Publication Details

Multiobjective Evolution of Hash Functions for High Speed Networks

GROCHOL, D.; SEKANINA, L. Multiobjective Evolution of Hash Functions for High Speed Networks. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation. San Sebastian: IEEE Computer Society, 2017. p. 1533-1540. ISBN: 978-1-5090-4600-3.
Czech title
Více-kriteriální návrh hašovacích funkcí pro vysokorychlostní sítě
Type
conference paper
Language
English
Authors
Grochol David, Ing., Ph.D.
Sekanina Lukáš, prof. Ing., Ph.D. (DCSY)
Keywords

NSGA-II, linear genetic programming, hash function, network

Abstract

Hashing is a critical function in capturing and analysis of network flows as its
quality and execution time influences the maximum throughput of network
monitoring devices. In this paper, we propose a multi-objective linear genetic
programming approach to evolve fast and high-quality hash functions for common
processors. The search algorithm simultaneously optimizes the quality of hashing
and the execution time. As it is very time consuming to obtain the real execution
time for a candidate solution on a particular processor, the execution time is
estimated in the fitness function. In order to demonstrate the superiority of the
proposed approach, evolved hash functions are compared with hash functions
available in the literature using real-world network data.

Published
2017
Pages
1533–1540
Proceedings
Proceedings of the 2017 IEEE Congress on Evolutionary Computation
Conference
IEEE Congress on Evolutionary Computation 2017, Donostia - San Sebastián, ES
ISBN
978-1-5090-4600-3
Publisher
IEEE Computer Society
Place
San Sebastian
DOI
UT WoS
000426929700198
EID Scopus
BibTeX
@inproceedings{BUT144407,
  author="David {Grochol} and Lukáš {Sekanina}",
  title="Multiobjective Evolution of Hash Functions for High Speed Networks",
  booktitle="Proceedings of the 2017 IEEE Congress on Evolutionary Computation",
  year="2017",
  pages="1533--1540",
  publisher="IEEE Computer Society",
  address="San Sebastian",
  doi="10.1109/CEC.2017.7969485",
  isbn="978-1-5090-4600-3",
  url="https://www.fit.vut.cz/research/publication/11325/"
}
Files
Back to top