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Abstract. Testing of concurrent software is difficult due to the non-
determinism present in scheduling of concurrent threads. Existing testing
approaches tackle this problem either using a modified scheduler which
allows to systematically explore possible scheduling alternatives or us-
ing random or heuristic noise injection which allows to observe different
scheduling scenarios. In this paper, we experimentally compare several
existing noise injection heuristics both from the point of view of cov-
erage of possible behaviours as well as from the point of view of error
discovery probability. Moreover, we also propose a new noise injection
heuristics which uses concurrency coverage information to decide where
to put noise and show that it can outperform the existing approaches in
certain cases.

1 Introduction

Concurrency software testing and analysis is hard due to the non-deterministic
nature of scheduling of concurrent threads. Static analysis and model checking
do not scale well when analysing such programs due to the large interleaving
space they need to explore. Testing and dynamic analysis scale well but usually
do not analyse all possible interleavings. The number of different interleavings
spot during repeated executions of the same test can be increased either by using
a deterministic scheduler or by injecting of so-called noise into test executions.

Deterministic schedulers [12] control thread scheduling decisions during a
program execution and so can systematically explore the interleaving space up
to a certain extent. Such tools can be seen as light-weight model checkers. Noise
injection tools [3, 11] inject calls to a noise maker routine into the program code.
Threads executing the modified code then enter the noise maker routine that
decides—either randomly or based on some heuristics—whether to cause a noise.
The noise causes a delay in the current thread, giving other threads opportunity
to make a progress.

Coverage metrics are used to measure how many coverage tasks (i.e., moni-
tored events such as reachability of a certain line) defined by a coverage model
have been covered during test execution(s) so far. Concurrency coverage met-
rics [14, 2, 7] can be used to track how many different concurrency-related tasks
have been covered, and hence how many different interleavings have been wit-
nessed.

This paper presents two contributions to the research on noise injection tech-
niques. First, we propose a new heuristics which uses coverage information to



select places in an execution of a given code where to put a noise. We also propose
a way to determine the strength of the noise needed to suitably affect the be-
haviour of tested programs. Second, we address the current lack of experimental
evaluations of the various noise injection heuristics by systematic comparison of
several noise injection techniques available in the well-known IBM Concurrency
Testing Tool (ConTest) [3] as well as our new heuristics on a set of test cases
of different size. The comparison is based on the coverage obtained under one
selected concurrency coverage metric, the needed execution time, and the rate
of manifestation of concurrency errors in the testing runs.

We in particular focus on concurrent programs written in Java. We use our
infrastructure for search-based testing called SearchBestie [8] to run multiple
tests with different parameters and to collect their results and IBM ConTest [3]
for noise injection and concurrency coverage measurement. Although our com-
parison could certainly be further extended, we believe that the comparison
provides results missing in the existing literature on noise injection. Moreover,
the comparison shows that our new heuristics may in certain cases provide an
improvement in the testing process.

2 Existing Noise Injection Heuristics

Existing works discuss three main aspects of heuristic noise injection: (1) how
to make noise, i.e., which type of noise generating mechanism should be used,
(2) where to inject noise during a test execution, i.e., at which program location
and at which of its executions, and (3) how to minimise the amount of noise
needed for manifestation of an already detected error when debugging. This
work mainly targets the first two aspects. More information on debugging can
be found, e.g., in [5].

There exist several ways how a scheduler decision can be affected in Java.
In [3], three different noise seeding techniques are introduced and evaluated on
a single-core processor. The priority technique changes priorities of threads. This
technique did not provide good results. The yield technique injects one or more
calls of yield() which causes a context switch. The sleep technique injects
one call of sleep(). Experiments showed that the sleep technique provided
best results in all cases. However, when many threads were running, the yield
technique was also effective.

The current version of the IBM ConTest tool comes with several more noise
seeding techniques [9]. The wait technique injects a call of wait(). The con-
cerned threads must first obtain a special shared monitor, then call wait(),
and finally release the monitor. The synchYield technique combines the yield
technique with obtaining the monitor as in the wait technique. The busyWait
technique does not obtain a monitor but instead loops for some time. The hal-
tOneThread technique [13] occasionally stops one thread until any other thread
cannot run. Finally, the timeoutTamper heuristics randomly reduces the time-
out used when calling sleep() in the tested program (to test that it is not used
for synchronisation). All the above mentioned seeding techniques except the pri-
ority technique are parameterised by the so-called strength of noise. In the case



of techniques based on sleep and wait, the strength gives the time to wait. In
the case of yield, the strength says how many times the yield should be called.

Next, we discuss techniques for determining where to put a noise. IBM Con-
Test allows to inject a noise before and after any concurrency-related event
(namely, access to class member variables, static variables, and arrays, calls
of wait, interrupt, notify, monitorenter, and monitorexit routines). The
rstest [11] tool considers as possibly interesting places before concurrency-related
events only. Moreover, rstest uses a simple escape analysis and a lockset-based
algorithm to identify so-called unprotected accesses to shared variables. The un-
protected access reads or writes a variable which is visible to multiple threads
without holding an appropriate lock. This optimisation reduces the number of
places where the noise can be put but suppresses ability to detect some con-
currency errors, e.g., high-level data races or deadlocks where all accesses to
problematic variables are correctly guarded by a lock.

It is discussed in [3, 11, 5] that putting noise on every possible place is inef-
ficient and only a few relevant context switches are critical for the concurrency
error. Also, putting noise in a certain place (ploc—program location [3]) in the
execution can either help to spot the concurrency error or mask it completely.
Therefore, several heuristics for choosing places where to put a noise were pro-
posed, e.g., in [3, 11, 1, 6, 4, 13].

The simplest heuristics is based on a random noise [3, 11]. This heuristics puts
a noise before/after an executed ploc with a given probability. The probability
is the same for all plocs in the execution. It was shown in [1] that focusing
random noise only on a single variable over which a data race exists increases
the probability of spotting the error. The authors also propose a heuristics which
helps to choose a suitable variable without additional information from a data
race detector. In [4], the noise injection problem is reformulated as a search
problem, and a genetic algorithm is used to determine plocs suitable for noise
injection. The fitness function used prefers solutions with a low number of plocs
where a noise is put (size), a high amount of noise in less plocs (entropy), and
a high probability of spotting the error (efficiency). In [6], several concurrency
antipatterns are discussed, and for each of them, a suitable scheduling scenario
that leads to manifestation of the corresponding concurrency error is presented,
but the paper contains no practical evaluation of the proposed heuristics.

A few heuristics based on concurrency coverage models have been published.
Coverage-directed generation of interleavings presented in [3] considers two cov-
erage models. The first model determines whether the execution of each method
was interrupted by a context switch. The second model determines whether a
method execution was interrupted by any other method. The level of methods
used here is, according to our opinion, too coarse. In [13], a coverage model con-
siders, for each synchronisation primitive, various distinctive situations that can
occur when the primitive is executed (e.g., in the case of a synchronised block
defined using the Java keyword synchronised, the tasks are: synchronisation
visited, synchronisation blocking some other thread, and synchronisation blocked
by some other thread). A forcing algorithm then injects noise at correspond-



ing synchronisation primitive plocs to increase the coverage. None of these two
heuristics focuses on accesses to shared variables which can limit their ability to
discover some concurrency errors, e.g., data races.

3 A New Coverage-based Noise Injection Heuristics

Our new heuristics is motivated by our recent experiences with concurrency cov-
erage metrics [7]. The heuristics primarily answers the question where to inject
noise during a test run (the noise can be caused by any of the wait, sleep, or
yield seeding techniques). In the heuristics, we consider only plocs that appear
before concurrency-related events as suitable for noise injection. Our heuristics
targets both accesses to shared variables as well as the use of synchronisation
primitives. Our goal is to be able to discover all kinds of concurrency errors.
Our heuristics monitors the frequency of a ploc execution during a test and puts
a noise at the given ploc with a probability biased wrt. this frequency—the more
often a ploc is executed the lower probability is used. Furthermore, our heuristics
also derives the strength of a noise to be used from the timing of events observed
in previous executions of the test (although for determining the strength of noise,
alternative approaches can be used too).

The testing process with our noise injection heuristics works in the following
four steps. (1) No noise is produced, and a set of covered tasks of our coverage
metric together with information on relative timing of appearance of monitored
concurrency-related events are generated during the first execution of the test.
(2) A set of the so-called noise tuples is generated from the gathered information.
(3) Random noise at the plocs included in the noise tuples is generated, and
the average frequency of execution of these plocs within particular threads is
gathered during the next test execution. (4) Biased random noise of strength
computed wrt. the collected statistics is (repeatedly) produced at the collected
plocs. Coverage information is updated during each execution, and new noise
tuples are constantly learnt. Likewise, all other collected statistics are updated
during each test run. Due to performance reasons, only one thread is influenced
by noise at a time. We now explain the above introduced steps in more detail.

Our coverage model considers coverage tasks of the form (t1, ploc1, t2, ploc2).
There are two situations when a task is covered. First, a task is covered if a thread
t1 accesses a shared variable v at ploc1, and subsequently a thread t2 accesses
v at ploc2, which is a typical scenario critical for occurrence of concurrency-
related errors. If t1 owns a monitor when accessing v at ploc1, another task
(t1, ploc3, t2, ploc2) where ploc3 refers to the location where t1 obtained the last
monitor is also covered. This is motivated by considering the relative position of
locking a critical section in one thread and using it in another thread as impor-
tant. Second, a new task is covered if a thread t1 releases a monitor obtained at
ploc1, and subsequently a thread t2 obtains the monitor at ploc2. Each covered
task is annotated by the number of milliseconds that elapsed between the events
on which the task is based. The threads are identified in an abstract way based
on the history of their creation in the same way as in [7].



Our heuristics injects noise before a location ploc1 executed by a thread t1
if a task (t1, ploc1, t2, ploc2) has been covered within some previous execution.
This way, our heuristics tries to reverse the order in which the locations are ex-
ecuted. The coverage information collected during previous runs is transformed
into noise tuples of the form (t1, ploc1,min,max, orig, exec). Here, t1 identifies
a thread and ploc1 the program location where to put a noise. The two next
values give the minimal and maximal number of milliseconds that elapsed be-
tween the events defining the given coverage task. These values can be used
for determining the strength of noise to be used as a delay of length randomly
chosen from between the values. If there are multiple coverage tasks with the
same couple (t1, ploc1), min and max are computed from all such tasks. The
orig value contains an identification of the run where the couple (t1, ploc1) was
spot for the first time. In order to limit values of min and max, their update is
possible only within a limited number of test executions after the orig run. Fi-
nally, the exec value contains the average number of times the couple (t1, ploc1)
is executed during a test execution. It is used to bias the probability of noise
injection at ploc1.

if exec > 0 then1

prob = 1 / exec;2

if prob < 0.004 then3

prob = 0.001;4

else prob = prob/4;5

else prob = 0.01;6

Alg. 1. Computing probability of
noise generation

In repeated executions of a test, the so
far computed noise tuples are loaded, and the
noise is generated at program locations given
by them with the probability computed from
the number of times the locations have been
executed (the exec value). The computation
is shown in Alg. 1. The base probability is ob-
tained as 1/exec to be higher for plocs that
are executed rarely. The minimal noise prob-
ability accepted by ConTest is 0.001, and so
all lower computed probabilities are set to this value. Higher probabilities are
divided by 4 to keep the noise injection frequency reasonably low (25 % for a ploc
which is executed once during each test). This is motivated by our observation
that higher probability than 25 % degrades test performance and usually does
not provide considerably better results. The limit can be changed if necessary.
If the exec value is not yet available, the probability of 0.01 is used.

4 A Comparison of Noise Injection Techniques

This section presents an experimental evaluation of selected noise injection tech-
niques available in ConTest as well as of the above newly proposed heuristics.
We evaluate these techniques on a set of 5 test cases shown in Table 1 which
gives the number of classes the test cases consist of and the concurrency error
present in them (if there is one). The sunbank test case runs 4 threads repre-
senting bank clients each performing a set of transfers. There is a data race on
a variable containing the total amount of money in the bank. The airlines [7]
test case represents an artificial air ticket reservation system. During each test,
4 threads representing ticket resellers serve requests of 8 client threads. The test
case contains a high-level atomicity violation.



Table 1. Test cases

Test Classes Concur. error

sunbank 2 data race

airlines 8 atom. viol.

crawler 19 data race

ftpserver 120 data race

tidorbj 1399 none

The three other programs in Table 1 are real-
life case studies. The crawler case study [1] is
a skeleton of an older version of a major IBM
software. In this test case, 16 threads simulate
serving of remote requests. A data race can man-
ifest here if a certain very rare timing condi-
tion is met during a shutdown sequence. The
ftpserver case study [7] is an early development version of an open-source
FTP server. The server creates a new thread for each connection. The code
contains several data races, out of which we focus only on those producing
a NullPointerException. Finally, the tidorbj test case is an open source
CORBA-compliant object resource broker [10]. We used the echo concurrent
test case available in the distribution. The test starts 10 clients, each sending a
set of requests to the server. This test case does not contain any known concur-
rency error.

During each test run, we measure coverage wrt. a chosen metric—namely,
Avio* [7]. This metric has been chosen due to its very good ratio of providing
good results from the point of view of suitability for saturation-based or search-
based testing and a low overhead of measuring the achieved coverage (and hence
its suitability for performing many tests with minimal interference with tested
programs—still, in the future, more experiments with other metrics could be
done). Note that the Avio* metric that we use for evaluation of the testing is
different than the specialised metric that we have proposed above as a means
for driving the noise injection. In particular, the Avio* coverage metric focuses
on accesses to shared variables and collects triplets consisting of two subsequent
accesses a1, a3 to a shared variable v from a thread and the last access a2 to
v from another thread that interleaved accesses a1 and a3. Besides coverage
information, we monitor execution times and occurrences of the known errors.
Collection of this information of course affects thread scheduling of the monitored
test cases, but the influence is the same for all performed executions. All tests
were executed on multi-core machines running Linux and Java version 1.6.

To recall from Section 2, IBM ConTest provides 5 basic techniques for noise
seeding: yield, sleep, wait, busyWait, and synchYield. In addition, the so-called
mixed technique simply randomly chooses one technique from the others. The
probability of causing a noise at a ploc is driven by the noise frequency (nFreq)
parameter ranging from 0 (no noise) to 1000 (always). We limit this parame-
ter to values 0, 50, 100, 150, and 200. Higher values cause significant perfor-
mance degradation and are therefore not considered. The mentioned basic noise
seeding techniques can be combined in ConTest with two further techniques—
haltOneThread and timeoutTamper. The approach of setting a certain noise fre-
quency to control when some noise is generated can then be combined with
restricting the noise generation to events related to (certain) shared variables
(the sharedVar heuristics). Finally, ConTest provides a so-called random setting
under which it randomly selects and combines its parameters.

Each of our 5 test cases was tested with 496 different noise injection configu-
rations. We collected data from 60 executions for each configuration. This way,



Table 2. Relative improvement of error detection when using different types of noise

test case nFreq sleep busyWait wait sYield yield mixed average

sunbank 50 1.63 1.32 2.28 0.45 1.60 0.85 1.36

100 3.05 2.48 4.22 0.00 0.38 3.62 2.29

150 4.18 1.68 2.52 0.00 4.85 2.03 2.54

200 3.85 3.12 6.13 0.00 4.47 2.50 3.34

airlines 50 1.13 1.13 0.65 0.67 3.06 0.91 1.26

100 2.44 1.45 1.34 1.88 5.48 1.35 2.32

150 0.21 1.89 1.42 1.83 5.21 0.47 1.84

200 1.90 0.23 0.58 1.93 5.54 1.15 1.89

ftpserver 50 0.36 0.34 0.56 0.94 0.91 0.49 0.60

100 0.21 0.48 0.28 0.90 0.96 0.35 0.53

150 0.36 0.22 0.30 0.98 0.95 0.31 0.52

200 0.20 0.60 0.29 0.99 0.90 0.31 0.55

average 1.63 1.24 1.71 0.88 2.86 1.19 1.59

we obtained a database of 148,800 results. Then, we computed average cumu-
lated values for sequences of 1, 10, 20, 30, 40, and 50 randomly chosen results
of each configuration (the length of the sequence is denoted as SeqLen below).
These average results represent average values that one obtains when executing
the given configuration SeqLen times.

Due to limited space, only two analyses of the results are presented here:
(1) A comparison of the efficiency of the different noise seeding techniques avail-
able in ConTest together with the influence of the noise frequency on them.
(2) A comparison of the efficiency of the ConTest’s heuristics restricting noise
generation to events related to (certain) shared variables and our newly pro-
posed heuristics for deciding where to generate noise in a testing run. Hence, the
first comparison is mainly about the types of noise seeding and partially about
where the noise is generated in a test execution whereas the second comparison
is mainly about the latter issue.

4.1 A Comparison of ConTest’s Noise Seeding Settings

In this subsection, we focus on the influence of the different noise seeding tech-
niques and the noise frequency on how the testing results are improved in com-
parison to testing without noise injection (but with the collection of data about
the testing enabled, which also influences the scheduling). Since ConTest does
not allow one to use its timeoutTamper and haltOneThread noise seeding tech-
niques without one of its basic noise seeding techniques, we first study the effect
of the basic noise seeding techniques, which are activated via the noiseType

parameter of ConTest. Then we focus on the effect of the timeoutTamper and
haltOneThread seeding techniques.

Table 2 shows the relative improvement of error detection that we observed
when using different basic noise seeding techniques available in ConTest. Both
the haltOneThread and timeoutTamper seeding techniques were disabled, the



random noise injection heuristics was enabled, and SeqLen=50. Additionally, we
also consider the ConTest setting which randomly chooses among basic noise
seeding techniques before each test execution (referred as mixed in the table).
The entries of the table give the ratio of the number of error manifestations
observed when using noise injection of the respective type against the number of
error manifestations without any noise setting enabled. Moreover, average val-
ues are provided for a better comparison. Values lower than 1.00 mean that the
appropriate configuration provided a worse result than without noise. Higher
values mean that noise of the appropriate type provides better results. For in-
stance, 1.25 means that the given type of noise on average detected an error
by 25 % more often. Results for the crawler and tidorbj test cases are omitted
because there were no errors detected by the considered test configurations in
those test cases.

The table illustrates that noise injection affects each test case differently—
sometimes it helps, sometimes not. The use of noise almost always very signif-
icantly helps in the cases of sunbank and airlines, but it does not help in the
case of ftpserver. Also, the different seeding techniques perform differently in the
different test cases, and one cannot claim a clear winner among them (although
yield seems to be often winning). The wait technique helps the most in the sun-
bank test case while yield provides the best improvement in the airlines test
case. In the case of ftpserver, no technique provides improvement. Significant
influence of nFreq is visible in the sunbank test case, but in the ftpserver case,
it seems that nFreq has no influence. The effect of nFreq in airlines has no clear
tendency. Nevertheless, overall, the table demonstrates that choosing a suitable
noise seeding technique can rapidly improve the probability of detecting an error
at least in some cases.

Further, we have also performed experiments on how using the different basic
noise seeding techniques available in ConTest impacts upon coverage obtained
under the Avio* metric. The obtained results can be summarised by saying that
the obtained improvement due to the use of noise injection was smaller in this
case, and the differences among the noise seeding techniques were smaller too.
The best improvement was achieved using the busyWait technique (about 45 %)
in the crawler and ftpserver test cases.

Table 3. Influence of the
haltOneThread and timeout-
Tamper techniques on error
detection

t 0 t 1
test case h 0 h 1 h 0 h 1
sunbank 2.54 0.95 1.93 1.72
airlines 1.84 2.55 1.61 2.29
ftpserver 0.52 0.61 0.34 0.45

Table 3 shows influence of the timeoutTam-
per and haltOneThread noise seeding techniques
as well as their combination on error detection
(in the table, t 0/t 1 indicates whether timeout-
Tamper is disabled or enabled, and h 0/h 1 indi-
cates whether haltOneThread is disabled or en-
abled, respectively). As said above, these tech-
niques cannot be used without any basic noise
seeding techniques in ConTest, and therefore
average values computed from results obtained
with different basic noise seeding techniques are reported. Results for nFreq=150
and seqLen=50 are used. Like in Table 2, the ratio of the number of manifested
errors against the number of manifested errors when no noise is used is presented.



The table shows that timeoutTamper and haltOneThread also affect each test
case differently. The haltOneThread technique significantly helps in the airlines
test case, slightly helps in the ftpserver, but it is harmful in the sunbank test case.
The timeoutTamper technique provides worse results in all shown test cases. On
the other hand, in the crawler test case (not shown in the table since no error is
detected in it without noise injection), testing with timeoutTamper enabled and
haltOneThread disabled was the only configuration of ConTest that allowed an
error to manifest (in 7 % of the executions).

Table 4. Influence of the
haltOneThread and timeout-
Tamper techniques on Avio*
coverage

t 0 t 1
test case h 0 h 1 h 0 h 1
sunbank 1.04 1.03 1.04 1.06
airlines 0.85 0.81 0.77 0.86
crawler 1.15 1.30 3.91 3.78
ftpserver 1.04 1.04 1.09 1.07
tidorbj 0.95 0.95 0.95 0.96

Table 4 illustrates the influence of the time-
outTamper and haltOneThread noise seeding
techniques on the coverage obtained under the
Avio* coverage metric. The table clearly shows
that the effect of timeoutTamper is very impor-
tant for the crawler test case. As we have already
said, this test case is a skeleton of one IBM soft-
ware product. When developers extracted the
skeleton, they modeled its environment using
timed routines. The timeoutTamper heuristics
influences these timeouts in a way leading to sig-
nificantly better results. The effects of the con-
sidered techniques in the other examples are then none or very small.

The same trends as described above can also be seen from results of ex-
periments that we have performed with different values of nFreq. Our results
indicate that there is no optimal configuration, and for each test case and each
testing goal, one needs to choose a different testing configuration. For instance,
the best configuration for the crawler test case is a combination of the busyWait
and timeoutTamper noise seeding techniques with nFreq set to 200 if the goal
is to increase the error detection probability. On the other hand, the testing
configuration with yield, timeoutTamper, and nFreq set to 150 provides the best
improvement of the Avio* coverage in this test case. In some cases, using a ran-
dom injection of noise does not provide any improvement as can be seen from
the tidorbj test case. A significant improvement in this case is achieved only
when the noise heuristics discussed in the following section are used.

4.2 A Comparison of Heuristics for Determining Where to
Generate Noise

This subsection concentrates on the influence of the ConTest’s heuristics restrict-
ing noise generation to events related to shared variables and on the influence
of our new heuristics proposed in Section 3. In addition, the scenario in which
ConTest randomly chooses its own parameters is also considered. In particular,
Table 5 compares the mentioned heuristics according to the number of Avio*
covered tasks divided by the time needed to execute the tests. Intuitively, this
relativised comparison favours techniques that provide a high coverage with a low
overhead, and therefore punishes techniques that either put too much noise into
test executions or provide a poor coverage only. Based on our experiments, we



Table 5. A relativised comparison of heuristics restricting places where to put noise

position configuration airlines crawler ftpserver sunbank tidorbj average

1 0 1 1 1-0-one 0-0 7.0 2.7 9.2 4.8 7.7 6.3

2 0 1 0 1-0-one 0-0 5.0 2.7 11.5 4.5 8.8 6.5

3 0 0 0 0-0-all 1-0 2.6 17.7 2.5 7.6 2.3 6.6

4 1 0 0 0-0-all 0-0 10.3 3.2 10.3 5.3 5.0 6.8

5 0 1 0 1-1-one 0-0 11.8 5.0 11.8 4.0 8.7 8.3

6 0 1 1 1-1-one 0-0 9.5 7.5 15.7 3.5 7.2 8.7

7 0 0 1 1-0-one 0-0 5.2 18.0 3.0 9.7 9.3 9.0

8 0 0 0 1-0-one 0-0 6.3 17.8 2.8 10.0 8.7 9.1

9 0 0 0 1-1-one 0-0 8.7 15.8 10.8 7.8 7.0 10.0

10 0 0 1 1-1-one 0-0 10.8 14.5 9.5 10.5 7.5 10.6

11 0 0 0 0-0-all 0-0 5.0 19.2 11.0 12.0 10.5 11.5

12 0 0 0 0-0-all 1-1 3.7 23.0 19.0 6.7 13.0 13.1

13 0 1 0 1-0-all 0-0 14.7 5.5 19.0 15.3 14.7 13.8

14 0 1 0 0-0-all 0-0 17.2 7.5 17.0 12.3 16.0 14.0

15 0 1 0 1-1-all 0-0 17.3 6.8 18.2 11.0 17.2 14.1

16 0 1 1 1-0-all 0-0 17.8 6.5 13.7 17.3 15.5 14.2

17 0 1 1 1-1-all 0-0 14.3 9.3 16.0 16.8 14.7 14.2

18 0 0 1 1-0-all 0-0 13.0 14.3 9.5 19.8 16.7 14.7

19 0 0 0 1-1-all 0-0 14.0 16.8 14.3 16.0 13.7 15.0

20 0 1 1 0-0-all 0-0 16.2 10.3 17.8 14.8 16.5 15.1

21 0 0 1 1-1-all 0-0 15.3 16.0 9.7 19.8 15.2 15.2

22 0 0 0 1-0-all 0-0 18.2 17.3 11.8 16.3 17.3 16.2

23 0 0 1 0-0-all 0-0 19.2 18.5 9.8 19.3 18.0 17.0

have also compared the heuristics according to the number of Avio* covered
coverage tasks only (thus providing a non-relativised comparison) as well as
according to how often an error is manifested (either taking into account the
needed testing time or not). Due to space restrictions, we do not present these
latter comparisons in detailed tables here, but we summarize them in the text.

The configuration column of Table 5 describes the considered noise injection
configuration. A configuration consists of five parts delimited by the “ ” char-
acter. The meaning of these parts is as follows: (Part 1) The ConTest random
parameter: if set to 1, ConTest parameters considered in Parts 2–4 are set ran-
domly before each execution. (Part 2) If set to 1, the timeoutTamper heuristics
is enabled. (Part 3) If set to 1, the haltOneThread heuristics is enabled. (Part
4) This part is divided into three sub-parts delimited by “-”. The first sub-part
indicates whether the ConTest’s heuristics limiting noise generation to events
related to shared variables is enabled. The second sub-part says whether the
noise is also put to other plocs than accesses to shared variables. Finally, the
third sub-part says whether the noise is put to all shared variables or one ran-
domly chosen before each execution. (Part 5) This last part encodes the setting
of our noise injection heuristics. It consists of two sub-parts delimited by “-”.



The first sub-part says whether our noise injection heuristics is enabled and the
second one whether our noise strength computation is enabled too. For further
information concerning ConTest configuration, we refer the reader to Section 2
or ConTest documentation [9].

For each considered test case (i.e., airlines, crawler, etc.), we rank the test
configurations according to the obtained results—rank 1 is the best, rank 23 is
the worst. More precisely, the entries of the table under the particular test cases
contain average ranks obtained across the different basic noise types of ConTest.
The average rank over all the test cases is provided in the last column. The test
configurations are then sorted according to their average rank, giving us their
final position in the evaluation of the 23 configurations. We use the final position
to identify the configurations in the following text.

As before, the table shows that the efficiency of the different heuristics vary
for different test cases. Our heuristics (at position 3) achieved the best results in
three out of five test cases (airlines, ftpserver, and tidorbj ). The heuristics was
not evaluated as the overall winner due to the poor results that it achieved in the
crawler test case. On the other hand, our heuristics was evaluated as the best
for crawler when considering the probability of error detection. In fact, there
were only three configurations (3, 16, and 18) which were able to detect the very
rarely manifesting error in the crawler test case. Our heuristics increased the
probability of spotting the error the most and achieved the best result in both
relativised and non-relativised comparisons. In the other considered test cases,
our heuristics was always in the first third of the average results when considering
the relativised probability of error detection. As for results of our heuristics in
the non-relativised cases of both the Avio* coverage and the probability of error
detection, our heuristics achieved worse results (still mostly being in the first
half of all the configurations). Hence, based on the results, we can claim that
our new heuristics seems to be a good choice when one needs to test bigger
programs, especially when having a limited time for testing.

The use of our noise injection heuristics combined with the newly proposed
noise strength computation ended at position 12 in Table 5. The results achieved
in the various test cases differ more significantly for this configuration than
when using the new noise injection heuristics only. Relatively good results were
obtained for the sunbank and airlines test cases, bad results for the other test
cases. Similar results were obtained for the relativised Avio* coverage. This is
caused by the newly proposed noise strength computation that sometimes puts
a considerable amount of noise to places where it might be interesting. This leads
to poor results in relativised comparisons where the time plays an important role.
On the other hand, the use of our noise injection heuristics combined with the
newly proposed noise strength computation provided better results than using
our noise injection heuristics only in the non-relativised comparisons because it
was able to examine more different interleavings. It was even evaluated as the
best for the tidorbj test case in the non-relativised comparison using the Avio*
coverage. To sum up, we may advice to use the combination of both of the newly
proposed heuristics to test bigger programs when performance degradation is not
a problem.



Table 5 also clearly shows effectiveness of the ConTest’s shared variable
heuristics focused on a single randomly chosen shared variable. Configurations
based on this heuristics occupy eight from the ten first positions in the table
and provide good results also in other considered comparisons. The overall best
results were obtained by the combination of this heuristics with the timeoutTam-
per and haltOneThread noise heuristics (position 1), which is again mainly due
to the effect of the timeoutTamper heuristics in the crawler test case. Hence, our
results prove conclusions presented in [1] that focusing noise on a single variable
randomly chosen for each test execution improves the overall test coverage.

Our results then also show that some heuristics trying to restrict the po-
sition where to put noise in an intelligent way provide worse results than the
configuration with generating noise at random places in test executions (posi-
tion 11). Finally, we have to admit that surprisingly good results were often
provided by the random setting of ConTest too (position 4). This approach pro-
vided good results especially in the relativised comparisons and the best result
for the airlines test case and the criterion of maximizing the probability of error
manifestation. Results of this configuration were of course considerably worse for
the non-relativised comparison where the execution time is not considered. We
suggest to use this configuration when the execution time is important, and one
has no idea how the test case is affected by different noise injection techniques.

Results presented in Table 5 were computed for seqLen=20 and nFreq=150.
We also examined the influence of changing these paramaters. Our results show
that seqLen has a minimal impact on the results. Configurations that were eval-
uated as good after 10 executions of the test were very similarly rated after 50
executions. The nFreq parameter which controls how often the noise is caused
influenced our results more. Differences were usually up to two positions with
three exceptions. Those exceptions represent the ConTest random setting and
both versions of our heuristics which in fact do not use the nFreq parameter.
All three configurations obtain a better ranking when noiseFreq=50 and non-
relativised results are considered. As for relativised results, the ConTest random
setting obtained the best overall ranking in both considered evaluation schemes.
Our noise injection heuristics used without the newly proposed noise strength
computation remained among the best three configurations, still beating the
ConTest random configuration in some test results. The combined use of both
newly proposed heuristics lost when considering the Avio* coverage, but re-
mained well-ranked when considering the error detection probability. Therefore,
we suggest to use the ConTest random setting or our noise injection heuris-
tics without the newly proposed noise strength computation in cases when the
amount of noise needs to be very low.

5 Conclusions

We have provided a comparison of multiple noise injection heuristics that was
missing in the current literature. We have also proposed a new, original noise
injection heuristics, winning over the existing ones in some cases. We show that
there is no silver bullet among the existing noise injection heuristics although



some of them are on average winning in certain testing scenarios. Based on
our experiences, we have given several suggestions on how to test concurrent
programs using the noise injection approach. Our future work includes further
improvements of our heuristics, a further investigation of the influence of noise
on different programs, and an evaluation of some heuristics [4, 6] not yet imple-
mented and tested in our framework. The obtained results are also important
for our current work which applies search techniques for automatic identification
of a suitable configuration (or configurations) for specific test cases [7, 8].
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8. B. Křena, Z. Letko, T. Vojnar, and S. Ur. A Platform for Search-based Testing of
Concurrent Software. In Proc. of PADTAD’10, ACM, 2010.

9. Y. Nir-Buchbinder, E. Farchi, R. Tzoref-Brill, and S. Ur. IBM Contest Documen-
tation, May 2005. http://www.alphaworks.ibm.com/tech/contest

10. J. Soriano, M. Jimenez, J. M. Cantera, and J. J. Hierro. Delivering Mobile Enter-
prise Services on Morfeo’s MC Open Source Platform. In Proc. of MDM’06, IEEE
CS, 2006.

11. S. D. Stoller. Testing Concurrent Java Programs Using Randomized Scheduling.
In Proc. of RV’02, ENTCS, 70(4), Elsevier, 2002.
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