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Abstract. Fundamental analysis of a multi-mode model of the atomic force microscope
cantilever shows that at some points; called here singular points, the mode is vanished.
Consequently, the order of the input/output behavior is reduced. The singular points can
be detected comparing possible candidates on the best model order. The detection is then
naturally performed by applying the Bayesian model comparison. Since the exact position
of the singular points is not available a priori, an explicit model of updating the probability
of tested hypotheses in time is built. More specifically, a mechanism of suppressing absolute
information is suggested based on the Bayesian decision problem where the Kullback-Leibler
divergence is used.

1. Introduction
The problem of singular point detection of the atomic force microscope cantilever [1] can be
viewed as the adaptive testing of hypotheses, each one matched to a certain model order. As the
system model is consider to be stochastic, these hypotheses naturally represent the realizations of
the mass function. To compensate the lack of knowledge about the true singular point positions,
the idea of the posterior mass function flattening can be employed. The flattening is generally
performed by exponential or linear forgetting [2]. In the present paper, we extend the approach
of the exponential forgetting scheme. We attempt to give a stabilized forgetting strategy where
an explicit model of updating the hypotheses in time is built. More specifically, the resulting
formula is based on solving the statistical decision problem [3], [4], where the Kullback-Leibler
divergence [5] is used to measure a distance between two mass functions.

Dealing with the problem of which from competing models is more suitable to explain the
data generating process a subjective measure of confidence for each model is evaluated to choose
the most probable one. The known solution satisfying the theorems of probability theory enables
us to compare models with noninformative priors [6], [7] only over parameters which are common
to all models. Hence, the given solution for the comparison of nonnested models produced by the
Kalman based algorithms could not be put into practice. For this reason, the existing concept
is reformulated preserving its Bayesian principle to be more beneficial in the case where on-line
processing is needed.
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2. Adaptive model comparison
Consider that the directly manipulated input uk and the indirectly effected output yk are both
observed on the system at every discrete instant of time k. Let the sequence of input-output data
pairs from time k1 up to the time k be denoted by Dk

k1
= {ui, yi}ki=k1 . The j-mode cantilever

model [1] can be described in its input/output form as follows:

bjθk+1 = bjθk, (1)

yk = bjh′k
bjθk + ek, ek ∼ N

(
0, bjrk

)∣∣bjrk+1=bjrk
, (2)

where bjhk ∈ R2j represents the finite-dimensional regression vector containing observations

{ui, yi}k−1
i=k−j , h

′
k stands for the transposition of hk,

bjθk ∈ R2j is the vector of inner random
variables. The unmeasurable variable ek is presumed to be a discrete white noise, normally
distributed with a zero mean and an unknown variance bjrk.

Solving the problem when more than one model order is considered to be possible, the
selection of the best one can be performed by applying the Bayesian model comparison. Suppose
that we have the finite set of different competing model orders {bjMk}nj=1, which all seek to
explain the system under study. To assess the degree of support for a particular model order
bjMk corresponding to the parameter set bjΘk = {bjθk, bjrk}, the posterior model probability

f(bjMk|Dk
1−n) shall to be evaluated. The Bayes’ rule gives

f
(
bjMk

∣∣∣Dk
1−n

)
∝ f

(
Dk
k

∣∣∣Dk−1
1−n,

bjMk

)
f
(
bjMk

∣∣∣Dk−1
1−n

)
. (3)

where ∝ stands for equal up to the normalization. Since the singular points are not known
beforehand, an explicit model of order variations is not available. Therefore, we develop a
forgetting scheme for the Bayesian model comparison that is linked to the following common idea.
The probability of the realization bjMk given data Dk

1−n is described by the posterior probability

f(bjMk|Dk
1−n). The problem is to determine the predictive probability f(bjMk+1|Dk

1−n) of the

realization bjMk+1 at the next time instant given the same data Dk
1−n. Let us introduce a

prior information about the model orders through alternative mass functions. The problem
then reads: given two alternatives on the mass function f(Mk+1|Dk

1−n) (Mk+1 is the discrete
random variable), namely

• the posterior mass function f0(Mk+1) = f(Mk|Dk
1−n) in the case of no order changes, and

• the alternative mass function f1(Mk+1) ∝ 1 describing the maximal uncertainty about
Mk+1,

decide on an optimal mass function f̂(Mk+1). The task of choosing f̂(Mk+1) given f0(Mk+1)
and f1(Mk+1) is formulated as a Bayesian decision problem. In particular, the probabilities
λ and 1 − λ are assigned to the alternatives f0(Mk+1) and f1(Mk+1) and the best decision

f̂(Mk+1) is defined as the mass function minimizing expectation of a distance between the true
mass function f(Mk+1) and the unknown mass function fA(Mk+1) restricted to the parameter
space f∗A(Mk+1) ≡ {f0(Mk+1), f1(Mk+1)}. In order to evaluate a proper distance between
f
(
Mk+1) and fA

(
Mk+1

)
, the Kullback-Leibler divergence is used

D
(
f
(
Mk+1

)
‖fA

(
Mk+1

))
=

n∑
j=1

f
( bjMk+1

)
ln

(
f
( bjMk+1

)
fA
( bjMk+1

)) . (4)
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Recall that bjMk+1 is the realization of the random variableMk+1. Taking the expectation E [·]
of (4) results in

E
[
D
(
f
(
Mk+1

)
‖fA

(
Mk+1

))]
(5)

=λ
n∑
j=1

f
( bjMk+1

)
ln

(
f
( bjMk+1

)
f0

( bjMk+1

))+
(
1− λ

) n∑
j=1

f
( bjMk+1

)
ln

(
f
( bjMk+1

)
f1

( bjMk+1

))

=D

(
f
(
Mk+1

)∥∥∥∥∥ f0

(
Mk+1

)λ
f1

(
Mk+1

)(1−λ)∑n
l=1 f0

(blMk+1

)λ
f1

(blMk+1

)(1−λ)

)
− ln

( n∑
l=1

f0

(blMk+1

)λ
f1

(blMk+1

)(1−λ)
)
.

The optimal prediction f̂(Mk+1) is found by solving the following decision problem:

f̂(Mk+1) = arg min
f(Mk+1)

E
[
D
(
f
(
Mk+1

)
‖fA

(
Mk+1

))]
. (6)

The resulting form of (5) and the properties of the Kullback-Leibler divergence imply that for

individual realizations generated by f̂(Mk+1) hold

f
(
bjMk+1

∣∣∣Dk
1−n

)
= fλ

(
bjMk

∣∣∣Dk
1−n

)
/
n∑
l=1

fλ
(
blMk

∣∣∣Dk
1−n

)
. (7)

The probability λ ∈ (0, 1) can be viewed more prosaically as the forgetting factor with a lower
value producing a higher degradation of less relevant information. At this point, equation (3)
can be rewritten according to

f
(
bjMk

∣∣∣Dk
1−n

)
∝
∫

Θ∗
f
(
yk

∣∣∣bjhk, bjΘk

)
f
(
bjΘk

∣∣∣Dk−1
1−n

)
d bjΘkf

λ
(
bjMk−1

∣∣∣Dk−1
1−n

)
, (8)

where Θ∗ is the space of bjΘk. By invoking the system (1), (2), it allows us to algebraically
quantify the functional form (8) as follows:

f
( bjMk

∣∣Dk
1−n
)

=

bjck
bjΣ
bjγk−1/2
k−1

bj r̂
−1/2
y;k

bjΣ
−bjγk/2
k fλ

(
bjMk−1

∣∣Dk−1
1−n

)
∑n

l=1
blck

blΣ
blγk−1/2
k−1

blr̂
−1/2
y;k

blΣ
−blγk/2
k fλ

(
blMk−1

∣∣Dk−1
1−n

) , (9)

where the following quantities have to be calculated for each model order:

bj r̂y;k ≡ 1 + bjh′k
bjPk−1

bjhk, (10)

bj êk ≡ yk −
bj
h′k
bj
θ̂k−1, (11)

bjKk ≡ bjPk−1
bjhk

bj r̂−1
y;k, (12)

bj
θ̂k =

bj
θ̂k−1 + bjKk

bj êk, (13)

bjPk = (I − bjKk
bjh′k)

bjPk−1, (14)

bjΣk = bjΣk−1 + bj ê2
k
bj r̂−1

y;k, (15)

bjγk = bjγk−1 + 1 (16)

and the auxiliary parameter bjck is defined as the ratio of two gamma functions bjck =
Γ(bjγk/2)/Γ

(bjγk−1/2
)
. A detailed discussion about the particular quantities above and their

prior settings can be found in [8].
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From (9) it can be inferred that the Bayesian model comparison favors those models for
which the addition of new observations will cause an increase in accuracy. The measure of the
jth model order accuracy in terms of the model error rate in the output predictions is reflected by
the sum of squared errors

∑k
κ=j−n+1 (yκ − bjh′κ bj θ̂k)2. These errors form the part of bjΣk with a

lower value indicating a higher model accuracy. The model comparison also contains reward for
coherency between the data and the prior information (via (bj θ̂k−bj θ̂j−n)′(bjP−1

h;j−n)(bj θ̂k−bj θ̂j−n)

appearing in bjΣk) and parsimony.
Simulations produce excellent results and point out to the validity of our solution. However,

due to space limitation, the simulation studies are not presented here.

3. Conclusion
In this paper a novel approach for detection of singular points of the multi-mode cantilever has
been developed based on the Bayesian inference principle. More specifically, the algorithm which
is capable of deciding which of the model orders is the most probable one was derived. To detect
the singular points, which position is unknown, stabilized forgetting strategy that is close to the
well-known technique of exponential forgetting was embed into the mechanism of time-evolution
of the particular hypotheses. The algorithm generally provides a solution in the case where data
are generated by the Gaussian probability density function through the unknown time-varying
system parameters.
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