Publication Details

BUT System Description to VoxCeleb Speaker Recognition Challenge 2019

ZEINALI, H.; WANG, S.; SILNOVA, A.; MATĚJKA, P.; PLCHOT, O. BUT System Description to VoxCeleb Speaker Recognition Challenge 2019. Proceedings of The VoxCeleb Challange Workshop 2019. Graz: 2019. p. 1-4.
Czech title
VUT systému pro VoxCeleb soutěž automatického rozpoznávání řečníka 2019
Type
conference paper
Language
English
Authors
URL
Keywords

VoxCeleb Speaker Recognition Challenge, Deep Neural Networks, ResNet, x-vector, PLDA, Cosine distance

Abstract

In this report, we describe the submission of Brno University of Technology (BUT) team to the VoxCeleb Speaker Recognition Challenge (VoxSRC) 2019. We also provide a brief analysis of different systems on VoxCeleb-1 test sets. Submitted systems for both Fixed and Open conditions are a fusion of 4 Convolutional Neural Network (CNN) topologies. The first and second networks have ResNet34 topology and use twodimensional CNNs. The last two networks are one-dimensional CNN and are based on the x-vector extraction topology. Some of the networks are fine-tuned using additive margin angular softmax. Kaldi FBanks and Kaldi PLPs were used as features. The difference between Fixed and Open systems lies in the used training data and fusion strategy. The best systems for Fixed and Open conditions achieved 1.42 % and 1.26 % ERR on the challenge evaluation set respectively.

Published
2019
Pages
1–4
Proceedings
Proceedings of The VoxCeleb Challange Workshop 2019
Place
Graz
BibTeX
@inproceedings{BUT168476,
  author="Hossein {Zeinali} and Shuai {Wang} and Anna {Silnova} and Pavel {Matějka} and Oldřich {Plchot}",
  title="BUT System Description to VoxCeleb Speaker Recognition Challenge 2019",
  booktitle="Proceedings of The VoxCeleb Challange Workshop 2019",
  year="2019",
  pages="1--4",
  address="Graz",
  url="https://arxiv.org/abs/1910.12592"
}
Files
Back to top