadrature calculation. The coordinates of the
points are determined

ξg1 = ±0.577350269189626, Hi= 1.0,
ηg2 = ±0.577350269189626,
ζg3 = ±0.577350269189626 .

(105)

Similarly, for a hexahedral element, where ng = mg = lg = 8. The coordinates of the point for
calculating the quadrature according to (n102) to (n104) is expressed by the auxiliary function L

1. point : L1= 0.1314458557658, Hi= 1.0,
2. point : L2= 0.4905626121623,
3. point : L3 = L1,
4. point : L4= 0.03522081090086,
5. point : L5 = L4,
6. point : L6 = L1,
7. point : L7 = L4,
8. point : L8= 0.09437387837656 .

(106)

The electromagnetic part of the model of the task MG can be characterized by the expression (57).
The description of the mechanical part of the model by means of the FEM is known for example from
theses and works [1,2] and the system [21], then the electromechanically bounded equation is written
in the form

(λ1 + 2λ2)grad divs− λ2rot rots + J × B + ρ
∂2s
∂ t2 + f0︸                  ︷︷                  ︸

f

= 0 (107)

where f is the vector of specific force, λ1, λ2 are auxiliary scalar functions. For the geometrical model,
Figure 2, the external mechanical load was not considered. Such presumption will lead to f 0 = 0.
But, to respect the position of the MG in the earth’s gravitational field, with the acceleration g a static

force, it was considered f0 =
Mg
Vg
·g, where mg is the mass of the MG core, Vg is the volume of the MG

core. The specific magnetic force fm is expressed as

fm = J × B (108)

There are valid boundary and initial conditions for the model, for example known [21]. Similar to
the above, mentioned derivation of the electromagnetic part of the model, the coupled dynamical
mechanical-electromagnetic model can be written in the form

−(λ1 + 2λ2)
∫

ΩF

(i + j + k) · gradWidivs dΩ + (λ1 + 2λ2)
∮

ΓF

Wi · grad divs · ndΓ

−λ2
∫

ΩF

rotWi · rots dΩ − λ2
∮

ΓF

Wi·[n× rots] dΓ +
∫

ΩF

Wi·
[
γ

(
−
∂A
∂t − gradφ

)
× rotA

]
dΩ

+
∫

ΩF

ρWi·
∂2s
∂t2 dΩ +

∫
ΩF

Wi·f0 dΩ= 0 , i = 1, . . . , NuΩ .

(109)
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and the corresponding semi-discrete model solution

−(λ1 + 2λ2)
∫

ΩF

(i + j + k)·gradWidiv
(

NF∑
k=1

WkSk

)
dΩ − λ2

∫
ΩF

rotWi · rot
(

NF∑
k=1

WkSk

)
dΩ

+(λ1 + 2λ2)
∮
ΓF

Wi ·

NPn∑
j=1

W jpnj

dΓ +
∫

ΩF

ρWi·

(
NF∑

k=1
Wk

d2Sk
dt2

)
dΩ = −

∫
ΩF

Wi·

(
NF∑

k=1
WkFk

)
dΩ

+λ2
∮
ΓF

Wi·

(
NPσ∑
`=1

W`pσ`

)
dΓ + (λ1 + 2λ2)

∫
ΩF

gradWi ·
Ne∑

m=1
Wm

↔

ETem · (i + j + k) dΩ

+
∫

ΩF

Wi·

[
γ

(
NA∑
n=1

Wn
dan
dt

)
× rot

(
NA∑

m=1
Wmam

)]
dΩ +

∫
ΩF

Wi·

γ grad

 Nϕ∑
o=1

Woφo

× rot
(

NA∑
n=1

Wnan

) dΩ .

(110)

After deriving and quantifying the corresponding coefficients of the system of equations, we obtain
the overall FEM model with the corresponding matrices of coefficients K, M.

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 MF




..
a
..
φ
..
te..
S

+


0 0 0 0
0 0 0 0
0 0 0 0
−KFA −KFϕ 0 KF1 −KF2




a
φ

te

S

 =



0 0 0 0
0 0 0 0
0 0 0 0

0 0 0


0 0 0 0
0 0 0 0
0 0 0 0
−KF5 KF4 −KF3 KFe







0
0
0

F
pσ
pn
ETe





(111)

where {a} is the column matrix of unknown magnetic vector potentials in the discretization network
nodes,

{ ..
a
}

is a column matrix of unknown second derivatives of vector magnetic potentials over time
in the discretization network nodes, {S} is a column matrix of unknown specific shift in nodes of the
discretization network, {

..
S } is a column matrix of unknown second derivatives according to the time

shift at the nodes of the discretization network, {t} is a column matrix of unknown temperature in
nodes of discretization network, {

..
t} is a column matrix of unknown second derivatives according to

time of unknown temperature in nodes of discretization network,
{
φ
}

is column matrix of unknown

scalar electrical potentials in nodes of discretization network,
{ ..
φ
}

column matrix of unknown second
derivatives according to time of scalar electric potentials in nodes of discretization network,

{
F
}

is
column matrix of forces,

{
pσ

}
is column matrix of vectors of tangential pressure components,

{
pn

}
is

column matrix of vectors of normal pressure components
{
ETe

}
is a column matrix of modulus vectors

of specific deformation in temperature dependence of material.
Then the overall numerical FEM model of the electromechanical coupled task of the vibration MG

is written as a system of equations



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 MF





..
a
..
φ

..
te
..
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This problem can be solved in ANSYS [21] using programming tools and the APDL internal language.
The designed 3D model (112) was used to analyze and evaluate the transient excitation state of

MG Figures 2a and 6. Then, a steady state analysis of resonance and the corresponding electrical load
RL was performed [18,19]. Sensitive parts of the MG model design have emerged from 3D analyzes
and experiments. Due to the magnitude and amount of cumulative computations, absolutely not all
details are given, but only the key details (the magnetic field in the MG core region). In order to find a
suitable (optimal) direction of the magnetic arrangement solution, an accelerated 2D FEM model and a
magneto-static field design were used, which in turn lead to maximizing the induced voltage u(t) in
the winding of the MG coil.
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(a) geometrical model components, (b) conception, (c) field distribution of magnetic flux density module B
[T], (d) field distribution of magnetic field intensity module H [A/m], (e) built MG sample prepared for test.

The 3D model was designed as the primary version of MG, Figure 6, which was not optimally
arranged in the electro-mechanical conceptual design. It was solved both for start-up as a transient
task and for the so-called steady-state regime in the resonant state by the model (112).

Given the previous experience with the complex analysis of the associated 3D model of the first
version of MG, Figure 6, it became clear that critical part is the design of magnetic circuit of the
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MG (Figure 1 and Figure 8). For the chosen concept of the beam version of MG, Figure 7, only 2D
static non-linear problem with hysteresis, Figure 8a was analyzed because of the higher speed of
connected simulation. A conceptual solution of the magnetic circuit was proposed, using the results
of performed analyzes, Figure 8b. Thus, a design with a maximum magnetic flux density B(t) and
maximum amplitude of the electric voltage u(t) on the output of the MG’s winding has been achieved
in a relatively rapid manner, Figure 7. According to these auxiliary FEM models and analyzes, the final
concept of MG was designed, Figures 2b, 7 and 8.
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3. Modeling the MG

A free-arm system (BV) and its magnetic damping (non-linear) [19], Figure 7, has been designed.
Details of the MG evaluation of the analysis can be demonstrated for example in the magnetic field

the distribution of the magnetic flux density module B [T] in Figure 8. The realized MG function sample,
Figures 7 and 8, was tested for the frequency range fs = 30–45Hz. Typical frequency dependencies of
output voltage and output power of the MG are shown in Figure 9. The graph shows the effective
value of the output power P_RMS and the effective electric voltage V_RMS at the MG’s winding output
loaded by RL = 2.7KΩ at the vibration G = 0.5 g RMS.
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Figure 9. The MG experimental measurement, root mean square (RMS) output voltage V_RMS,
power P_RMS vs. frequency, frequency sweep with RL = 2.7kOhm, G = 0.5 g RMS, main operational
resonant frequency.

4. Conclusions

The paper presents a detailed design of a numerical model of a FEM mini-generator for harvesting
energy from vibrations within the range of G = 0.05 g − 0.08 g, for the frequency range of fs = 10–100 Hz,
f main = 36–41 Hz.

Based on the proposed beam version MG models and their analyses, evaluation of the parameters,
qualitative conclusions were applied to design of the swinging arm of mini-generator, Figure 7.
Some partial specific results from this systematic approach to generator design were published in
theses and works [17–19]. This article describes a complete FEM numerical model that was used
for vibration MG analysis. The results of the generator analysis were experimentally verified and
subsequently utilized to build the functional MG.

A specific harvesting system for mechanical energy extraction was proposed. It utilizes the
principle of transformation of propagating mechanical wave to electrical energy. The designed
numerical model was implemented in ANSYS simulation software [21]. The simulated effective
transformed mass and volume power densities of the generator are peff = 266 Wm- 3 and
peffV = 0.31 Wkg−1 respectively.

The FEM model showed the key moment in the design of the first versions of MG concept and its
design solutions. It also pointed out the key parameters of the model and directed the modifications of
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the MG’s equipment to the optimal solution of the harvester. An associated model (112), was able to
detect the sensitive points of the task. This was proved by measurement results from experiments
with the MG sample. FEM models of lower geometrical levels (2D) and simplified models (non-linear
with hysteresis, etc.) were used as a necessary tool for quick estimation of the changes of design or
concept changes.
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