
Dependability Analysis of Fault Tolerant Systems
Based on Partial Dynamic Reconfiguration

Implemented into FPGA
Jan Kastil, Martin Straka, Lukas Miculka, Zdenek Kotasek

Brno University of Technology
Bozetechova 2, 61266 Brno, Czech Republic
{ikastil,strakam,imiculka,kotasek}@fit.vutbr.cz

Abstract—In this paper, a dependability analysis of fault
tolerant systems implemented into the SRAM-based FPGA is
presented. The fault tolerant architectures are based on the
redundancy of functional units associated with a concurrent
error detection technique which uses the principles of partial
dynamic reconfiguration as a recovery mechanism from a fault
occurrence. Architectures are tested by injecting soft errors into
partial bitstream in FPGA by an SEU injector and the faults
coverage of this architecture is obtained. From faults coverage,
the failure rate and repair rate are evaluated. Then, for fault
tolerant architecture Markov dependability models are created
and how the reliability and availability parameters derived from
this model for different configurations of architectures and faulty
modules is demonstrated. The reliability analysis results are then
shown.

I. INTRODUCTION

The robustness and complexity of digital systems have a
significant impact on reliability and diagnostic features of
these systems. High reliability and availability are important
features which are required in various applications of elec-
tronic components. It is reported very often that a particular ap-
plication is implemented as a Fault Tolerant System (FTS) [1].
Fault-tolerance (FT) is an important system metric for many
operating environments (Earth or space application) [2].

Digital systems can be implemented on various platforms.
From among those which are widely used in many applica-
tions, the reconfiguration hardware can be mentioned. Field
Programmable Gate Arrays (FPGAs) play an important role
among reconfiguration platforms because their function can be
very easily reprogrammed by loading new configuration data
(bitstream) into the configuration memory [3]. In the FPGA,
the combinational and sequential logic are implemented in
programmable Complex Logic Blocks (CLBs) which are con-
figured by bitstream data. In order to store the bitstream, many
FPGA devices are based on Static Random Access Memory
(SRAM). More than 99% of SRAM memory bits on an FPGA
are used for storing the configuration data of the FPGA [4].

SRAM-based FPGAs are becoming increasingly popular for
space-based applications due to their high-throughput capa-
bilities and relatively low cost. These SRAM-based devices,
however, are susceptible to radiation-induced Single Event
Upsets (SEUs). An SEU causes the change in the state of
a digital memory element caused by an ionizing particle. As

the ionizing particle passes through the device, a charge can be
transferred from one node to another. This charge transfer can
lower the voltage of a memory cell and change its internal
state. SEU occurrence in FPGA memory can be seen as
a big problem for many digital systems. Therefore, several
FT techniques have been proposed and tested for mitigating
SEUs in FPGAs [5],[6]. Many FT techniques use hardware
redundancy in order to reduce the probability of failure. By
replicating the desired circuitry and comparing the results,
faults in the configuration can be detected and reported. Other
techniques rely on device reconfiguration to continually scrub
the configuration bitstream [7]. By repeatedly configuring the
device, SEUs occurring within the configuration bitstream are
replaced by the correct value.

Duplex systems with various types of Concurent Error
Detection (CED) technique are popular FT architecture for
SEU mitigation in SRAM-based FPGA [8]. As examples,
CED techniques, on-line checkers or dual-rail logic can be
mentioned. Many papers were presented on this topic [9],[10].

Triple Modular Redundancy (TMR) is a well known fault
mitigation technique that uses redundant hardware to tolerate
faults caused by SEUs as well [11],[12]. A circuit protected
by TMR has three redundant copies of the original circuit
and a majority voter. A single fault in any of the redundant
hardware modules will not produce an error at the output
as the majority voter will select the correct result from
the remaining two correctly working modules. TMR can be
combined with recovery techniques as configuration memory
scrubbing or Partial Dynamic Reconfiguration (PDR) [13]. The
possibility of modifying or reloading configuration memory
while the application is correctly working is seen as the main
reason why a PDR has become an available feature in FPGA
based implementations. The FTS must include a configuration
controller to provide the PDR process driving [14].

Reliability evaluation and dependability analysis are im-
portant steps in the process of highly reliable and available
SRAM-based FPGA systems design. For these purposes, the
Markov dependability models can be used [15]. In [16],
a mathematical Markov reliability model for SRAM-based
FPGAs is presented. From the model, main dependability
parameters are evaluated and gained. Many other papers were
presented where the process dependability analysis of an

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.40

591

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.40

250

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.40

250



FPGA-based FT design are described or evaluated [17],[18].
In this paper, a reliability and availability analysis for

different types of FT architectures implemented into SRAM-
based FPGA is presented.

II. MOTIVATION AND GOALS OF THE RESEARCH

FPGA based designs offer new possibilities for the activities
which aim at designing an FT system with a high reliability
and availability of the system.

A. Previous Research in FT Systems Design Area

Our previous activities were oriented on creating a new
methodology of FT systems design into SRAM-based FPGA
platforms where the main principles of PDR were used as the
recovery mechanism in situations when an SEU occurs in the
implementation. The principles of the methodology together
with properties and experiments of several FT architectures
were presented in [19]. The FT structure of our methodology
can be seen in Figure 1. The methodology allows for the
detection and correction of soft errors in the FPGA-based
design and the detection of permanent faults in an FPGA
structure.

outin

FPGA

Bitstreams storage (FLASH)
partial bitstreams for PRM1, PRM2, ....... PRMn-1, PRMn

Partial
Reconfiguration 

Controller

FT architecture 1 FT architecture 2 FT architecture n

. . .

bus errors

PRM1 PRM2 PRM5 PRM6 PRM

Partial
Reconfig.
Controller 

PRMn

ICAP

PRM4 PRM8

PRMPRM3

FT architecture 3

PRM PRM PRM

PRM PRM

FT architecture 4

PRM.. PRM.. PRM...

PRM... PRMn-1 outin

Fig. 1. Fault Tolerant Structure for FPGA Reliability Designs.

Two FT architectures based on Partial Reconfiguration Mod-
ules (PRMs) can be seen in Figure 2. The FT architectures
using online checkers or other CED techniques for error detec-
tion are often reported. On-line checkers can be used for error
detection and identification of faulty units. Checkers can be
constructed for electronic components on different levels (e.g.
module or Register-Transfer Level (RTL) components). An
error detected by the on-line checker initiates the reconfigura-
tion process of the faulty PRMs via a special reconfiguration
controller (GPDRC - Generic Partial Dynamic Reconfiguration
Controller) implemented inside the FPGA. For architecture
TMRcmp, a dependability analysis is demonstrated in this
paper.

The next goal of our research was to develop an external
SEU generator and verify its ability to insert an SEU to
the required position in the bitstream. This gives us the
opportunity to test the behavior of FT architectures and their
reaction to SEUs. The SEU simulation framework allows us to
insert multiple SEUs in one run and simulate the occurrence

FU1

FU2

FU3

Voter

=

=

=

PRM1

PRM2

PRM3

PRM4

in

out

err1

err2

err3

FU1

FU2

PRM1

PRM2

CHCK1

Chck2

Mux

out

in

err1

err2

err

err

PRM

PRM

TMRcmp DUPLchckcmp

Fig. 2. Fault Tolerant Architectures Based on PRMs for FPGA Designs.

of a higher number of SEUs. The architecture of an SEU
simulation framework is shown in Figure 3. The properties
of the external SEU generator and experiments with SEU
simulation framework were presented in [20]. The results
gained from SEU experiments together with investigated FT
architectures can be used to compute reliability parameters of
dependability models of the methodology. The results from the
SEU simulation framework are used in this paper for reliability
evaluation of TMRcmp architecture.

Test design
&

FT architecture

PC
SEU generator

Evaluation design
&

FT architecture

data in data out

data out

error

SEU

report

UART/USB

placing

FPGA

into bitstream

UART/USB

clk   rst

Fig. 3. SEU Simulation Framework for Testing FT Structure.

B. Problem Definition and Goals of the Research

This paper describes the intended following activities of
our research based on previous work. In order to verify the
ideas of the methodology, a dependability model must be
developed. The problem we are solving here is on how to
create a dependability model for FT architectures presented
above and on how to evaluate their dependabilty parameters.
For dependability analysis, Markov models can be used.
Finally, the dependability results are compared with other SEU
mitigation techniques as TMR or bitstream scrubbing with
TMR.

The paper is organized as follows. In Section III, the
introduction into system dependability and Markov models
together with presenting the principles of reliability param-
eters evaluation are given. The automatic generation of the
Markov dependability model for FPGA-based FT architectures

592251251



together with the generation of differential equations and their
evaluation by numerical and analytical methods are shown in
Section IV. In Section V, the evaluation of the failure rate and
repair rate is presented and reliability and availability param-
eters are derived and summarized for different configurations
of architectures and faulty modules. Finally, all experiments
together with the goals of our future research are mentioned
(Section VI).

III. SYSTEM DEPENDABILITY AND THE USE OF MARKOV

MODELS

The dependability analysis of FPGA-based systems are
based on several attributes that measure the dependability of a
system. The main attributes are reliability, maintainability and
availability of the system. These attributes are expressed by
probabilistic figures and defined as follows:

∙ Reliability R(t) is defined as the probability that a system
produces the correct values at the time t under a given set
of operating conditions. High reliability means that long
time interval elapses before the first system failure occurs.
The expected time for a system to fail is expressed as the
Mean Time To Fail (MTTF) parameter. It is a statistical
value and the length of the observation interval for the
calculation of MTTF must be infinite. Generally stated,
MTTF = 1/𝜆, where 𝜆 is the failure rate parameter.

∙ Maintainability M(t) is defined as the probability of
performing a successful repair action within a given
time t. The maintainability represents the ease and speed
with which a system can be restored to operational
status after a failure occurs. High maintainability means
a short downtime for the system repair. The expected
time for a system to be repaired is the Mean Time
To Repair (MTTR) parameter. Generally stated, MTTR
= 1/𝜇, where 𝜇 is the repair rate parameter (in FPGA
technology usually several miliseconds, based on the size
of bitstream and the speed of the interface used for the
reconfiguration).
Mean Time Between Failures (MTBF) is the predicted
elapsed time between inherent failures of a system during
an operation for the successful repair. MTBF parameter
can be calculated as the arithmetic mean (average) time
between failures of a system. MTBF = MTTF + MTTR.

∙ Availability expresses the average probability that a
system delivers correct values. The availability is a per-
formance criterion for repairable systems that accounts
for both the reliability and maintainability properties of
a component or system. High availability means a long
uptime of the system. As a function of MTBF and MTTR,
the availability parameter can be evaluated as follows:

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝐵𝐹
=

𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 +𝑀𝑇𝑇𝑅

The relation between MTTF, MTTR and MTBF parame-
ters and lifetime of FPGA-based system are demostrated in
Figure 4.

timeMTTF MTTR MTTF

MTBF

MTTR

correct working repair repair

MTBFfail fail

correct working

Fig. 4. Lifetime of FPGA-based design, MTTF vs. MTBF.

For evaluation of dependability parameters described above
for complex and FT systems, a dependability model must
be developed. For these purposes, many different types of
dependability models exist. Markov models are very often used
for dependability analysis of FT design.

Markov models use state transition diagrams comprised of
various possible states of the system and the transitions among
various states are described in terms of the rates of transition
probabilities. The solution of such a state model using the state
space approach then predicts the probability that the system
will be in various states after any specified time interval. The
sum of these probabilities over non failure states then yields
the desired system availability.

FU1

FU2

FU3

Voter
in

out

1F

1

3F

1-3lF

2F
3lF

2lF

uF
1-(2lF+uF)

Fig. 5. Markov Model of System using TMR with Scrubbing [21].

The Markov dependability model consists of states, each
reflecting the operability (affected by the occurrence of fail-
ures) of the system. The states depicted by circles represent
”operational states” while the squares represent the situations
when the system does not work correctly. The directed edges
between the states are marked either with 𝜆 (failure rate) or
𝜇 (repair rate).

Figure 5 shows a Markov model of a system using TMR
with scrubbing as a repair technique. In this case, State 3F
represents the circuit operating correctly. State 2F represents
the state in which one of the three FUs of TMR is operating
incorrectly. State 1F represents the failure state in which two
or more of the three TMR modules are operating incorrectly.
SEU can cause a fault in one of the three TMR modules of
the circuit and move the circuit from state 3F to state 2F. The
probability of failure of one of these domains is equal to the
failure rate of the original circuit, 𝜆 = lF. The probability of
this transition, then, is equal to 3*lF since TMR requires three
copies of the original circuit. Configuration scrubbing repairs
any faults (at the standard repair rate, 𝜇 = uF) that exist in the
FPGA and restores the circuit back to State 3F. Alternately, a
second SEU could affect another domain and cause a transition
from State 2F to State 1F. This transition probability is 2*lF
since only two of the redundant modules need be considered.
Since the circuit has failed at that point and its output was

593252252



incorrect, the model represents no exit from State 1F. Thus
the probability of transition from State 1F to State 1F is one
[21].

IV. AUTOMATIC GENERATION OF MARKOV MODEL

The manual construction of Markov models is tedious and
error prone work. Many Markov models are required to be
generated when it is needed to compare several possible imple-
mentations of the system. In order to deal with this problem the
software tool for automatic generation of Markov models was
developed and the methodology is described in this section.
The software tool has as its input the compact description of
the architecture and produces the Markov reliability model and
dependability evaluation.

Figure 6 shows the flow diagram of the methodology.
The implemented design is used as an input into the SEU
simulation framework for estimation of reliability parameters,
such as 𝜆 and 𝜇. The architecture descriptions together with
estimated parameters are fed into the Markov Model generator.
The generated model is processed by three different output
blocks.

Markov model
generation

&
MAPLE evaluation
script generation

Design 
or

FT architecture

Model
Graphviz
preview

(eps,png,dot)

MAPLE
Solver

(analytical)

Embedded
Solver

(numerical)

Failure rate
and

Repair rate

R(t), MTTF, MTBF
Availability

R(t) graph
plotting

SEU Simulation
Framework

Evaluation part

Fig. 6. Dependability Evaluation Flow Diagram.

The architecture is described as a set of various components
and evaluation functions. The software generates all possible
states of the system simply by simulating error in every
component of the system under evaluation. Together with the
generation of states, all error transitions are generated.

----Components description of FTS-------------
state = dict()
state["FU"] = 3
state["VOTER"] = 1
state["CHECKER"] = 1

state["GPDRC"] = 1
----------------------------------------------

----Example of Repair function----------------
def repair(state):

if state["GPDRC"] < 1:
return None

repState = state.copy()
label = "R"
if state["VOTER"] < 1:

label = label + "V"
repState["VOTER"] = 1
return (repState,label)

if state["FU"] < 3:
label = label + "FC"
repState["FU"] = state["FU"] + 1
repState["CHECKER"] = 1
return (repState,label)

...
---------------------------------------------

The user has to specify the evaluation functions which are
used to place each error correctly to the transitions and deter-
mine the type of state. The evaluation function for determining
the type of state is represented by the set of conditions on the
number of correctly operating components. If all conditions are
satisfied, then the state is considered as working. Otherwise,
the state is considered to be a failure state.

The second evaluation function is used for placing repair
transitions. It is represented by the ordered list of conditions.
The first condition is used for validation on whether the
repair is possible. The repair is possible if all functional units
required by the repair subsystem are working. In our method-
ology, the repair subsystem contains only one functional unit
which is GPDRC. It is assumed that the repair system works
deterministically. Therefore, all repairable components are
ordered according to their repair priority. The repair function
checks the component with the highest priority and if it
is broken, then it simulates the repair process by placing
the repair transition into the model. If not, then the repair
function continues with the next condition in the list. It is
important to keep in mind that components may have several
implementations in the system. For example, the functional
unit has three implementations in TMR architecture. However,
only one implementation will be repaired in one state. The
exceptions on this rule are only possible if coupled units (for
example, a functional unit and its checker) are supposed to
be repaired concurrently. Then, if a checker reports an error,
it may be caused by an error in the functional unit or in its
checker. Therefore, the repair subsystem may be configured
to the repair checker always together with the functional
unit. In this case, it is possible to simulate repair for several
components concurrently.

A. Markov Model Graph

The graph generation module of the software tool is re-
sponsible for creating the humanly readable Markov model
graph. It uses Graphviz [22] tool to draw the graph of the
generated model. Figure 7 shows an example of the Markov
model generated by the tool for TMR architecture with reliable

594253253



S2VC

S2V
Lc

S1VC

2*Lf

S2VG

S3VCG

RFC

Lg

S1VG

2*Lf S3V 3*Lf

S2VCG
Lg

Lc

RFC

S1VCG

2*Lf

3*Lf

S3VG

Lc

S3VC
Lg

S1V

2*Lf

3*Lf

LgRC

3*Lf

Lc

S0VC S0V
Lc

S0VG

Lg

RFC

RFC

Lf

Lg

Lf

Lc

Lf

S0VCG
Lg

Lc

RFC

RFC

Lc

Lg

Lf

Fig. 7. Markov Reliability Model for TMR with Repair and Reliable Voter.

voter and repair transitions. The names of states are derived
from the status of the system. The same state names are used in
all output modules. For compatibility reasons, the state name
starts with character S. The S is followed by the number of
correctly operating functional units. All other units have only
one implementation in the architecture. Therefore, they are
denoted by the first character of their name. For example,
the starting state of the model from figure 7 is S3VCG. It
means that the architecture consists of three functional units,
a Voter, a Checker and a GPDRC. It can be seen that the model
contains all possible error combinations under the assumption
that the voter is not vulnerable to SEU attacks. The edges
corresponding to failures are labeled by L followed by the
symbol of the failing component while repair edges are labeled
by R followed by capital first letters of repaired units. For
example, the edge RFC represents repair of one functional unit
and a checker. It is important to say that such edge connects
states S2VCG and S3VCG. Even if the checker is working
correctly in both states, it is going to be repaired.This is due to
parameters of the repair subsystems which is unable to verify
if the checker works correctly with one failing functional unit.

B. Analytical Solution

To evaluate R(t) and MTTF reliability parameters, analytical
calculation by means of program MAPLE [23] was used.
As its input, the sets of differential equations reflecting the
model and 𝜆 and 𝜇 values gained by fault injection were used.
These equations are then solved by Laplace transformation
with initial conditions in t = 0 which are equal to 0 for all
states with the only exception of the initial state in which the
probability that the FT architecture works correctly is equal
to 1 (S3VCG state). As the calculations are rather complex,

the R(t) and MTTF evaluations for one model can last several
minutes. From the Markov model, the following equations can
be derived:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

𝑝𝑐0 : 𝑆3𝑉 𝐶𝐺′(𝑡) = −3𝐿𝑓∗𝑆2𝑉 𝐶𝐺(𝑡)−𝐿𝑔∗𝑆3𝑉 𝐶(𝑡)+𝑅𝐶𝐹 ∗𝑆2𝑉 𝐺(𝑡)...

𝑝𝑐1 : 𝑆2𝑉 𝐶𝐺′(𝑡) = 3𝐿𝑓 ∗ 𝑆3𝑉 𝐶𝐺(𝑡)− 2𝐿𝑓 ∗ 𝑆1𝑉 𝐶𝐺(𝑡) + 𝑅𝐹𝐶...

...

𝑝𝑐𝑛 : 𝑆2𝑉 ′(𝑡) = −2𝐿𝑓 ∗ 𝑆1𝑉 (𝑡) + 𝐿𝑔 ∗ 𝑆2𝑉 𝐺(𝑡) + 𝐿𝑐 ∗ 𝑆2𝑉 𝐶(𝑡)...

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
𝑝𝑓0 : 𝑆1𝑉 𝐶𝐺′(𝑡) = 2𝐿𝑓 ∗𝑆2𝑉 𝐶𝐺(𝑡)−𝑅𝐶𝐹 ∗𝑆2𝑉 𝐶𝐺(𝑡)−𝐿𝑓 ∗𝑆0𝑉 𝐶𝐺...

𝑝𝑓1 : 𝑆0𝑉 𝐶𝐺′(𝑡) = −𝐿𝑓∗𝑆0𝑉 𝐶𝐺(𝑡)+𝑅𝐶𝐹∗𝑆1𝑉 𝐶𝐺(𝑡)+𝐿𝑐∗𝑆0𝑉 𝐺(𝑡)...

...

𝑝𝑓𝑚 : 𝑆0𝑉 ′(𝑡) = −𝜆𝑝1(𝑡)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
𝑅(𝑡) =

∑𝑛
𝑖=0 𝑝𝑐𝑖(𝑡)

𝑅𝑓𝑎𝑖𝑙(𝑡) =
∑𝑚

𝑗=0 𝑝𝑓𝑗(𝑡)

𝑀𝑇𝑇𝐹 =
∫∞
0

𝑅(𝑡)𝑑𝑡

−−−−−−−−−−−−−−−−−−−−−−−−−−−

C. Numerical Solution

The implemented tool supports a numerical solution of
generated models implemented by Scipy python module [24].
One differential equation is generated for every state in the
Markov model. The differential equation for each state reflects
all incoming and outgoing edges for this state, incoming edges
are positive, outgoing edges are negative. The resulting set of
differential equation is then solved by the ”zvode” solver.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The main issue in the reliability modeling is to know the
correct intensity of failures. In FPGA, only a small number of
configuration bits is used to represent the given functionality.

595254254



According to [25], only 10 – 20 percent of the configuration
bits contains information about the design. However, the actual
number depends on the type of the implemented system and
even on the setting of place and route tools. Therefore, we
used the experiments done in [26] to compute the number of
bits that will affect the correct behaviour of a simple system.

The first three lines in Table I contain the measured values,
while all other lines were gained by an approximation based
on the number of LUTs in the design.

The values of 𝜆 were computed by means of equation 1
while the values of 𝜇 were evaluated by means of equation
2. The important parameter is the failure rate 𝐹 which is
the number of errors occurring within one time unit. This
parameter depends on the environment. The value 100 in the
equation is the average number of bits that had an effect on
the correct function of one LUT in the design tested in [26].
This number is computed as the fraction between all bits that
affected the design and the number of LUT in the design.
Therefore, the routing configuration bits are also taken into
account.

𝜆 =
#𝐿𝑈𝑇 ∗ 100
1000000

∗ 𝐹 (1)

The values of 𝜇 are evaluated by means of equation 2. The
equation consists of two parts. The first is caller 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑡𝑖𝑚𝑒
which is the time required to prepare the data for reconfigura-
tion process. For example, if the repair subsystem has to deal
with permanent error in the FPGA fabric, it uses 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑡𝑖𝑚𝑒
to reroute the unit. The 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑡𝑖𝑚𝑒 for the SEU equals
zero. The second part of the equation represents the length of
the actual repair process. The limitation of the repair process
is the speed of the external reliable memory. The external
flash memory used in our experiments works on the 8 MHz
frequency and offers an 8-bit interface.

𝜇 =
1

𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑡𝑖𝑚𝑒+ ∣𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚∣
𝑓𝑔∗𝑏𝑢𝑠𝑤𝑖𝑑𝑡ℎ

(2)

The values of 𝜆 in Table I are evaluated under the assump-
tion that one Mb of FPGA configuration is affected by 100
faults in one hour which corresponds to the extremely harsh
environment. The values of 𝜇 and 𝜇10 are only different in
the size of the 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑡𝑖𝑚𝑒 parameter which was set to zero
and ten seconds. The results for ITC benchmark circuits (B4,
B12, B14 and B15- I80386)[27] are shown in Table I.

The second experiment compares different realizations of
the TMR implementation of the viper processor from the
ITC benchmark which is circuit B14. The parameters for the
model were established in the previous experiment. The main
difference is in the components which may fail under the
influence of an SEU. The first experiment setting considers
all units vulnerable to SEUs. This setting is denoted as all
fails in graphs. Other settings consider one type of component
invulnerable to SEUs. Such settings are denoted by the name
of the invulnerable unit.

The probability of the correct function of all systems during
the first two hours of the system operation is shown in Fig-

XC5VSX50T Bitstr. # LUT 𝜆 𝜇 𝜇10

TMRcmp [bits] - [ms-1] [ms-1] [ms-1]

PRM-FU-CNT8 47232 15 4,166E-08 0,1355 9.992E-05
PRM-COMP-CNT8 47232 14 3,888E-08 0,1355 9.992E-05
PRM-VOTER-CNT8 47232 8 2.222E-08 0,1355 9.992E-05

PRM-FU-ITC-B4 236160 165 4,583E-07 0,2710 9.996E-05
PRM-COMP-B4 47232 20 5,555E-08 1,3550 9.999E-05
PRM-VOTER-B4 47232 11 3,055E-08 1,3550 9.999E-05
PRM-FU-ITC-B12 330624 247 6,861E-07 0,1935 9.994E-05
PRM-COMP-B12 47232 11 3,055E-08 1,3550 9.999E-05
PRM-VOTER-B12 47232 6 1,666E-08 1,3550 9.999E-05
PRM-FU-ITC-B14 1464192 1209 3,358E-06 0,0437 9.977E-05
PRM-COMP-B14 47232 112 3,111E-07 1,3550 9.999E-05
PRM-VOTER-B14 47232 54 1,500E-07 1,3550 9.999E-05
PRM-FU-ITC-B15 2172672 1839 5,108E-06 0,0294 9.966E-05
PRM-COMP-B15 47232 154 4,277E-07 1,3550 9.999E-05
PRM-VOTER-B15 47232 70 1,944E-07 1,3550 9.999E-05

PRM-GPDRC-5PRM 330624 266 7,388E-07 – –

TABLE I
FAILURE RATES AND REPAIR RATES FOR ITC BENCHMARK CIRCUITS

BASED ON PRMS.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06  3e+06  3.5e+06  4e+06

R
(t

) 
[%

]

Time [ms]

Reliable VOTER
Reliable GPDRC

Everything fails
Without Repair

Fig. 8. Reliability of different systems.

ure 8. The y-axis contains the probability in percentages and
x-axis contains time measured in milliseconds. The probability
that the system works correctly in the given time is computed
as a sum of the probabilities of all working states. It can
be seen that the system with never failing GPDRC achieves
reliability close to 1 during the whole experiment.

The graph further shows that the reliability of the system is
significantly decreased if the GPDRC is vulnerable to faults.
Therefore, it is very important to implement GPDRC with the
highest possible reliability. The Reliable VOTER line shows
reliability of the system in the case of a voter which is not
vulnerable to faults. It can be seen that the reliability of this
system is similar to the system where all components may
fail. The last line shows the reliability of the system without
the repair. The experiment proves that the automatic repair
process is a very efficient technique for increasing reliability
of the system implemented into FPGA.

Figure 9 shows the difference between the system with
invulnerable voter and the system where all units may fail.
The graph focuses on the detail at the beginning of the

596255255



 0.998

 0.9985

 0.999

 0.9995

 1

 0  10000  20000  30000  40000  50000  60000  70000

R
(t

) 
[%

]

Time [ms]

Reliable VOTER
Reliable GPDRC

Everything fails
Without Repair

Fig. 9. Detail of the beginning of lifetime with short repair.

system operation. It can be seen that the reliability is higher
if the voter is considered to be invulnerable to faults. This
difference is the error that is represented by the assumption of
an invulnerable voter. In this setup, the voter consists only of
54 LUTS, which is a relatively small number. It is possible to
have much larger voters implemented into the FPGA designs.
Therefore, it can be concluded that it is not possible to assume
invulnerable components in the FPGA reliability analysis.

The previous experiments focused on fast repair. However,
if the hard error is taken into account, the repair process may
require much more time. Figure 10 shows the detailed graph
at the beginning of the system life time if the repair operation
takes 10 seconds to be performed. It can be seen that the
reliability of the system with invulnerable GPDRC is lower
than in the previous one in Figure 9. The main difference
with the previous experiment lies in the behaviour of system
with an invulnerable voter. At the beginning of the system
operation, the voter system achieves its highest reliability.

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0  20000  40000  60000  80000  100000  120000  140000

R
(t

) 
[%

]

Time [ms]

Reliable VOTER
Reliable GPDRC

Everything fails
Without Repair

Fig. 10. Detail of the beginning of lifetime with long repair.

VI. CONCLUSIONS

This work presents effective methodology for the automatic
generation of reliability models for the given architecture. The
methodology was applied in order to compute the reliability
of TMR based systems with repair mechanisms implemented
into FPGA. The presented experiments indicate that the repair
process can significantly increase the reliability of the design
solution even if the repair mechanisms are vulnerable to
faults. The paper presented a comparison with the models
that consider some parts of the system invulnerable to faults
and concludes that it is not possible to consider any part
of the system invulnerable to faults in the FPGA based
implementations.

The current implementation of the software tool is restricted
only to simple architectures. The main focus of the future
work is to extend the tool to support combinations of simple
architectures to simulate complex systems, such as several
sequentially connected TMRs. This extension will further
increase the volume of required computations. Therefore,
the research will focus on the possible optimization of the
numerical solver implementation and models themselves. The
current solution only works with two states of each component
and the states are ”working” and ”failing”. However, the fault
may affect the component in many different ways. Future
research will focus on the effect of the fault by assigning other
possible states to the component. For example, the checker
may only work correctly for two of the three functional units.

ACKNOWLEDGMENT

This research was supported by the following projects:
National COST LD12036 - ”Methodologies for Fault Tolerant
Systems Design Development, Implementation and Verifica-
tion”; RECOMP project - ”Reduced Certification Costs Us-
ing Trusted Multi-core Platforms”; research project No.MSM
0021630528 - ”Security-Oriented Research in Information
Technology”, GACR No.102/09/H042 - ”Mathematical and
Engineering Approaches to Developing Reliable and Secure
Concurrent and Distributed Computer Systems” and grant
FIT-S-11-1. This work was supported also by the European
Regional Development Fund in the IT4Innovations Centre of
Excellence project (CZ.1.05/1.1.00/02.0070).

REFERENCES

[1] J. A. Cheatham, J. M. Emmert, and S. Baumgart, “A survey of fault
tolerant methodologies for fpgas,” ACM Trans. Des. Autom. Electron.
Syst., vol. 11, no. 2, pp. 501–533, 2006.

[2] L. Sterpone, M. Aguirre, J. Tombs, and H. Guzmán-Miranda, “On the
design of tunable fault tolerant circuits on sram-based fpgas for safety
critical applications,” in DATE ’08: Proceedings of the conference on
Design, automation and test in Europe. New York, NY, USA: ACM,
2008, pp. 336–341.

[3] U. Sharma, “Fault tolerant techniques for reconfigurable platforms,” in
A2CWiC ’10: Proceedings of the 1st Amrita ACM-W Celebration on
Women in Computing in India. New York, NY, USA: ACM, 2010, pp.
1–4.

[4] F. L. Kastensmidt, G. Neuberger, L. Carro, and R. Reis, “Designing
and testing fault-tolerant techniques for sram-based fpgas,” in CF ’04:
Proceedings of the 1st conference on Computing frontiers. New York,
NY, USA: ACM, 2004, pp. 419–432.

597256256



[5] G.-H. Asadi and M. B. Tahoori, “Soft error mitigation for sram-based
fpgas,” in Proceedings of the 23rd IEEE Symposium on VLSI Test, ser.
VTS ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp.
207–212.

[6] B. Osterloh, H. Michalik, S. A. Habinc, and B. Fiethe, “Dynamic partial
reconfiguration in space applications,” Adaptive Hardware and Systems,
NASA/ESA Conference on, vol. 0, pp. 336–343, 2009.

[7] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “Fpga partial reconfig-
uration via configuration scrubbing,” in Field Programmable Logic and
Applications, 2009. FPL 2009. International Conference on, 31 2009-
sept. 2 2009, pp. 99 –104.

[8] M. Straka, J. Kastil, and Z. Kotasek., “Modern fault tolerant architectures
based on partial dynamic reconfiguration in fpgas,” in 13th IEEE Inter-
national Symposium on Design and Diagnostics of Electronic Circuits
and Systems. New York, NY, USA: IEEE Computer Society, 2010, pp.
336–341.

[9] M. G. Gericota, L. F. Lemos, G. R. Alves, and J. M. Ferreira, “On-
line self-healing of circuits implemented on reconfigurable fpgas,” in
IOLTS ’07: Proceedings of the 13th IEEE International On-Line Testing
Symposium. Washington, DC, USA: IEEE Computer Society, 2007, pp.
217–222.

[10] P. Kubalik, R. Dobias, and H. Kubatova, “Dependable design for fpga
based on duplex system and reconfiguration,” in DSD ’06: Proceed-
ings of the 9th EUROMICRO Conference on Digital System Design,
Dubrovnik, Croatia, 2006, pp. 139–145.

[11] C. Bolchini, A. Miele, and M. D. Santambrogio, “Tmr and partial
dynamic reconfiguration to mitigate seu faults in fpgas,” in DFT ’07:
Proceedings of the 22nd IEEE International Symposium on Defect
and Fault-Tolerance in VLSI Systems. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 87–95.

[12] R. Oliveira, A. Jagirdar, and T. J. Chakraborty, “A tmr scheme for seu
mitigation in scan flip-flops,” in ISQED ’07: Proceedings of the 8th
International Symposium on Quality Electronic Design. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 905–910.

[13] C. Pilotto, J. R. Azambuja, and F. L. Kastensmidt, “Synchronizing
triple modular redundant designs in dynamic partial reconfiguration
applications,” in SBCCI ’08: Proceedings of the 21st annual symposium
on Integrated circuits and system design. New York, NY, USA: ACM,
2008, pp. 199–204.

[14] X. Iturbe, M. Azkarate, I. Martinez, J. Perez, and A. Astarloa, “A novel
seu, mbu and she handling strategy for xilinx virtex-4 fpgas,” in Inter-
national Conference on Field Programmable Logic and Applications,
2009. FPL 2009. Washington, DC, USA: IEEE Computer Society,
2009, pp. 569–573.

[15] R. Noji, S. Fujie, Y. Yoshikawa, H. Ichihara, and T. Inoue, “Reliability
and performance analysis of fpga-based fault tolerant system,” in Pro-
ceedings of the 2009 24th IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems, ser. DFT ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 245–253.

[16] P. Kubalik, R. Dobias, and H. Kubatova, “Dependability computation for
fault tolerant reconfigurable duplex system,” in DDECS ’06: Proceed-
ings of the 2006 IEEE Design and Diagnostics of Electronic Circuits
and systems, Prague, Czech Republic, 2006, pp. 98–100.

[17] O. Heron, T. Arnaout, and H.-J. Wunderlich, “On the reliability eval-
uation of sram-based fpga designs,” in Field Programmable Logic and
Applications, 2005. International Conference on, aug. 2005, pp. 403 –
408.

[18] P. Ostler, M. Caffrey, D. Gibelyou, P. Graham, K. Morgan, B. Pratt,
H. Quinn, and M. Wirthlin, “Sram fpga reliability analysis for harsh ra-
diation environments,” Nuclear Science, IEEE Transactions on, vol. 56,
no. 6, pp. 3519 –3526, dec. 2009.

[19] M. Straka, J. Kastil, and Z. Kotasek, “Fault tolerant structure for sram-
based fpga via partial dynamic reconfiguration,” in 13th EUROMICRO
Conference on Digital System Design DSD 2010. Washington, DC,
USA: IEEE Computer Society, 2010.

[20] M. Straka, J. Kastil, and Z. Kotasek, “Seu simulation framework for
xilinx fpga: First step towards testing fault tolerant systems,” in Digital
System Design (DSD), 2011 14th Euromicro Conference on, 31 2011-
sept. 2 2011, pp. 223 –230.

[21] B. Pratt, M. Caffrey, D. Gibelyou, P. Graham, K. Morgan, , and
M. Wirthlin, “Tmr with more frequent voting for improved fpga reliabil-
ity.” in The International Conference on Engineering of Reconfigurable
Systems and Algorithms, New York, NY, USA: IEEE Computer
Society, 2008, pp. 1–6.

[22] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull,
“Graphviz and dynagraph static and dynamic graph drawing tools,” in
GRAPH DRAWING SOFTWARE. Springer-Verlag, 2003, pp. 127–148.

[23] W. M. Inc., “Maple 13,” 2008. [Online]. Available:
http://www.maple.com/

[24] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001–. [Online]. Available: http://www.scipy.org/

[25] XILINX, “Xapp864: Seu strategies for virtex-5 devices.” [Online].
Available: www.xilinx.com

[26] M. Straka, L. Miculka, J. Kastil, and Z. Kotasek, “Test platform for
fault tolerant systems design properties verification,” in 15th IEEE
International Symposium on Design and Diagnostics of Electronic
Circuits and Systems. New York, NY, USA: IEEE Computer Society,
2012, pp. 1–6.

[27] S. Davidson, “Itc99 benchmark,” 1998. [Online]. Available:
http://www.cerc.utexas.edu/itc99-benchmarks/bendoc1.html

598257257


