Publication Details

Investigation of Specaugment for Deep Speaker Embedding Learning

WANG, S.; ROHDIN, J.; PLCHOT, O.; BURGET, L.; YU, K.; ČERNOCKÝ, J. Investigation of Specaugment for Deep Speaker Embedding Learning. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. Barcelona: IEEE Signal Processing Society, 2020. p. 7139-7143. ISBN: 978-1-5090-6631-5.
Czech title
Výzkum metody Specaugment pro hluboké učení embeddingů mluvčích
Type
conference paper
Language
English
Authors
URL
Keywords

speaker embedding, on-the-fly data augmentation, speaker verification, specaugment

Abstract

SpecAugment is a newly proposed data augmentation method for speech recognition. By randomly masking bands in the log Mel spectogram this method leads to impressive performance improvements. In this paper, we investigate the usage of SpecAugment for speaker verification tasks. Two different models, namely 1-D convolutional TDNN and 2-D convolutional ResNet34, trained with either Softmax or AAM-Softmax loss, are used to analyze SpecAugments effectiveness. Experiments are carried out on the Voxceleb and NIST SRE 2016 dataset. By applying SpecAugment to the original clean data in an on-the-fly manner without complex off-line data augmentation methods, we obtained 3.72% and 11.49% EER for NIST SRE 2016 Cantonese and Tagalog, respectively. For Voxceleb1 evaluation set, we obtained 1.47% EER.

Published
2020
Pages
7139–7143
Proceedings
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISBN
978-1-5090-6631-5
Publisher
IEEE Signal Processing Society
Place
Barcelona
DOI
UT WoS
000615970407081
EID Scopus
BibTeX
@inproceedings{BUT163947,
  author="WANG, S. and ROHDIN, J. and PLCHOT, O. and BURGET, L. and YU, K. and ČERNOCKÝ, J.",
  title="Investigation of Specaugment for Deep Speaker Embedding Learning",
  booktitle="ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings",
  year="2020",
  pages="7139--7143",
  publisher="IEEE Signal Processing Society",
  address="Barcelona",
  doi="10.1109/ICASSP40776.2020.9053481",
  isbn="978-1-5090-6631-5",
  url="https://ieeexplore.ieee.org/document/9053481/authors#authors"
}
Files
Back to top