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RECONSTRUCTION OF AN ELLIPSE FROM
ITS RASTER IMAGE
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Abstract: Motivated by practical application, we investigate the ways how to
obtain a description of an ellipse whose circumscribed rectangle is known exactly
and whose coordinates of touching points are known up to a certain inaccuracy.
We show the sufficient condition for determination of such an ellipse, derive the
implicit and parametric equations and show a proposal of the solution by the
modification of the standard regression method.
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1. Motivation — The Picture Analysis

Suppose there is a circular object taken by a digital camera from a non-frontal
view. On a picture, the circle is skewed to form an ellipse-like shape. Its
boundary is a curve determined by a number of parameters of the position
of the camera with respect to the object, the angle from which the object is
taken, the optical and digital parameters of the camera etc. One often needs
to analyze the picture automatically to be able to locate the object. Therefore
we need to know the exact mathematical description of the curve. If we admit
no more distortion than skewing and perspective, this curve is an ellipse.
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Fitting of an ellipse through the set of points is one of the classical problems
of applied mathematics. In general, there are two approaches. The algebraic
one involves the system of five linear equations derived from the knowledge
of the coordinates of five points - see also [8, 4, 2]. The geometric approach,
uses the least-square method which can be solved numerically. Actual problems
solutions mostly prefer applications of geometric approach since it is stable and
provides satisfactory results. The regression method is described e.g. in [5].

Using graphical tools one may usually find quite accurately the bounding
values in direction of z and y axes. Hence the problem can be restated as finding
an ellipse inscribed into the rectangle, which is also studied in [6]. Moreover,
we may use possible knowledge of the position of some base point on the ellipse,
namely the touching point. In the paper, we derive the determination of the
ellipse by these data.

In general, however, we may find only an interval in which the value of
the second coordinate of the touching point occurs. Therefore it makes sense
to ask for procedures how to obtain the formulas for the ellipse with such a
way of description. If we take these properties in account, one can see that
an advantageous choice is to take the midpoint of the interval. This procedure
provides results of rather good accuracy which is demonstrated on the real-data
example, where we compare the procedure with the regression method.

Finally we study other possible choices of the base points. In Appendix, we
recall some relationships between the equations for ellipse and their marginal
points.

2. An Ellipse Inscribed in the Rectangle

Let there be an ellipse & where the values Tmaz, Tmins Ymazs Ymin 0f maximum
and minimum in x and y direction are determined, i.e. the ellipse is inscribed
into the rectangle of known lengths. There are still more ellipses with this
property. To determine the ellipse entirely, we need to know one of the following:

e the second coordinate of some of the touching points,
e the intersection of the ellipse with the rectangle’s diagonal.

For other point of the ellipse there are general two possible ellipses satisfying
the conditions.

Suppose y, is the y-coordinate of the point X402 = [Tmaz, yr] on ellipse (the
rightmost, i.e. the z-maximal point). We will show that these data determine
the ellipse entirely.
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Firstly, we find the center S = [z1, z2] of the ellipse. It can be easily ob-
tained as a center of the circumscribed rectangle because the ellipse is centrally
symmetric. Hence

_ Tmazx + Tmin _ Ymax + Ymin
S R T @

Now, for the convenience, we move the center of ellipse to the origin so the
marginal values are transformed as follows:

_ Lmazr — Tmin — Ymaz — Ymin

Ty = ) Y2 = ) (2)
2 2

Y1 = Yr — 22. (3)

Clearly x1,ys > 0. The new origin-centered ellipse will be denoted by &..
The general equation of an ellipse (or a hyperbola) is

Az? + By*+2Cey+Dx+ Ey+F = 0, (4)

where AB # 0. The coefficients D and E determine the translation from the
origin. Thus any origin-centered ellipse is fully determined by

Az’ + By  +2Cay+F = 0, (5)

and the equation may be divided by A, so we get the form
2>+ By’ +2Czy+F = 0. (6)
Lemma 1. Let the ellipse E. be described by (6) with the maximal points

R = [z1,y1] and T = [x9,y2] in direction of x and y coordinates, respectively.
Then

TIYL = Toyo (7)

and the coefficients from (6) satisfy

c = -2 8
Y2 ( )
2

B = 3, (9)
Y

F = 222 (10)
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Proof. From (6) we get by implicit differentiation

dy  x+Cy dr By+Cx
de  By+Cz’ dy  x+Cy
and the points P and V will be obtained by the solution of equations fl—z =0,

% = 0, respectively. Hence z9 + Cys = 0 and By; + Cz; = 0. Assume the

values y2 and z1 are nonzero (otherwise the situation is trivial). We get

T1x2

c=-2 p=_cf_ :
Y2 Y1 Y1Yy2

Since P € &, it satisfies the equation (6), hence by substitution we get:

1T T
23+ 22 2y + F =0,
Y1Yy2 Y2
hence .
J A T x%
Y2

Since V' € &., we may put it in the equation (6) to get

1T r1x r1x
12y2_212?/2+ 1r2y1
n Y1 b2

[l V)
Il
o

2
5+
This can be rewritten as

(xay1 — 1y2)(X1y1 — @2y2) = 0.

In non-degenerate case, i.e. when the smaller of semiaxis is non-zero, we have
strict inequalities |xa| > |z1], |y1| > |y2|- Then |xoy1| > |z1y2| and |zay1| #
|x1y2|, hence xoy1 — x1y2 # 0. Therefore x1y; — x2y2 must be equal to zero.
In degenerate case, the ellipse collapses into a segment line, hence the maximal
points in both directions coincide.

Therefore x1y; = x2y2 holds in both cases. Now by substitution xo =
in the equations for B, C, F' we get the required relationships.

T1yY1
Y2

As a consequence, we get that B is positive, hence generally AB > 0.

Theorem 1. Duality property

Let the ellipse E. be given by (6) with A,B > 0. Let v = \/% (this will

be called a duality ratio for £.). Given a point X = [zg,yo], then the point
X' = [%yo, ~vxo] (which will be called the dual point for X ) satisfies:

Xe& — X €&,
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Figure 1: Duality property on the ellipse.

Proof. Since X" = [%'yxo, 'y%yo] = [z0, yo] = X, the duality is an involution
and it suffices to prove just one direction. Let X € &. Then Ax3 + By +
2Czoyo + F = 0. Then

1 1 B A
A(=yo)’ + B 21920= F = A(\/ =v0)* + B(y/ =20)*
(,Yyo) + B(yxo)” + va07$o+ ( Ayo) + B( BSCO)
+20y01’0+F
= By? + Aa + 2Cyoxo + F
=0

hence X’ € &.. O

From now on, let p be an origin-centered basic (parallel with coordinate
axes) rectangle with lengths 2 and 23 of horizontal and vertical, respectively,
sides and & be its inscribed ellipse (clearly origin-centered) with the marginal
points T' = [£, 8], B, R and L (top, bottom, right and left, respectively). Hence
x1 = a,y2 = f,x2 = £ and, due to (6), the ellipse can be described by the
equation

B22? + o?y? — 26Bry + BA(E* — o?) = 0. (11)
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Then the property 1 can be applied on the marginal points of the ellipse as

follows: due to 1 v = % = [L1 = g—i = g Hence ~ is the tangent of
*1
)
v2

the diagonal with the positive slope. Therefore two points are mutually dual if
they have common projection points on the rectangle’s diagonal (see Figure 1).
One can easily see that the marginal points 7" and R are dual.

Remark 1. Using the theory of conjugate diameters (see e.g. [7]), one
can see that the diagonal chords of the rectangle are exactly the conjugate
diameters and then the statement follows from the well-known fact that the
midpoints of the parallel chords lie on the diameter, which is conjugate to the
longest of these chords being the diameter.

2.0.1. Expression of the Marginal Values

Since &€ can be described by (6), using the formulas from the Lemma 1 and

introducing the variable Q = CQE B (used analogously in the Appendix) one

can easily get the marginal values in the form

T = \/gu g1 = ‘/—g’Q’ T2 = %7 Y2 = % (12)

3. Vagueness of the Touching Point

While the previous section was based on the knowledge of the exact values,
now we will describe the more usual condition. It is usually not possible to
read from the bitmap the exact value of the xz-coordinate for the topmost (or
y-coordinate for the rightmost) point. Let us focus on the topmost point.
What one can get from the raster image is only a pixel range where it occurs
(referred to as an occurrence range)— this is given by the resolution of the
bitmap image. While the height of the range may be considered negligible, the
problem of its width still needs to be solved. However, whatever the process of
rasterizing of the ellipse was, the bounds of this range arose from the ellipse by
replacement of a certain curve segment by a set of neighboring pixels. Hence
we may expect that exact ellipse (after a slight change of the size) intersects the
two-dimensional pixel range in the bounding values of x-coordinate. Though
the original ellipse may not have satisfy this exactly, such a change will cause
only minor differences. In fact, this change is negligible since it is certainly
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Figure 2: Fitting the ellipse into the raster image.

bellow the resolution of the image. On the Figure 2, the thin original ellipse
and its raster image are depicted. In that case of scale, the rightmost and the
leftmost ranges are intersected nearby the bounding values.

Now let the situation be the following: Let the topmost point 7' = [£, 8] of
& be somewhere between the points T = [z, §] and T} = [z1, 5] (the bounding
points of the range). The segment line connecting Ty and 77 will be identified
with the interval (xg,x1) of its xz-values and the same convention will be used
for bottom side and for the vertical sides and y-coordinate.

Due to the previous discussion, we may consider the best solution being an
ellipse which can be rescaled so it intersects the points Ty and 77. Hence we
are looking for an ellipse &’ satisfying:

e 1y, Ty € g/,
e &’ is origin-centered,

e the basic circumscribed rectangle has the ratio v = g of the lengths of
vertical and horizontal side.

Such an ellipse can be obtained as follows. Using the duality one may find
the points Ry = Tf), Ry = T] with the duality ratio given by ~. To find the
coefficients B, C, F' for the equation (6) one solves the corresponding system
of 3 linear equations for some triple of the points. The solution is B = g—;,

C= —%ﬁ“, F = 2921 — o?. Since here A = 1, the ellipse £ has the following
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equation:
8222 4+ o®y? — (zo + z1)Pry + 52(300:01 — oz2) =0. (13)

One may easily check that it is satisfied by the points Tgy, T, Rg, R1. Observe
that if zop = z1, we get exactly the equation (11), since Ty = 77 becomes the
topmost point 7.

Now, from &£ we can derive the description of the ellipse £. We need to
change the scale in order to fit the ellipse into the rectangle p. But all we need
to know is the z-value of the topmost point, i.e. the value of £&. Due to the
central symmetry, the change of the scale can be managed by translation of the
points along the rays of the form y = dx. A point [z,y] is then mapped onto
[/, 4] where 2’ = y'{.

Let [z, y»] be the topmost point of the ellipse £’. Tt will be translated to the
point which will be the topmost point of &, i.e. the point T = [{, ]. Therefore

£ =Bz,
From the paragraph 2.0.1 we get the coordinates z, = %, Yp = é The

nonzero coefficient () is not needed because we will use only the ratio r = £

ci .
el |,9~‘024%9~‘1| n "
L? = |C|. Hence r = i = :”026“ and we get finally { = fr = #03%L,

o

The result can be stated as

Observation 1. The best ellipse (in sense of the discussion above) in-
scribed in the basic origin-centered rectangle has the topmost point in the
middle of the occurrence range.

3.1. Regression Method

In general, the situation can be even worse. Since each of the four marginal
points yields an occurrence range, we have four ways how to describe the ellipse
which may not yield the same results. There are more ways how to handle this
situation - one can interpolate either the initial values or the results or to start
over using a regression method.

Due to the central symmetry and the duality, we can map all the 8 bounding
points onto the same, say the upper, side. Then there are several ”reasonable”
ways how to assign one particular point for all these 8 points, namely we can
take their (arithmetical) average, which is exactly the same as the average of
the mapped midpoints for each pair of bounding points. Other options are to
make the intersection or the union of all the mapped occurrence ranges and to
take their center.
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If we are not satisfied with the interpolation of the initial values, we may
use the regression method. The problem stands as: To fit an ellipse in the set
of the given 8 points. It can be solved by the standard least square method.
However, it involves equations which are not directly solvable so we use Gauss-
Newton algorithm for numerical approximations. The result will be obtained in
the parametric form, which includes the expression of the lengths of semiaxes
and the tilt angle.

After its application, the semiaxes of the resulting ellipse will be transformed
in order to get the ellipse inscribed in the rectangle. It is possible to do it
accurately only if the ellipse remains origin-centered, but the error becomes
very small for high number of iterations. Hence it makes no problem to recenter
the ellipse to the origin.

We demonstrate how the method works for rectangle p with the values

1 3
o= 5\/1—9 B = 3
and the bounding points:

T : xg = 1.531375673 Yo =
T : x1 = 1.343375673 n =72
Ry : To =« yo = 1.063965022
Ry T3 =« ys = 0.9245745478
By : xq = —1.343375673 ys = —f
By : x5 = —1.546375673 ys = —f3
Lo: T = —Q ye = —0.9245745478
Ly: T7 = —Q y7 = —1.073965022

Let us show the samples from the first 600 steps of Gauss-Newton method.
For comparison, by thick dash line we draw an ellipse of the equation 3622 +
76y> —40+/32y — 96 = 0 which is an algebraically calculated ellipse with the top-
most point T = [%\/5, 3], semiaxes v/6 ~ 2.449489743 and 1 and the tilt angle
& ~ 0.5235987758. The right image shows the final iteration (thin solid line),
recentered to the origin (dash-and-dot line) and the algebraically calculated
ellipse (solid thick line).

An interpretation of the results obtained by least square method is based
on the modification of the resulting ellipses. As discussed above, the obtained
ellipse intersects the rectangle so that the points with the maximal value of
a coordinate have the value of the other coordinate between the values of the
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1.5054

1.50

1.4951

1.4851

Figure 3: Demonstration of the Gauss-Newton method

defining points. Hence by slight shortening of the semiaxes we get the ellipse
tangent to the rectangle. We can use the formulas derived in [6]. Namely, we
shorten the obtained semiaxes the following way

o 27 r B
_. W =b
Va2 cos2 0 + b2sin2 0 Va2sin2 0 + b2 cos?

a

— this will play the role of our new semiaxes while the angle remains the same.
The resulting ellipse (obtained from the 600th iteration) will have the semiaxes
a’ = 2.45018270 & = 0.997965701 and the tilt angle § = 0.523920932. As we can
see, the differences between these values and the values for the algebraically cal-
culated ellipse are smaller by degree then the lengths of the occurrence ranges.
Hence, the algebraic method provides an easy way of reaching the satisfactory
results.

4. Determination by Other Points

While the marginal points of & may not be able to obtain exactly, we still
can try to obtain some other point [zg,yo] of the ellipse more accurately. We
will show that, in some cases, such a point provides a sufficient information to
determine the ellipse fully.
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From Lemma 1 we know that, in order to determine the ellipse, it suffices
to determine the value of £ € (—a, ), i.e. the z-coordinate of 7. It can be
obtained from the equation (11) rewritten as quadratic in variable £

G262 — 2Bxy€ + B2 + oy — o262 = 0.

If [x0,y0] € & is the known point, we may put it into the equation and to
express & as

vy & /a? — x5/B° —
5 .

Let us look at the values of £ for some instances of [xg, yo] € E..

&=

1. Just to check the correctness, let yg = 5. Then there is a unique solution
and & comes up to be xo— this is absolutely right, since the point [, f] is
the only one with this y-value.

2. Similarly, let g = a. Then we get £ comes up to be uniquely determined
and equal to %, so we get that the point [xg,yo] is dual to [£, 8], hence
[0, yo] is the rightmost point, which is correct again.

3. Let yg = %, i.e. the point is on the diagonal with the positive slope.
Then we have:

2.2
¢ = L2 /o —u3/p2 - 250
— S s Ja21 - H)y/e0 - )
_ 1,28 25
= slags £aB(l—23))
= x—gia% 2 2)

2_ 2
2zg—a

«

Since £ < a, we get the unique solution £ =

—% on the

4. Analogously, we get the unique solution for the point yo =
diagonal with the negative slope.

Remark 2. The points on the diagonals are, in fact, most likely to be
accurately readable from the raster image. The reason is that the tangent line
of the curve is in these points generally far from being parallel to any of the
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coordinate axis and since these points are on the diagonal, the raster image of
the curve is most even here — it admits least errors in each region bounded by
the ellipse’s marginal points.

Therefore, we suggest to choose the base point from the eight points of
the ellipse that lie either directly on the rectangle (marginal points) or on its
diagonals. The latter ones are possibly easiest readable points.

Appendix: From General Equation to the Parametric Expression

We need to find the lengths of semiaxes a,b and the angle 6 of rotation from
the basic position (with the semiaxes parallel to coordinate axes). Parametric
expression of ellipse in the basic position is in the vector form:

(2) = (1=9).se02m, "

The rotation by an angle 6 can be achieved by left multiplication by the matrix

(15)

sinf  cosf

H(0) = <

To find the values of a,b and 0, it is useful to know the general expression
of the coefficients from the equation (4) with D = E = 0:

cosf) —sin 9)

A = Qa® —1}), (16)
B = Q(a®—y}) (17)
C = —Qxyys. (18)
F = QaQ(xfc—Fyfc—cﬂ) (19)

where [z, y¢] are coordinates of the right-located focus and @ is a nonzero real
coefficient. See e.g. the Appendix of [1] for derivation of these relations. From
the properties of a general ellipse, one can easily see that

bQZaQ—x?—y?.

2

From (16) and (17) we get x? =a? —8 and yj% =a"— g, respectively. Since

b? :aQ—x?—yJ%, we have
A+ B 9

v = 0 a?, (20)
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Now we take in account the equation (18) which yields C? = Q?(a®— %)(a2 - g)
hence

Q%' - Qd*(A+B)+ AB—-C? = 0, (21)

By substitution S = Qa? we get an equation S? — (A + B)S + AB — C? =
0 with the roots % where R = /(A + B)2 — 4(AB — C?). The roots
are then Sy = A+]23+R, S1 = W. Moreover, by simplification we get

R = /(A — B)2+4C2. Since a has to be positive, we expect it to be either

ap = /B or ap = /&

Let {i,i'} = {0,1} and a = a;. Thenv? = 4E8 42 = ALB A+BJ2rgl)iR =

Q i Q
CA—B—(—1)i —(—1)i s, .
2l AQ B-(-1)'R _ A+BQ(E2 I)R:U":az%. Since a > b, we have a = a¢ and

b= ai.
We still need to evaluate the variable ). By the transformed equations

[[a® = [(16) + (A7)]] - a® — (19) - Q] — (21)

we get AB—C? 4+ QF =0, ie., Q = CQ;F‘MB. Collecting all together we have
the formulas:

C? - AB
= — 22
Q s (22)
R = /(A—-B)?+4C2, (23)
A+ B A+ B-—
Sp= AFBTER g = ArB-R (24)
2 2
So St
a=4/—, b=4/—. 25
0 0 (25)
To find the tilt angle 6, just observe that tanf = i—’; Hence tan?f =
a2_§ Qang
a27§ = %, 1.e.,
So— B
tan? 0 : 2
an S, A (26)

The signum of the tangent of the main axis of the ellipse is given by the deviation
of the maximal x-value from the z-axis, i.e., it is the same as the signum of 1,
hence of £ = —% (see (7,8,9)), since x; > 0. Hence

C ) So— B

B\ Sp—A°

tan @ = —sgn(
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We may assume 6 € (=7, 5), hence by

1
cos) = ———, 27
V1 + tan260 27)

tan 6
sinf = ——— 28
V14 tan? 6 (28)

we get the entries of the matrix H(#). The shifting to the original center is

<1

achieved by addition of the vector ( ) Now we have the ellipse described by

22
the vector equation:

(5) = mo) (feme) + (%) o c .20 (29)
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