
i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page i — #1 i
i

i
i

i
i

Marek Rychlý, Jaroslav Zendulka

Modelling of Component-Based
Systems with Mobile Architecture

Monograph

Faculty of Information Technology
Brno University of Technology
Brno, Czech Republic

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page II — #2 i
i

i
i

i
i

Editorial board of Faculty of Information Technology:
Prof. Jaroslav Zendulka
Department of Information Systems
chair

Prof. Tomáš Hruška
Department of Information Systems

Adam Herout, Ph.D.
Department of Computer Graphics and Multimedia

Prof. Milan Češka
Department of Intelligent Systems

Prof. Alexander Meduna
Department of Information Systems

Lukáš Sekanina, Ph.D.
Department of Computer Systems

Petra Nastulczyková
Library

c© 2010 Faculty of Information Technology, Brno University of Technology
Monograph

Cover design 2010 by Dagmar Hejduková

Published by Faculty of Information Technology,
Brno University of Technology, Brno, Czech Republic

Printed by MJ servis, spol. s r.o.

ISBN 978-80-214-4211-5

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page III — #3 i
i

i
i

i
i

Preface

Globalisation of information society and its progression create needs for exten-
sive and reliable information technology solutions. Several new requirements
on information systems have emerged and significantly affected software ar-
chitectures of these systems. The current information systems can not be
realised as monoliths, but tend to be distributed into networks of quite
autonomous, but cooperative, components communicating asynchronously via
messages of appropriate formats. Loose binding between those components
allows to establish and destroy their interconnections dynamically at runtime,
on demand, and according to various aspects (e.g. quality and cost of services
provided or required by the components); to clone the components and to
move them into different contexts (known as „component mobility“); to create,
destroy and update the components dynamically at runtime; etc.

The dynamic aspects of software architectures and the component mobility
brings new problems in the domain of software engineering. The component-
based systems are getting involved, and a formal specification of evolution
of their architectures is necessary, particularly in critical applications. Design
of these systems can not be done by means of conventional software design
methods.

In this book, we propose an approach to modelling of component-based
systems and formal description of their behaviour. The approach is based
on a novel component model defined by a metamodel in a logical view and
by description in the π-calculus in a process view. It is shown that the
component model addresses the dynamic aspects of software architectures
including the component mobility. Furthermore, a method of behavioural
modelling of service-oriented architectures is proposed to pass smoothly from
service level to component level and to describe behaviour of a whole system,
services and components, as a single π-calculus process. Finally, we illustrate
an application of the approach on a case study of an environment for functional
testing of complex safety-critical systems. The support of dynamic architec-
ture and the integration with service-oriented architecture compromise the
main advantages of the approach.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page IV — #4 i
i

i
i

i
i

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page V — #5 i
i

i
i

i
i

Acknowledgment

I would like to thank all the team of the Department of Information Systems,
at BUT FIT, for their valuable suggestions regarding this work. Special thanks
belong to my family for their patience, encouragement, and support over the
years.

Marek Rychlý
Brno, 2010

The work presented in this book has been supported by the long-term
institutional research project of the Czech Ministry of Education number
CEZ MSM 0021630528 „Security-Oriented Research in Information Tech-
nology“, the BUT FIT grant FIT-10-S-2 „Recognition and presentation of
multimedia data“, and the Grant Agency of the Czech Republic grant num-
ber 102/05/0723 „A Framework for Formal Specifications and Prototyping of
Information System’s Network Applications“.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page VI — #6 i
i

i
i

i
i

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page VII — #7 i
i

i
i

i
i

Contents

1 Introduction . 1
1.1 Objectives of This Book . 3

1.1.1 Overview of the State of the Art . 4
1.1.2 Component Model for Mobile Architectures 4
1.1.3 Application of the Component Model in SOA 5
1.1.4 Software Development Process . 5
1.1.5 Case Study . 5

1.2 Structure of This Book . 5

Part I State of the Art

2 Formal Bases . 9
2.1 Labelled Transition Systems . 10
2.2 Communicating Sequential Processes . 11
2.3 Calculus of Mobile Processes . 13

2.3.1 Operational Semantics . 16
2.3.2 Congruences of Processes . 17

3 Software Component Architecture . 21
3.1 Software Architecture . 21
3.2 Component-Based Development . 22
3.3 Component Models . 23

3.3.1 Wright . 23
3.3.2 Darwin and Tracta . 25
3.3.3 SOFA . 26
3.3.4 SOFA 2.0 . 27
3.3.5 Fractal . 28

3.4 Architecture Description Languages . 30
3.4.1 ACME . 31
3.4.2 Unified Modelling Language . 31

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page VIII — #8 i
i

i
i

i
i

VIII Contents

3.4.3 ArchWare ADL . 34

4 Service Oriented Architecture . 37
4.1 Design of Services . 37

4.1.1 Business Process Modelling . 38
4.1.2 Business-to-Service Transformation 39
4.1.3 Service Composition . 39

4.2 Implementation of Services . 40
4.3 Services and Components . 41

4.3.1 Service Component Architecture . 41

Part II Component Model for Mobile Architectures

5 Component Model . 47
5.1 Logical View . 47

5.1.1 Metamodel . 49
5.1.2 System Model . 55

5.2 Process View . 58
5.2.1 Notation . 59
5.2.2 Interface’s References and Binding 60
5.2.3 Control of a Component’s Life-cycle 61
5.2.4 Cloning of Components and Updating of Subcomponents 62
5.2.5 Primitive and Composite Components 63

5.3 An Example of a Component-Based System and its Description 64
5.3.1 Definition of the Components’ Implementations 65
5.3.2 Description of the Component Based System 67

6 Behavioural Modelling of Services . 69
6.1 Service as a Part of Service Oriented Architecture 70

6.1.1 Communication of Services and Service Broker 70
6.2 Service as a Component Based System . 71
6.3 An Example of a Service-Oriented Architecture 73

6.3.1 Service Identification. 73
6.3.2 Service Model . 75
6.3.3 Description of Services as Entities of SOA 77
6.3.4 Description of Services as Component-Based Systems . . 78

Part III Application

7 Development Process . 83
7.1 Application of the Behavioural Modelling of Services 83
7.2 Application of the Component Model . 84
7.3 Integration of a Formal Description . 86

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page IX — #9 i
i

i
i

i
i

Contents IX

8 Tools . 87
8.1 Component Modelling Tools . 87

8.1.1 Component Diagrams in UML . 87
8.1.2 A Tool for Modelling of Component-Based Systems 88

8.2 Verification Tools . 90
8.2.1 The Mobility Workbench (MWB) 92
8.2.2 Another/Advanced Bisimulation Checker (ABC) 93
8.2.3 Pi-Calculus Equivalences Tester (PiET) 93

9 Case Study . 95
9.1 System Description . 96
9.2 Service Identification . 97
9.3 Component-Based System . 100
9.4 Formal Description of the Service-Oriented Architecture 102
9.5 Formal Description of the Component-Based System 104
9.6 System Properties and Their Verification 108

9.6.1 Simulation . 108
9.6.2 Deadlocks . 109
9.6.3 Bisimulation Checking . 110
9.6.4 Model Checking . 111

9.7 Evaluation and Conclusion . 112
9.7.1 Important Merits . 113
9.7.2 Possible Drawbacks . 114

Part IV Conclusion

10 Summary . 117

11 Future Research Directions . 119

References . 121

Acronyms . 129

Part V Appendices

Process Descriptions from the Case-Study in MWB/ABC 135
A.1 Control Parts of Components . 135
A.2 Core Behaviour of the Components . 136
A.3 Complete Behaviour of the Subcomponents 137
A.4 Behaviour of the Composite Component . 138
A.5 Services of SOA . 139

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page X — #10 i
i

i
i

i
i

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page XI — #11 i
i

i
i

i
i

List of Figures

3.1 An example of UML „class“ style notation with interface
stereotypes and corresponding „lollipop“ style notation where
Borrow acts as an „assembly connector“ between Library and
Book or CD (the example is adopted from [AN05]). 33

3.2 An example of component Store, its internal structure and
components Order, Customer, and Product, as parts of its
internal assembly (the example is adopted from [OMG07b]). . . . 34

5.1 The four-layer modelling architecture of the component
model and UML as metamodels in layer M2 and MOF as a
meta-metamodel in layer M3 (UML 2 notation). 48

5.2 A simplified part of the EMOF metamodel [OMG06a] with
classes that will be extended by the component model. 49

5.3 Abstract component, realisations, and interfaces, extending
EMOF::NamedElement in the metamodel of the component
model. 50

5.4 Binding and its different realisations between interfaces of
a composite component realisation in the metamodel of
the component model. Classes CompositeComponent and
...Interface are identical to the classes in Figure 5.3. 51

5.5 Types of interfaces with class Operation extending
EMOF::Operation in the metamodel of the component model.
Classes Interface, ProvidedInterface, RequiredInterface,
and Component are identical to the classes in Figure 5.3. 52

5.6 The example of description of a system model as an object
diagram with instances of classes from the component model’s
metamodel. 56

5.7 An example of proposed notation of a system model in
layer M1 by means of the component model from layer M0. 56

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page XII — #12 i
i

i
i

i
i

XII List of Figures

5.8 The example of a simple component-based system that
dynamically changes its behaviour, component system and
its subcomponents init, workerA, and workerB (an initial
configuration, i.e. without bound interface sysFunc). 65

6.1 Business process model of „Process Purchase Order“ (adopted
from [OMG06b]). 74

6.2 An overview of identified services and their interconnections. . . . 75
6.3 Controller service Scheduling and its orchestration of business

services ProductionScheduling and ShippingScheduling. 76
6.4 Behaviour of service Scheduling as a sequence of service

invocations. 77

8.1 Eclipse Ecore diagram of the metamodel, which is used in the
tool for modelling of component-based systems (adopted from
[Gal09], a full version can be found in [Ryc09]). 89

8.2 The model of the component-based system from the example
in Section 5.3 (adopted from Figure 5.8) with component
system and its subcomponents init, workerA, and workerB,
without control interfaces. 89

9.1 Testing environment of a railway interlocking control system
(adopted from [DMM+08]). 96

9.2 An overview of identified services of the testing environment
and their interconnections. 97

9.3 The choreography of services in the testing environment. 98
9.4 Services of the testing environment as UML classes. 99
9.5 Structure of composite component TestEnvironment with

attached component test. 101

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page XIII — #13 i
i

i
i

i
i

List of Tables

4.1 The comparison of Service Oriented Architecture (SOA) and
Component-Based Development and Systems (CBD/CBS),
which has been published in [Ryc08]. 41

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page XIV — #14 i
i

i
i

i
i

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 1 — #15 i
i

i
i

i
i

1

Introduction

Increasing globalisation of information society and its progression create needs
for extensive and reliable information technology solutions. A few years ago,
IT solutions for support of an entire organisation were, in most cases, ap-
plications of several independent and specialised information systems (an ac-
counting system, a production system, etc.). Nowadays, complex information
systems are required, which provide information support across the organ-
isation’s departments. Common features of the mentioned systems include
[KŽ00, KŽ03]

• adaptability to variable structures of organisations and distributed activi-
ties – support of highly autonomous subunits and their collaboration, the
ability to use critical functions of components even in the situation when
the whole system does not work,
• integration of well-established software products – it implies lower costs,

the ability to integrate and use legacy systems and third party products,
reduction of dependence on one supplier,
• scalability and high adaptability to variable requirements – the ability

to customise „general systems“ instead of building new systems „from
scratch“ , continuous and endless evolution of the systems together with
organisations (e.g. selling of some divisions of companies, fusions of com-
panies, changing business conditions),
• connection to a variable set of external systems (e.g. a variable set of

„e-business“ partners) and systems of cooperating organisations (great
projects must be often realised by a consortium of several big companies),
etc.

It is obvious that the mentioned features have significant impact on archi-
tectures of software systems. The systems can not be realised as monoliths.
The exact specification of functions and interfaces of the systems’ parts is
necessary, as well as specification of their deployment and communication.
Moreover, integration of third party products often requires gateways adapting
interfaces of the products to the systems’ interfaces.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 2 — #16 i
i

i
i

i
i

2 1 Introduction

Therefore, the information systems of organisations are realised as
networks of quite autonomous, but cooperative, units communicating
asynchronously via messages of appropriate format. Such systems [KŽ03]
are called software confederations (SWCs, with components working
as permanently available services) or software alliances (SWAs, semi-
confederations, which are formed temporarily during the systems’ runtime).

Design and implementation of SWC/SWA have to deal with many prob-
lems including [KŽ00]

• the ability to clone components (i.e. to make their copies) and to move
them across a network – e.g. to optimise the system behaviour (distributed
processing),

• dynamic reconfiguration of the systems – creation and destruction of com-
ponents during the systems’ runtime, updating components, maintaining
components’ compatibility,

• collaboration of autonomous components – how to find components having
an ability to solve a given task, how to verify that the task was finished
correctly,

• programmable component interfaces – one component can have many in-
terfaces, choice of an interface depends on required functionality, security,
communication protocol, version, etc.

Moreover, there are critical applications where SWC/SWA systems are
getting involved. Their architectures are evolving during the systems’ runtime
and their formal specification is necessary. Design of the distributed systems
with dynamic architectures (i.e. architectures with dynamic reconfigurations)
and mobile architectures (i.e. dynamic architectures with component mobility)
can not be done by means of conventional software design methods (e.g.
UML). In most cases, these methods are able to describe semi-formally
only sequential processing or simple concurrent processing bounded to one
component without advanced features such as dynamic reconfiguration.

Nowadays, there are two approaches related to SWC/SWA systems:
service-oriented architecture and component-based development.

The service-oriented architecture (SOA, [Erl05]) is a widely used archi-
tectural style for design of distributed software systems at a higher level of
abstraction. It covers the whole development process from an analysis where
individual services are derived from user requirements (usually represented by
a system of business processes) to an implementation, which uses particular
technologies implementing the services (e.g. Web Services).

The component-based development (CBD, [Szy02]) is a software devel-
opment methodology, which is strongly oriented to composability and re-
usability in a software system’s architecture at a lower level of abstraction. In
the CBD, from a structural point of view, a software system is composed of
components, which are self-contained entities accessible through well-defined
interfaces. Component models are specific metamodels of software architec-
tures supporting the CBD.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 3 — #17 i
i

i
i

i
i

1.1 Objectives of This Book 3

Current approaches to SOA design usually end up at the level of individual
services. They do not describe underlying systems of components, which form
design of individual services as component-based software systems with well-
defined interfaces and behaviour. Moreover, CBD has limitations in formal
description, which restrict the full support of the mobile architectures. Those
restrictions can be delimited by usage of formal bases, which do not consider
dynamic reconfigurations and component mobility, and strict isolation of
control and business logic of components that does not allow full integration
of dynamic reconfigurations into the components’ behaviour.

1.1 Objectives of This Book

The aim of this book is to analyse the state of the art of modelling of
component-based systems and to introduce a novel component model for
description of mobile architectures (i.e. fully dynamic architectures including
mobility of their entities).

The component models that are described in the state-of-the-art overview
in this book (see Section 3.3) support formal description of a software archi-
tecture and behaviour of its components. Moreover, recent component models,
such as SOFA 2.0 and Fractal, have introduced partial support for dynamic
architectures (see Sections 3.3.4 and 3.3.5), which are also supported by recent
architecture description languages (see Section 3.4.3).

However, those component models and architecture description languages
have many limitations with respect to support of mobile architectures, in-
corporation of component-based design into service-oriented architecture and
into software development processes in general. The limitations result from
the following problem factors:

F1: usage of formal bases or models that usually do not consider component
mobility (e.g. pNets in Fractal [Bar05], behaviour protocols in SOFA
[Viš02], and reconfiguration patterns in SOFA 2.0 [HP06]; for details, see
the relevant parts of Section 3.3);

F2: strict isolation of components from their controllers, which does not al-
low full integration of architecture reconfiguration into behaviour of the
components (e.g. restrictions of pNets in a formal description of Frac-
tal components [Bar05] where functional operations can not fire control
operations; for details, see Section 3.3.5);

F3: insufficient support for description of service-oriented architectures where
individual services can be implemented as underlying component-based
systems (e.g. in Fractal component model [BCS04] or in the ArchWare
project [Arc06]; for details, see Sections 3.3.5 and 3.4.3 and Chapter 4);

F4: inconsistency between development of component-based systems and well-
established software development processes of standard software systems
[HHS06], difficult modelling of the component-based systems during the

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 4 — #18 i
i

i
i

i
i

4 1 Introduction

development processes (e.g. as a consequence of different conceptions of
components in the component models [LW05], in component diagrams of
UML [OMG05b, OMG07b] or architectures of SCA [OSO07a]; for details,
see Sections 3.3, 3.4.2, and 4.3.1);

F5: insufficient integration of description of component-based systems, formal
description of their behaviour, and application of related formal meth-
ods into software development processes [BH95, BH06, Hal90] (e.g. Frac-
tal/Fractive component model [Bar05] or the ArchWare project [Arc06]
provide required formalisms and tools, but they do not integrate the
formalisms and the tools into a development process; for details, see
Sections 3.3.5 and 3.4.3).

To address the mentioned problem factors, this book introduces a novel
component model and its formal basis supporting features of mobile archi-
tectures. The book proposes also a method for application of the component
model in service-oriented architectures, to develop mapping rules between
services and component-based systems described by means of the component
model, and finally, it demonstrates the application of the proposed approach
on a case study, to evaluate its important merits and possible drawbacks
over the existing conventional approaches. The component model will be fully
applicable to modelling of SWC/SWA systems, to modelling of component-
based systems as well as service-oriented architectures.

The specific objectives of this book can be summarised as in the following
sections.

1.1.1 Overview of the State of the Art

This book provides an overview of the state of the art of current component
models that implement dynamic architectures, analyses architecture descrip-
tion languages that are suitable for description of component-based systems
with dynamic architectures, and explores relevant formal bases that are able to
support behavioural modelling of components in dynamic architectures. The
main focus is put on advanced features of the dynamic architectures, such
as dynamic update and mobility of components. Moreover, service-oriented
architecture are analysed in terms of component-based development.

1.1.2 Component Model for Mobile Architectures

This book introduces a novel component model and its formal basis sup-
porting features of mobile architectures and addressing the current issues of
component-based development, e.g. it integrates functional operations and
relevant behaviour of components with control operations enabling dynamic
reconfiguration. The component model is described as a metamodel, which
allows construction of specific models of component-based systems with mobile
architectures. The models are able to describe static structure of the systems

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 5 — #19 i
i

i
i

i
i

1.2 Structure of This Book 5

as well as particular relations between their components and interfaces needed
for dynamic reconfiguration and component mobility. Supporting formal basis
for behavioural description of the component model’s entities is adapted
in parallel with the description of the metamodel to ensure their maximal
compatibility. This objective addresses problem factors F1 and F2.

1.1.3 Application of the Component Model in SOA

This book describes a method of application of the component model and
its formal description in service-oriented architectures. To bridge a gap be-
tween individual services and component-based systems, the services can be
modelled as underlying component-based software systems with well-defined
interfaces and behaviour described by means of the component model. This
objective deals with problem factor F3.

1.1.4 Software Development Process

This book proposes an application of the component model and the modelling
of service-oriented architecture in a software development process and possible
utilisation of the formal description of behaviour of services in service-oriented
architectures and components in component-based system. This objective
includes introduction of modelling and verification tools and is focused on
problem factors F4 and F5.

1.1.5 Case Study

Finally, this book demonstrates the application of service-oriented architec-
tures, the component model, and the behavioural description of services and
underlying component-based systems on a case study. The case study deals
with a service-oriented architecture for functional testing of complex safety-
critical systems and it evaluates effectiveness and robustness of the component
model with support of mobile architectures over the existing conventional
approaches.

1.2 Structure of This Book

This book is divided into 4 parts, as follows: Part I „State of the Art“ ,
Part II „Component Model for Mobile Architectures“ , Part III „Application“ ,
and Part IV „Conclusion“ . The parts consist of Chapters 2–4, Chapters 5–6,
Chapters 8–9, and Chapters 10–11, respectively.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 6 — #20 i
i

i
i

i
i

6 1 Introduction

Part I: State of the Art

In Chapter 2, we provide formal bases, a brief introduction to process algebras,
which are later used to describe component-based systems as networks of com-
municating processes. In Chapter 3, we define software architecture in general,
describe CBD in more detail, and review component models and architecture
description languages, which are relevant to our subject. Chapter 4 gives an
introduction to SOA with a focus on composition and implementation of
services.

Part II: Component Model for Mobile Architectures

In Chapter 5, a novel component model with support of mobile architectures
and formal description is introduced, addressing the current issues of the
existing component models and architecture description languages. Chapter 6
deals with behavioural modelling of service as parts of SOA and as component-
based systems by means of the presented component model.

Part III: Application

In Chapter 7, an application of the component model and the behavioural
modelling of services is proposed in a software development process. In Chap-
ter 8, an overview of tools supporting our component model is provided,
including related tools for the model checking. In Chapter 9, we describe a
detailed case study on the proposed approach, evaluate its results, and discuss
advantages and disadvantages of the presented approach.

Part IV: Conclusion

In Chapter 10, we briefly summarise the main methods presented in this book
and emphasise the most important results. To conclude, in Chapter 11, we
outline future research directions in modelling of component-based systems
with mobile architecture.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 7 — #21 i
i

i
i

i
i

Part I

State of the Art

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 8 — #22 i
i

i
i

i
i

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 9 — #23 i
i

i
i

i
i

2

Formal Bases

In software engineering, formal methods are mathematically-based techniques
for specification, development, and verification of software systems. Appli-
cation of the formal methods aims to increase reliability and robustness of
complex software systems by means of their formal description and subsequent
formal verification. There are a few formal methods [CW96], which can
be suitable for specifying a component-based systems’ desired behavioural
and structural properties. Yet, some formal methods, such as Z notation
[ISO02], focus mainly on description of sequential systems [Eva94], while the
component-based systems are (in most cases) concurrent systems. The suitable
can be formal methods such as temporal logic, automata-based methods, and
process algebras.

The temporal logic allow to describe component-based systems declara-
tively (e.g. an approach in [AM02]). This is useful for specifying (restricting)
a system’s properties, but does not allow to describe activities and generate
an executable model of the system, for example. Therefore, the temporal logic
are used in combination with other approaches.

The automata-based methods and process algebras describe component-
based systems imperatively – behaviour is defined in terms of sequences
and synchronisations of actions. The automata-based methods define finite
transition systems with input, output, and internal actions. This allows direct
application of a wide range of well-known formal algorithms, but provides only
general low-level abstraction where advanced features must be implemented
explicitly. As examples of the automata-based methods, we can mention
Interface automata [dAH01] and Component-interaction automata language
[ČVZ06].

The process algebras regard component-based systems as networks of
communicating processes, providing high-level abstractions that can include
advanced features of dynamic and mobile architectures. The processes are rep-
resented by objects in some mathematical domain and the systems’ behaviour
described by means of applications of operators within an algebraic theory.
Moreover, the systems given in the algebras can be related by their behaviour

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 10 — #24 i
i

i
i

i
i

10 2 Formal Bases

via equivalences and preorders, which allows reasoning about such systems
through the relations.

In this chapter, we start by introducing the process algebra theories, which
give the formal bases of current approaches in Chapter 3 and also of our
approach in Part II of this book. At first, in Section 2.1, we introduce labelled
transition systems (LTSs) as models for implementation of the process alge-
bras’ operational semantics. We describe two process algebras. In Section 2.2,
we briefly introduce communicating sequential processes (CSP). The second
process algebra is calculus of mobile processes described in more detail in
Section 2.3. We focus mainly on the calculus of mobile processes, which is
intensively used as a formal basis to the original approach proposed in this
book.

2.1 Labelled Transition Systems

A state transition system, or simply a transition system (TS), is an abstract
machine describing behaviour of a system. The transition system consists of
a set of the system’s states and transitions between these states1.

Definition 1 (Transition System) A transition system is a pair A =
(S,→) where S is a finite or infinite set of states and → ⊆ S × S is a finite
or infinite set of transitions (a transition relation) between the states. For
transition (s, t) ∈→ where s, t ∈ S, which we can write as s→ t, state s is a
source state and state t is a target state of the transition.

The labelled transition system (LTS) is a transition system where each
its transition has assigned a label2. Those labels represent actions or events,
which trigger the transitions.

Definition 2 (Labelled Transition System) A labelled transition system
is a triple A = (S,L,→) where S is a finite or infinite set of states, L is a
finite or infinite set of labels (an alphabet), and → ⊆ S ×L×S is a finite or
infinite set of transitions (a transition relation) between the states by means
of the labels. For transition (s, l, t) ∈→ where s, t ∈ S and l ∈ L, which we
can write as s l→ t, state s is a source state and state t is a target state of
the transition.

The sets of states and transitions need not to be necessarily finite, or even
countable. Transition systems with a finite number of states and transitions
1 We do not consider an initial state, because TS describes only the system’s

(observable) behaviour, not its start.
2 There exist many various formal definitions of LTS, e.g. in [Bar05] the transition

relation is replaced by two functions from L to S (each maps a label into a source
and target state of a transition).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 11 — #25 i
i

i
i

i
i

2.2 Communicating Sequential Processes 11

can be represented as directed graphs (nodes are states and edges are transi-
tions). A TS or a LTS is deterministic, iff its transition relation → is a really
partial function from S to S or S × L to S, respectively.

According to [Bar05], we can define a synchronisation constraint, a syn-
chronisation vector, and a synchronous product as follows.

Definition 3 (Synchronisation Constraint) A synchronisation con-
straint of sets of labels L1, . . . , Ln is a subset I ⊆ L1 × · · · × Ln.

Definition 4 (Synchronisation Vector) A synchronisation vector is an
element v ∈ I of a synchronisation constraint I.

Definition 5 (Synchronisation Product) A synchronous product of n
LTSs (Sn, Ln,→n) under a synchronisation constraint I is a LTS (S,L,→)
where S = S1×· · ·×Sn, L = L1×· · ·×Ln, and → = I ∩ (→1 × · · ·× →n).

The synchronisation product of LTSs under a synchronisation constraint
has been introduced for purpose of hierarchical composition of the LTSs.
It defines a system of the LTSs where each synchronisation vector of the
system’s synchronisation constraint represents the system’s global transition,
i.e. a group of concurrent transitions over the system’s LTSs. In other words,
the synchronisation constraint defines global transitions that are visible in
the synchronous product, as transactions of the system. It also allows to hide
some global transitions as „internal“ .

The LTS formalism is used as a formal basis for Tracta, which defines
formal semantics of the component model Darwin (see Section 3.3.2), and a
pLTS/pNet formalism used for a formal description of systems in the Fractal
component model (see Section 3.3.5). Generally, labelled transition systems
are used to describe operational semantics of process algebras. In this book,
we will use labelled transition systems to describe operational semantics of
π-calculus in Section 2.3.1.

2.2 Communicating Sequential Processes

The process calculus of Communicating Sequential Processes (CSP, see
[Ros98]) is a formal language for describing patterns of interaction in
concurrent systems with static structure. The CSP was introduced by
Charles Hoare in 1978 and has evolved substantially over the years. It
provides communication events and processes:

a communication event – an input/output event, a name from an alphabet
which contains all possible communications for processes in the universe
under consideration;

a process – it represents a fundamental behaviour and is able to interact with
other process solely through message-passing communication.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 12 — #26 i
i

i
i

i
i

12 2 Formal Bases

Processes may have to co-operate in the performance of an event, which
happens only when all its participants3 are prepared to execute it (known
as „handshaken communication“) and inevitably at the moment when these
participants have agreed to execute it (the event is „instantaneous“).

In CSP, there are two special processes: STOP that does not communicate
(also called a „deadlock“) and SKIP that represents successful termination.

Formally, the CSP’s semantics has been defined in [Ros98] as an op-
erational semantics, by means of labelled transition systems described in
Section 2.1. However, we can describe the CSP informally by introducing
its basic algebraic operators:

• α→ P – a prefix operator, the process is initially willing to communicate
event α and will wait indefinitely for this α to happen, after α it behaves
like process P ;

• (α → P) � (β → Q) – a deterministic „external“ choice (iff α 6= β),
the environment of process can choose any one of the events α or β
and the subsequent behaviour will be the corresponding process P or Q,
respectively;

• (α→ P) u (β → Q) – a non-deterministic „internal“ choice (iff α = β);
• P ||{α}||Q – an interface parallel operator, which represents concurrent

activity synchronised via event α (the interface);
• P |||Q – an interleaving operator for independent concurrent activities;
• (α→ P) \ {α} – a hiding operator making event α unobservable.

To apply the prefix operator to a set of events, CSP defines a „prefix“
choice construct, ?x : A → P (x). It allows a process P (x) for each x ∈ A,
where A = {a1, . . . , an} ⊆ Σ is any set of events, to accept any element a ∈ A
and then behave like the appropriate process P (a).

?x : A→ P (x) def= (a1 → P (a1)) � . . . � (an → P (an))

The „prefix“ choice construct can be used to introduce input and output
events that are receiving and sending given objects via given channels, respec-
tively. Let Σ is an alphabet of events containing compound objects, which are
put together by an exclamation mark „!“ , and c!T = {c!x | x ∈ T} ⊆ Σ.
The first components of the events represent the channels and the second
components are the communicated objects.

An input of value y of type T over channel c can be written in the form
?y : c!T → P (y), where the uses of y in P (y) have to extract x from c!x.
However, it is more elegant to use the form

c?x : T → P ′(x)

where the definition of P ′ will be slightly simpler than P because it can refer
to value x received along c directly rather than having to recover it from a
compound object.
3 The participants can be two processes or a process and an environment.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 13 — #27 i
i

i
i

i
i

2.3 Calculus of Mobile Processes 13

The [Ros98] presents an example of process COPY , which inputs elements
of T on channel left (i.e. left?x : T → . . .) and outputs them on channel right
(i.e. right!x→ . . .).

COPY
def= left?x : T → right!x→ COPY

A present-day CSP introduces also additional binary operators sequential
composition, timeout and interrupt, a ternary operator conditional choice,
and another various operators. The CSP language is a formal basis of the
component model Wright described in Section 3.3.1.

2.3 Calculus of Mobile Processes

The process algebra π-calculus, known also as a calculus of mobile processes
[MPW92], is an extension of Robin Milner’s calculus of communicating sys-
tems (CCS). This section will briefly summarise the fundamentals of the
π-calculus, a theory of mobile processes, according to [SW03]. The π-calculus
allows modelling of systems with dynamic communication structures (i.e.
mobile processes) by means of two concepts:

a process – an active communicating entity in a system, primitive or expressed
in π-calculus (denoted by uppercase letters in expressions)4;

a name – anything else, e.g. a communication link (a port), variable, constant
(data), etc. (denoted by lowercase letters in expressions)5.

Processes use names (as communication links) to interact and pass names
(as variables, constants, and also as the communication links) to another
processes by mentioning them in interactions. The names received by a process
can be used and mentioned by it in further interactions (as the communication
links). This „passing of names“ permits mobility of communication links.

Processes evolve by performing actions. The capabilities for action are
expressed via three kinds of prefixes („output“ , „input“ , and „unobservable“ ,
as it is described later). We can define the π-calculus processes, their subclass,
and the prefixes as follows.

Definition 6 (π-calculus) The processes, the summations, and the prefixes
of the π-calculus are given respectively by

P ::= M | P | P ′ | (z)P | !P
M ::= 0 | π.P | M + M ′

π ::= x〈y〉 | x(z) | τ
4 A parametric process is also called „an agent“ .
5 The names can be called according to their meanings (e.g. a port/link, a message,

etc.).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 14 — #28 i
i

i
i

i
i

14 2 Formal Bases

We will give a brief, informal account of semantics of π-calculus processes.
At first, process 0 is a π-calculus process that can do nothing, it is the
null process or inaction. If processes P and P ′ are π-calculus processes,
then following expressions are also π-calculus processes with formal syntax
according to the Definition 6 and given informal semantics:

• x〈y〉.P is an output prefix that can send name y via name x (i.e. via the
communication link x) and continue6 as process P ;

• x(z).P is an input prefix that can receive any name via name x and
continue as process P with the received name substituted for every free
occurrence7 of name z in the process;

• τ.P is an unobservable prefix that can evolve invisibly to process P , it can
do an internal (silent) action and continue as process P ;

• P + P ′ is a sum of capabilities of P together with capabilities of P ′
processes, it proceeds as either process P or process P ′, i.e. when a sum
exercises one of its capabilities, the others are rendered void;

• P | P ′ is a composition of processes P and P ′, which can proceed inde-
pendently and can interact via shared names;

• (z)P is a restriction of the scope8 of name z in process P ;
• !P is a replication that means an infinite composition of processes P or,

equivalently, a process satisfying the equation !P = P | !P .

The π-calculus has two name-binding operators. The binding is defined as
follows.

Definition 7 (Binding) In each of x(z).P and (z)P , the displayed occur-
rence of z is binding with scope P . An occurrence of a name in a process is
bound if it is, or it lies within the scope of, a binding occurrence of the name,
otherwise the occurrence is free.

In our notations, we will omit a transmitted name, the second parts of input
and output prefixes in a π-calculus expression, if it is not used anywhere else
in its scope (e.g. instead of (x)((y)x〈y〉.0 | x(z).0), we can write (x)(x.0 | x.0)).

Since the sum and composition operators are associative and commutative
(according to the relation of structural congruence [MPW92]) they can be
used with multiple arguments, independently of their order. Also an order of
application of the restriction operator is insignificant. We will use the following
notations:

• for m ≥ 3, let
∏m
i=1 Pi = P1 | P2 | . . . | Pm be a multi-composition of

processes P1, . . . , Pm, which can proceed independently and can interact
via shared names;

6 The prefix ensures that process P can not proceed until a capability of the prefix
has been exercised.

7 See also Definition 7.
8 The scope of a restriction may change as a result of interaction between processes.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 15 — #29 i
i

i
i

i
i

2.3 Calculus of Mobile Processes 15

• for n ≥ 2 and x̃ = (x1, . . . , xn), let (x1)(x2) . . . (xn)P = (x1, x2, . . . , xn)P =
(x̃)P be a multi-restriction of the scope of names x1, . . . , xn to process P .

We will omit the null process if the meaning of the expression is unambigu-
ous according to the above-mentioned equations (e.g. instead of x〈y〉.0 | x(z).0,
we can write x〈y〉 | x(z)). Moreover, the following equations are true for the
null process:

M + 0 = M P | 0 = P (x)0 = 0

The π-calculus processes can be parametrised. A parametrised process, an
abstraction, is an expression of form (x).P . We may also regard abstractions
as components of input-prefixed processes, viewing a(x).P as an abstraction
located at name a. In (x).P as in a(x).P , the displayed occurrence of x is
binding with scope P .

Definition 8 (Abstraction) An abstraction of arity n ≥ 0 is an expression
of form (x1, . . . , xn).P , where the xi are distinct. For n = 1, the abstraction
is a monoadic abstraction, otherwise it is a polyadic abstraction9.

When an abstraction (x).P is applied to an argument y it yields process
P {y/x}. The application is the destructor of abstractions. We can define
two types of applications: pseudo-application and constant application. The
pseudo-application is defined as follows.

Definition 9 (Pseudo-application) If F def
= (x̃).P is of arity n and ỹ is

length n, then P {ỹ/x̃} is an instance of F . We abbreviate P {ỹ/x̃} to F 〈ỹ〉.
We refer to this instance operation as pseudo-application of an abstraction.

In contract to the pseudo-application that is only abbreviation of a sub-
stitution, the constant application is a real syntactic construct. It allows to
describe a recursively defined process.

Definition 10 (Constant application) A recursive definition of a process
constant K is an expression of the form K

∆= (x̃).P , where x̃ contains all
names that have a free occurrence in P . A constant application, sometimes
referred as an instance of the process constant K, is a form of process Kbãc.

Communication between processes (a computation step) is formally de-
fined as a reduction relation → . It is the least relation closed under a set of
reduction rules.

Definition 11 (Reduction) The reduction relation, → , is defined by the
following rules:
9 The π-calculus that uses the polyadic abstractions is known as polyadic π-calculus

[SW03].

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 16 — #30 i
i

i
i

i
i

16 2 Formal Bases

R-Inter (x〈y〉.P1 + M1) | (x(z).P2 + M2) → P1 | P2{y/z}
R-Tau τ.P + M → P

R-Par P1 → P ′1
P1 | P2 → P ′1 | P2

R-Res P → P ′

(z)P → (z)P ′

R-Struct P1=P2 → P ′2=P
′
1

P1 → P ′1
R-Const Kbãc → P{ã/x̃} K

∆= (x̃).P

The communication is described by the main reduction rule R-Inter. It
means that a composition of a process proceeding as either process M1 or the
process, which sends name y via name x and continues as process P1, and a
process proceeding as either process M2 or the process, which receives name
z via name x and continues as process P2, can perform a reduction step. After
this reduction, the resulting process is P1 | P2 {y/z} (all free occurrences of z
in P2 are replaced by y).

The exact description of operational semantics for the π-calculus can be
found in [MPW92], formally described and explained in terms of labelled
transition systems (LTSs (see Section 2.1), and is described in Section 2.3.1.

The process algebra π-calculus is a formal basis of the component model
Darwin (Section 3.3.2) and the architecture description language of the project
ArchWare (Section 3.4.3). It has been influenced by first versions of the
mentioned CSP language (Section 2.2) and influences development of modern
CSP [Ros98]. The π-calculus supports description of systems with dynamic
architectures.

2.3.1 Operational Semantics

In this section, we will introduce operational semantics of π-calculus in terms
of LTSs (see Section 2.1). The calculus of mobile processes will be used later
in this book as a formal basis for our approach in Section 5.2.

In π-calculus, we distinguish two ways to treat input actions: early instan-
tiation and late instantiation. The early instantiation means that a variable
received by a process is instantiated immediately, at the time of inferring the
input action, as a new name. In the late instantiation, the input action does
instantiate a variable as a new name, but rather it refers to the original name,
which has been sent (the variable becomes instantiated only when inferring an
internal communication). The operational semantics described in this section
(and in the book) uses the early instantiation.

The π-calculus processes evolve by performing free and bounded „output“
actions, „input“ actions, and „unobservable“ actions [SW03].

Definition 12 (Actions) The actions in π-calculus are given as α ∈ L in
forms

α ::= x(z) | x〈y〉 | x[z] | τ

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 17 — #31 i
i

i
i

i
i

2.3 Calculus of Mobile Processes 17

The actions are identical to the prefixes in Definition 6 (see Section 2.3),
except for bounded output x[z] that represents sending via x a fresh name z,
which become binding with scope of a process that proceeds after sending z
and a process that receives z (see Definition 7). A π-calculus process and its
evolution by performing the actions L are given by a LTS where transaction
relations are defined [SW03] as follows.

Definition 13 (Transition relations) The (early) transition relations, { α→
| α ∈ L}, are defined by the following rules10:

Imp
x(z).P

x(y)−→ P{y/z}
Out

x〈y〉.P x〈y〉−→ P
Tau

τ.P
τ−→ P

Open P
x〈z〉−→ P ′

(z)P
x[z]−→ P ′

z 6= x Res P
α−→ P ′

(z)P
α−→ (z)P ′

z 6∈ n(α)

Sum-l P
α−→ P ′

(P + Q)
α−→ P ′

Par-l P
α−→ P ′

(P | Q)
α−→ (P ′ | Q)

bn(α) ∩ fn(Q) = ∅

Comm-l P
x〈y〉−→ P ′ Q

x(y)−→ Q′

(P | Q)
τ−→ (P ′ | Q′)

Close-l P
x[z]−→ P ′ Q

x(z)−→ Q′

(P | Q)
τ−→ (z)(P ′ | Q′)

z 6∈ fn(Q)

Rep-act P
α−→ P ′

!P
α−→ P ′ | !P

Rep-comm P
x〈y〉−→ P ′ P

x(y)−→ P ′′

!P
τ−→ (P ′ | P ′′) | !P

Rep-close P
x[z]−→ P ′ P

x(z)−→ P ′′

!P
τ−→ (z)(P ′ | P ′′) | !P

z 6∈ fn(P)

where bn(P) is the set of names that are bound in P , fn(P) is the set of
names that have a free occurrence11 in P and n(P) = fn(P) ∪ bn(P).

A system’s behaviour described by means of a π-calculus process P can be
modelled as LTS (S,L,R) where S is a set of π-calculus processes derivable
from P by means of the transition relations (each process represents a state
of the LTS), L is a set of π-calculus actions according to Definition 12 (they
represent labels of the LTS), and R ⊆ S × L × S is a π-calculus transition
relation between the processes according to Definition 13 (i.e. between the
states by means of the labels of the LTS).

2.3.2 Congruences of Processes

In π-calculus, congruences are equivalence relations12 on π-calculus processes,
which allows to formulate structural and behavioural equivalences between
10 For the rules Sum-l, Par-l, Comm-l, and Close-l, there exist also their „right“

variants Sum-r, Par-r, Comm-r, and Close-r, respectively, where the (first)
activity modifies process Q instead of process P .

11 See also Definition 7.
12 The equivalences are relations that are reflexive, symmetric, and transitive. The

congruences ensure that if processes P and Q are in a relation of equivalence
and process P is a subprocess (a component) of process R, then process R with

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 18 — #32 i
i

i
i

i
i

18 2 Formal Bases

the processes. Two π-calculus processes express the same behaviour if they are
barbed congruent, which means bisimilar in terms of labelled state transition
systems, i.e. if no difference can be observed when they are put into an
arbitrary π-calculus context and compared using the appropriate bisimulation
game [SW03].

There are four important relations – namely an early strong bisimulation,
a late strong bisimulation, an early weak bisimulation, and a late weak
bisimulation. Early and late bisimulations differ in ways to treat input ac-
tions (see the early and late instantiation in Section 2.3.1). Strong and weak
bisimulations differ in ways to treat internal actions, the strong bisimulation
treats internal τ -action and visible action equally while the weak bisimulation
makes abstraction from the number of internal τ -actions (i.e. evolution of
bisimilar systems is independent on their internal τ -actions).

In this book, the input actions are treated as the early instantiation, there-
fore we formally define only the early bisimulations according to [MPW92,
SW03].

Definition 14 (Strong bisimilarity/bisimulation/simulation) A rela-
tion ∼̇ is defined as a strong (early) bisimilarity iff for P ∼̇ Q there exists
a strong bisimulation S such that PSQ. A binary relation S is defined as a
strong (early) bisimulation iff both S and its inverse are strong simulations.
The relation S is defined as a strong (early) simulation iff PSQ implies that

1. if P α−→ P ′ and α is τ or x〈y〉 (i.e. a free action) where y is not a name
in P or Q, then for some Q′, Q α−→ Q′ and P ′SQ′,

2. if P
x(y)−→ P ′ and y is not a name in P or Q, then for all w, there is Q′

such that Q
x(y)−→ Q′ and P ′ {w/y} SQ′ {w/y},

3. if P
x[y]−→ P ′ and y is not a name in P or Q, then for some Q′, Q

x[y]−→ Q′

and P ′SQ′.

Definition 15 (Weak bisimilarity/bisimulation/simulation) A rela-
tion ≈̇ is defined as a weak (early) bisimilarity iff for P ≈̇ Q there exists
a weak bisimulation S such that PSQ. A binary relation S is defined as a
weak (early) bisimulation iff both S and its inverse are weak simulations. The
relation S is defined as a weak (early) simulation iff PSQ implies that

1. if P α−→ P ′ and α is τ or x〈y〉 (i.e. a free action) where y is not a name
in P or Q, then for some Q′, Q τ∗−→ α−→ τ∗−→ Q′ and P ′SQ′,

2. if P
x(y)−→ P ′ and y is not a name in P or Q, then for all w, there is Q′

such that Q τ∗−→ x(y)−→ τ∗−→ Q′ and P ′ {w/y} SQ′ {w/y},

substitued P for Q is in the relation of equivalence with the original process
R (i.e. a substitution of equivalent components of processes does not break the
equivalence of the processes).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 19 — #33 i
i

i
i

i
i

2.3 Calculus of Mobile Processes 19

3. if P
x[y]−→ P ′ and y is not a name in P or Q, then for some Q′,

Q
τ∗−→ x[y]−→ τ∗−→ Q′ and P ′SQ′,

where τ∗−→ is the reflexive and transitive closure13of
τ−→ .

However, bisimilarity relations ∼̇ and ≈̇ are not congruence relations
[SW03]. The reason is that all free names of related processes are open to
instantiation, which is not handled by the bisimilarity relations. Therefore, an
open bisimilarity is defined as a congruence relation as follows [BN07, SW03].

Definition 16 (Open D-bisimilarity and open bisimulation) Let P
and Q are π-calculus processes, D is a distinction, and D is a set of
distinctions. We say that P and Q are open D-bisimilar, written P ∼Do Q, if
there exists an open bisimulation (SD)D∈D such that D ∈ D and (P,Q) ∈ SD.
The family (SD)D∈D of symmetric relations is the open bisimulation if for
all D ∈ D, for all substitutions σ such that σ respects D, for all (P,Q) ∈ SD,
whenever Pσ α−→ P ′ with names in bn(α) fresh, there exists Q′ such that
Qσ

α−→ Q′ and

1. if α = a[z] for some a and z, D′ ∈ D and (P ′, Q′) ∈ SD′
where D′ = Dσ ∪ ({z} × (fn((P + Q)σ) ∪ n(Dσ))),

2. otherwise, Dσ ∈ D and (P ′, Q′) ∈ SDσ,

where bn(α) is the set of names that are bound in α, fn(R) is the set of names
that have a free occurrence14 in R, n(R) = fn(R) ∪ bn(R), σ respects D iff
xσ = yσ for all (x, y) ∈ D, and Dσ = {(xσ, yσ) | (x, y) ∈ D}.

Open bisimilarity is useful for ascertaining automatically whether processes
are bisimilar [SW03], i.e. open ∅-bisimilar (open D-bisimilar for D = ∅
according to Definition 16). This relation can be checked by means of several
tools, which will be described in Section 8.2.

13 Informally, it means that there can be zero to many transitions τ−→ with internal
τ -actions.

14 See also Definition 7.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 20 — #34 i
i

i
i

i
i

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 21 — #35 i
i

i
i

i
i

3

Software Component Architecture

At the beginning of this chapter, we introduce software architectures in
general in Section 3.1 and component-based development, which is a soft-
ware development methodology strongly oriented on composability and re-
usability in software architecture, in Section 3.2. Finally, we analyse several
important state-of-the-art works that deal with component-based development
and components models in Section 3.3 and architecture description languages
in Section 3.4. This chapter is particularly focused on the approaches that
support features of dynamic and mobile architectures.

3.1 Software Architecture

The software architecture is defined by [IEE00] as „the fundamental organisa-
tion of a system, embodied in its components, their relationships to each other
and the environment, and the principles governing its design and evolution“ .
Other definition [BCK03] adds, that the architecture describes only externally
visible properties of components, i.e. it is an abstraction of a system that
suppresses details of components, except for services published by interfaces,
relationships to environment of the components, and their externally observ-
able behaviour.

The architecture of a software system can be described using several
concurrent views [Kru95, IEE00] including particularly logical (structural)
view and process (behavioural) view:

logical (structural) view describes logical structure of the system, e.g. an
object model where an object oriented design method is used, or entity-
relationship diagram where design of the system is data-driven;

process (behavioural) view describes concurrency and synchronisation as-
pects of the system, e.g. behaviour of components as processes, communi-
cation constraints, evolution of the system in time, etc.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 22 — #36 i
i

i
i

i
i

22 3 Software Component Architecture

We can distinguish three types of software architectures according to
their evolution in dependence on changes of their environment [Oqu04]: static
architecture, dynamic architecture, and mobile architecture. The last one is
also know as a fully dynamic architecture.

static architecture – The architecture of a software system is static if there are
no changes of the system’s structure during the system’s runtime. After
initialisation of the system, there are no new connections between the
system’s components and existing connections are not destroyed.

dynamic architecture – In the dynamic architecture, there exist rules of evo-
lution of a software system in time (also called a „dynamics“). The
system’s components and connections are created and destroyed during
the system’s runtime according to the rules from the system’s design-time.

mobile architecture – The mobile architecture is a dynamic architecture of
a system where the system’s components can change their context in the
system’s logical structure during its execution (also called „component mo-
bility“1) according to rules from the system’s design-time and functional
requirements.

3.2 Component-Based Development

The component-based development2 (CBD, see [Szy02, CCL06]) is a software
development methodology, which is strongly oriented to composability and re-
usability in a software system’s architecture. In the CBD, from a structural
point of view, a component-based system (CBS) is composed of components,
which are self-contained entities accessible through well-defined interfaces. A
connection of compatible interfaces of cooperating components is realised via
their bindings (connectors). Actual organisation of interconnected components
is called configuration.

There is difference between conception of „component“ from the CBD and
„object“ from object-oriented programming [Szy02], although some common
features exist (e.g. separation of interfaces from their implementations). An
object is an instance of a class from a generalisation/specialisation hierarchy.
It has an unique identity and an externally observable state (via object’s
properties). A component is self-contained entity (no classes or type hierar-
chy) without externally observable states. This, together with high context
independence of components, increases re-usability beyond object oriented
programming.

A static architecture has only one way how to connect components and con-
nectors into a resulting system, i.e. there is only one configuration. Dynamic
1 The component mobility allows cloning and migration the system’s components

into different contexts.
2 The CBD is also known as component-based software engineering (CBSE) or

component programming.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 23 — #37 i
i

i
i

i
i

3.3 Component Models 23

and mobile architectures enable software systems to change their architectures
during their runtimes. It means runtime modifications of the configuration, in
other words a reconfiguration. Description of the reconfiguration in dynamic
and mobile architectures includes [Oqu04]:

1. actions, which are consumed and produced by a system (inputs, outputs,
and internal actions);

2. relationships between actions, how the input actions are processed by the
system;

3. changes of an architecture according to the actions, i.e. processes of
creation and destruction of components, connectors and reconfiguration.

In CBD, components can be primitive or composite. The primitive com-
ponents are realised directly, beyond the scope of architecture description
(they are „black-boxes“). The composite components are decomposable into
systems of subcomponents at the lower level of architecture description (they
are „grey-boxes“). This composition forms a component hierarchy.

Although the CBD can be the right way to cope with problems of the
distributed information systems, it has some limitations in formal description,
which restrict the full support of mobile architectures. Those restrictions
can be delimited by usage of formal bases that do not consider dynamic
reconfigurations and component mobility, by strict isolation of control and
business logic of components that does not allow full integration of dynamic
reconfigurations into the components, etc.

3.3 Component Models

Component models are specific metamodels of software architectures support-
ing the CBD. The component models should define syntax, semantics, and
composition of components [LW05]. They are systems of rules for compo-
nents, connectors, configurations, rules for changes according to the dynamic
architecture (rules for reconfigurations), etc. Several component models has
been proposed [LW06] including the models, which are mentioned in this
section. Those models differ particularly in definitions of connectors (explicit
or implicit definitions) and implementation of advanced features of dynamic
or mobile architectures.

In this section, we focus on component models with formal bases. After
a short description of a component model supporting static architectures,
Wright in Section 3.3.1, we introduce contemporary component models sup-
porting features of dynamic and mobile architectures, namely Darwin in Sec-
tion 3.3.2, SOFA in Section 3.3.3 and its successor SOFA 2.0 in Section 3.3.4,
and Fractal in Section 3.3.5.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 24 — #38 i
i

i
i

i
i

24 3 Software Component Architecture

3.3.1 Wright

Wright [AG96] is a component model, which uses the process calculus of
Communicating Sequential Processes (CSP, see Section 2.2). The compo-
nent model Wright defines a component with CSP semantics as a structure
composed of two parts, an interface and a „component-spec“ . The interface
consists of a finite number of ports. Each port represents required input part or
provided output part of the interface corresponding to a CSP process, together
with an input or output event. The component-spec defines composition of
interactions described by the ports and specifies the component’s function.

A connector is entity of Wright, which acts as a connection between
a collection of components. It describes interaction of the components and
consists of a finite set of roles and a glue specification. Each role is a CSP
process, which describes expected behaviour of one component participating
in the interaction (it refers to a port of such component). The glue composes
processes of the roles into one CSP process, which describes how the partici-
pating components interacts.

Finally, a configuration describes actual bindings of the components and
the connectors. It consists of two parts, instances and attachments. The in-
stances define actual (named) components and connectors, which participate
in the configuration. The attachments bind ports of the participating com-
ponents to roles of the participating connectors. Wright provides hierarchical
composition, the whole configuration (at lower level) can be declared as a
component (at higher level of the hierarchy).

The component model Wright provides architectural styles. An architec-
tural style is an abstract component, which is described as a prototype
configuration associating specific types of components with specific types of
connectors. The architectural style can also define integrity constraints of
participating entities and prescribe which ports of internal components have
to be published as ports of the architectural style (i.e. ports of the abstract
component).

As it has been mentioned above, the semantics of Wright entities is
formally defined by means of CSP. The formal semantics of Wright defines a
successfully terminating process § and also permits input and output events
with associated data as communication between Wright components. An input
or output event e with data x can be written as a prefix operator e?x → or
e!x →, respectively, as it has been described in Section 2.2. The successfully
terminating process § is formally defined as a process that engages success
event

√
and then stops (i.e.

√
→ STOP).

Limitations of Wright are given by the used formalism, e.g. CSP supports
only systems with static architecture. However, Wright has introduced ap-
proaches to many interesting features of component-based systems such as
distinction between components and connectors, definition of compatibility of
a component with a connector (through interaction of processes of ports and
connectors), and introduction of architectural styles.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 25 — #39 i
i

i
i

i
i

3.3 Component Models 25

3.3.2 Darwin and Tracta

The component model Darwin [MDEK95, Gia99] allows distributed systems
to be hierarchically composed of sets of component instances and their inter-
connections at each level of the hierarchy.

In Darwin, a component is defined by means of its required and provided
services (interfaces). The services provided and required by the component
allow it to interact with other components. A type of the services can be
specified, but Darwin does not interpret the service type information and is
used only by the underlying distributed platform (an implementation). Com-
posite components are defined by declaring instances of internal components
and „required-provided“ bindings between those components. Services of the
internal components that cannot be satisfied can be declared as visible at a
higher level of the hierarchy, as the services of the composite components. Dar-
win respects context independence of the components—they can be specified,
implemented, and tested independently without need of the rest of a system.

A semantics of Darwin language [MDEK95] was originally derived from
a semantics of the process algebra π-calculus (see Section 2.3). A component
is described as a parametric π-calculus process with the component’s services
as parameters of the process. For connection of components, there are defined
processes Prov, Req, and Bind:

Prov
def
= (p, s).!(p(x).x〈s〉) Req

def
= (r, l).r(y).y〈l〉 Bind

def
= (r, p).r〈p〉

Behavioural description of a connection between two components can be
defined as follows. At first, a π-calculus processes describing behaviour of
the first component is composed with process Prov(p, s) where parameter
s represents the component’s provided service, while a process describing
behaviour of the second component is composed with process Req(r, l) where
parameter l represents the component’s required service. Finally, the resulting
processes are composed together and with process Bind(r, p) describing the
connection.

The semantics of Darwin allows to specify a subset of dynamic architec-
tures. It permits dynamic instantiation of new components at runtime, but
does not allow specification of dynamic bindings or component removal.

Progress of works on the semantics of Darwin has issued in the Tracta
approach [Gia99]. The formal basis of Tracta are Labelled Transition Systems
(LTSs, see Section 2.1) with the algebra of Finite State Processes (FSP). The
FSP is a specification language with well-defined semantics in terms of LTSs.
It is used for behavioural specification of especially primitive components
as finite LTSs. Then, the LTS are hierarchically composed into behavioural
description of composite components. For this purpose, Tracta introduces a
parallel composition operator, „||“ , which allows to compose two LTS processes
in the undefined order (it is commutative and associative). Tracta also defines
a relabelling operator for renaming of actions of LTSs and operators interface
and restriction to reduce scope of visibility of the actions.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 26 — #40 i
i

i
i

i
i

26 3 Software Component Architecture

A component in Darwin, which is formally described by means of LTS
in Tracta, can be checked against various properties. These properties may
be expressed as Büchi automata or as LTL formulas (a linear temporal logic
of actions, ALTL). Besides reachability analysis, Tracta also provides two
analysis strategies for two types of the properties, safety and liveness.

The original semantics of Darwin using the π-calculus has formed basic
features of the language. The Tracta approach maps the Darwin’s semantics
into LTSs and FSP formalisms. Despite its support for only limited subset
of dynamic architectures, Tracta provides an interesting component model,
which has introduced usage of LTSs3.

3.3.3 SOFA

In the component model SOFA [PBJ98], a part of SOFA project (SOFtware
Appliances), a software system is described as a hierarchical composition
of primitive and composite components. A component is an instance of a
template, which is described by its frame and architecture. The frame is
a black-box specification view of the component defining its provided and
required interfaces. Primitive components are directly implemented by a soft-
ware system—they have a primitive architecture. The architecture of a com-
posite component is a grey-box implementation view, which defines first level
of nesting in the component. It describes direct subcomponents and their
interconnections via interfaces.

The connections of the interfaces can be binding of required to provided
interfaces, delegating of a component’s provided interfaces to provided in-
terfaces of the component’s subcomponent, subsuming of required interfaces
of a component’s subcomponent to the component’s required interfaces, and
exempting of subcomponent’s interfaces from any connection. Non-exempting
connections can be realised via connectors, implicitly for simple connections
or explicitly. Explicit connectors are described in a similar way as the com-
ponents, by a frame and an architecture. The connector frame is a set of
roles, i.e. interfaces, which are compatible with interfaces of components. The
connector architecture can be simple (for primitive connectors), i.e. directly
implemented by a software system, or compound (for composite connectors),
which contains instances of other connectors and components.

SOFA uses a Component Definition Language (CDL, [Men98]), which
extends features of OMG IDL [OMG98] to allow specification of software
components. Behaviour of a component is formally described by means of
behaviour protocols [Viš02]. Every communication (a method call) forms an
event, e.g. event m for method m, which is denoted by one of event tokens
according to its semantics: !m↑, ?m↑, !m↓, and ?m↓, for emitting and accepting
a method call and emitting and accepting a return, respectively. A sequence
3 Afterwards, the LTSs has been used e.g. for formal description of the component

model Fractal (see Section 3.3.5).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 27 — #41 i
i

i
i

i
i

3.3 Component Models 27

of event tokens forms a trace (e.g. <!m↑; ?m↓>). A behaviour protocol is a
regular-like expression on the set of all event tokens, generating the set of
traces. Then, behaviour of a SOFA entity (its interface, frame, and archi-
tecture) can be described by a behaviour protocol, i.e. the set of all traces,
which can be produced by the entity. The architecture protocols are generated
automatically from architecture description by a CDL compiler.

Besides basic operators of regular expressions, sequencing, alternative,
and repetition, a behaviour protocol may contain enhanced and composed
operators. The enhanced operators are and-parallel operator for interleaving
composition, or-parallel operator for sequential parallel composition, and re-
striction operator that omits restricted events from traces. The composed
operators are composition and adjustment, which from two different kinds
of interleaving parallel compositions with synchronisation via a given set of
events.

SOFA defines a protocol conformance relation between an architecture
protocol and a frame protocol. The relation expresses that the architecture
protocol generates only traces that are allowed by the frame protocol. Faulty
computation detection is another control mechanism of component composi-
tion, which introduces error tokens of three types: bad activity, non activity,
and divergence. Those tokens describe errors in communication of components.
Sets of possible error traces leading to the error tokens are generated during
composing of two components via a consent operator.

Despite the fact that SOFA supports modelling of a static architecture,
it allows dynamic update of a component during a system’s runtime. The
update consists in change of implementation (i.e. an architecture) of the
component by a new one. Compatibility of the implementations is guaranteed
by the conformance relation of a protocol of the new architecture and the
component’s frame protocol. During the update of a component, passivity of
the component and atomicity of the update must be ensured. A designer can
mark states of the component’s behaviour, which are safe for the update, by
special update tokens in the component’s behaviour protocol.

3.3.4 SOFA 2.0

The SOFA 2.0 [BHP06] is a new version of component model SOFA (see Sec-
tion 3.3.3), which aims at removing several limitations of the original version,
mainly the lack of support of dynamic reconfigurations, well-structured and
extensible control parts of components, and multiple styles of communication
between components.

Permitted dynamic reconfigurations are predefined at design-time by recon-
figuration patterns. SOFA 2.0 allows three reconfiguration patterns [HP06]:
nested factory, component removal, and utility interface. The nested factory
pattern covers adding a new component and a new connection to an architec-
ture. The new component can be created by a factory component as a result
of a method invocation on this factory and becomes a sibling of a component

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 28 — #42 i
i

i
i

i
i

28 3 Software Component Architecture

that initiated the creation. The utility interface pattern allows a component
to define utility interfaces. The reference to an utility interface can be freely
passed among components, and any component can establish a connection
using this reference, independently of the component’s level in architecture
hierarchy. Such feature brings into component-based development a feature of
service-oriented architectures (SOAs, see [Erl05]) and SOA becomes a specific
case of a component model where all components (services) are interconnected
solely via their utility interfaces.

In SOFA 2.0, control parts of components are composed of microcom-
ponents. The microcomponents [MB05] are minimal primitive components
without controller parts. Interfaces required to establish bindings between
the microcomponents, which are the only needed microcomponents’ control
features, are implemented directly by content parts of the microcomponents.
The microcomponent model allows to capture architecture of the controller
parts of components, to express that a controller requires a certain control
(micro)component (via required interface of a microcomponent), and to define
exactly interconnections of control and functional parts of a component as
connections between microcomponents of the control parts and components
of the functional parts.

Finally, SOFA 2.0 introduces multiple communication styles [BHP06],
which define functionality of connectors. There are four communication styles:
remote method invocation, message passing, streaming, and distributed
shared memory. From the knowledge of a connector’s communication
style, only a specific type of binding can be permitted or intercomponent
communication can be optimised by choosing an appropriate middle-
ware. Therefore, SOFA 2.0 distinguishes two classes of connectors: design
connectors and runtime connectors. The design connectors are described
by communication styles and communication-related features associated
with each component interface involved in the communication. The runtime
connectors are the code artifacts used at runtime to implement the design
connectors, which are created by a connector generator automatically from
their design counterparts. The generation is performed at deployment-time,
before preparing and launching an application, with complete knowledge of
the application’s environment.

3.3.5 Fractal

The component model Fractal [BCS02, BCS04] is a general component compo-
sition framework with support of dynamic architectures. A Fractal component
is formed out of two parts: a controller and a content. The content of a com-
posite component is composed of a finite number of nested components. Those
subcomponents are controlled by the controller (also called „a membrane“)
of the enclosing component. The controller acts as a composition operator. A
component with empty content is called a primitive component. A component
can be shared as a subcomponent by several distinct components.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 29 — #43 i
i

i
i

i
i

3.3 Component Models 29

A component can interact with its environment through operations at
external interfaces of the component’s controller, while internal interfaces are
accessible only from the component’s subcomponents. The operations can be
one-way operations and two-way operations (i.e. without and with return of a
result, respectively). The interfaces can be of two sorts: client and server (i.e
required and provided, respectively). Besides, a functional interface requires
or provides functionalities of a component, while a control interface is a server
interface, which provides operations for introspection of the component and
to control the component’s configuration, namely attribute, binding, content,
and life-cycle control.

The attribute control provides operations to get and set values of com-
ponent’s attributes. The binding control serves for binding and unbinding
the component’s external client interfaces to some server interfaces of other
component. The content control provides operations to add and remove other
components as the component’s subcomponents (on the places that are per-
mitted by a controller). Finally, the life-cycle control provides operations to
start and stop the component. Usage of the binding control and the content
control is allowed only when the component is stopped.

The binding is a directed connection between components. A primitive
binding is a connection between two components, the first component with
a client interface and the second component with a server interface. The
interfaces must be compatible—the type of the server interface must be a sub-
type of the type of the client interface4. Combination of primitive bindings
and an ordinary Fractal component can be used as a composite binding, i.e.
as a connection (a connector) between several components. Binding between
a client interface (c) and a server interface (s) can be of three types: normal
(if c and s are external interfaces), export (internal interface c of a compo-
nent is connected to external interface s of its subcomponent) and import
(internal interface s of a component is connected to external interface c of its
subcomponent).

Behaviour of Fractal components can be formally described by means
of parametrised networks of communicating automata language [Bar05]. Be-
haviour of each primitive component is modelled as a finite state parametrised
labelled transition system (pLTS). It is a LTS (see Definition 2 in Section 2.1)
with parametrised actions as labels, a set of global variables for a whole system,
and a set of local variables for each state. Besides a parametrised action, each
label of pLTS contains also a guard (a boolean expression) of transitions
with this label and a set of expressions, which assign values of variables of the
transitions’ target states from free variables of the transitions’ source states
and the global variables.
4 The server interface can accept at least all the operation invocations that the

client interface can emit, and the client interface can accept (at least) all the
returns from previously invoked operations on the server interface.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 30 — #44 i
i

i
i

i
i

30 3 Software Component Architecture

Behaviour of a composite component is defined using a parametrised
synchronisation network (pNet), which acts as a generalised parallel operator
of component composition. Arguments of such operator are parametrised sorts,
which are sets of observable parametrised actions of subcomponents’ pLTSs.
Besides those sorts, the pNet contains a set of global parametrised actions
and a transducer.

The transducer is a pLTS, which is a synchronisation product (see Def-
inition 5 in Section 2.1) of the subcomponents’ pLTSs. Each of its states
corresponds to specific configuration of the subcomponents’ pLTSs, and each
its transition is labelled by a synchronisation vector (see Definition 4 in Sec-
tion 2.1) of actions of those pLTSs. During runtime of a composite component,
when synchronised actions in a label of the transducer’s transition occurs,
the transducer changes its state according to such transition. The change
represents reconfiguration of the composite component’s architecture. The
resulting behaviour of a composite component is computed as a product of
subcomponents’ pLTSs and the transducer.

Behaviour of a Fractal component’s controller can be formally described
by means of pLTS/pNet. The result is composition of pLTSs for binding and
unbinding of each of the component’s functional interfaces (one pLTS per one
interface) and pLTS for starting and stopping the component. The mentioned
formal approach requires that the start/stop operations are recursive (they
affect a component and each one of its subcomponents simultaneously), func-
tional operations can not fire control operations, and a component’s external
functional interfaces are simply forwarded to its internal interfaces (without
any control capability).

As a proof of concept, [Bar05] introduces a formal description of Frac-
tive [BCM03], which is a Fractal implementation using a ProActive middle-
ware [BBC+06]. However, a mobile architecture, which is also supported
by the ProActive, has not yet been addressed. For verification of resulting
behaviour of a component-based system, there is introduced platform VER-
CORS [BCMR06] integrating several tools. The fundamental tools are modi-
fied Bandera Project for generating pNets from Java programs in ProActive
and FC2Instantiate to get instances from the parametrised descriptions of
pLTS/pNets in FC2Parametrized format to output FC2 format, which can
be translated into a native input format of several external verification tools
based on process algebras.

3.4 Architecture Description Languages

Architecture description languages (ADLs, see [Ves93]) are languages for
describing software systems’ architectures. They focuse on high-level struc-
tures of overall applications rather than implementation details of any spe-
cific source modules. The ADLs can be parts of component models (see
Section 3.3), where they are used for description of a software system’s

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 31 — #45 i
i

i
i

i
i

3.4 Architecture Description Languages 31

architecture in terms of the component models5. Alternatively, ADLs can be
realised without the component models, based directly on general principles
of the component-based development (see Section 3.2).

In this section we aim at the ADLs that do not depend directly on
component models. We introduce a general architecture interchange language
ACME in Section 3.4.1, possible strategies for modelling of software architec-
tures in UML in Section 3.4.2, and recent ArchWare ADL in Section 3.4.3.

3.4.1 ACME

A large number of ADLs have been proposed [MT00]: for modelling of software
architectures within a particular domain, as general-purpose architecture
modelling languages, with and without component models and formal bases,
etc. Each one of the various set of ADLs defines its own capabilities of archi-
tecture specification, including specific definitions of basic characteristics and
constructs of its architecture. Features of ADLs are delimited by particular
domains, component models, and formal bases.

In order to unify architectural specifications across ADLs, an architecture
interchange language ACME [GMW00] has been developed. It establishes a
common basis for the ADLs and enables integration of their support tools.
The ACME defines core architectural entities: components and connectors (as
they are described in Section 3.2), systems (as configurations of components
and connectors), ports (as interfaces of a component), roles (of interfaces of a
connector, which they act in communication), representations (hierarchical
decompositions of components and connectors), and rep-maps (mappings
between a composite component’s or connector’s internal architecture and
its external interface). Other aspects of architectural description can be rep-
resented with property lists.

The ACME does not provide any certain semantic model. The property
lists, structural constraints, etc. must be described in terms of other ADLs’
semantic model. Therefore, the ACME itself is not suitable for description of
a system’s software architecture and should be used only in association with
other ADL (where ACME acts as the ADL’s exchange language).

3.4.2 Unified Modelling Language

Unified Modelling Language (UML, see [OMG05b, OMG07b]) can act as
another approach to description of a software system’s architecture. The
metamodelling architecture of UML suggests three possible strategies for
modelling of software architectures [MRRR02]:
5 In some cases, the line between concepts of a component model and an ADL can

be blurred (e.g. Wright, which is described in Section 3.3.1, can be also designated
an ADL).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 32 — #46 i
i

i
i

i
i

32 3 Software Component Architecture

1. to use UML „as is“ – it results in architectural models that are immedi-
ately understandable by any UML user and manipulable by UML tools,
but there are only limited methods explicitly representing the relationship
between existing UML constructs and architectural concepts (such as
connectors and architectural styles);

2. to constrain the UML metamodel using UML’s built-in extension mech-
anisms (constraints, stereotypes, profiles) – it explicitly represents and
enforces architectural constraints, is manipulable by standard UML tools,
and would be understandable to UML users, but exact specification of a
modelling space can be difficult (i.e. extensions may not cover all features
of the architectures);

3. to extend the UML metamodel to directly support the needed architec-
tural concepts – it could fully capture every desired feature of every ADL
and provide „native“ support of software architectures in UML (new
modelling capabilities), but results in a notation that does not conform
to the UML standard and could be incompatible with UML-compliant
tools.

Each approach has certain potential advantages and disadvantages. Today,
the second mentioned strategy for modelling of software architectures in UML
is preferred, i.e. an ADL’s entities and their semantics are mapped into the
UML 2 as the ADL’s UML profile. Resulting metamodels of component-
based systems can be used to develop supporting tools, e.g. in Eclipse Modeling
Framework (EMF) [BSM+03, Ecl07b] for modelling and code generation of
tools based on component models, or in Eclipse Graphical Modeling Frame-
work (GMF) [Ecl07a] for developing graphical editors according to the rules
described in the component models’ metamodels (based on EMF).

UML 2 Components

The UML 2 has introduced description of hierarchical architecture of
component-based systems [AGM04] by means of structured classes, i.e. the
classes that allow nesting of other classes. In this section we review relevant
concepts and UML 2 notation related to component modelling.

To separate specification of classes from their implementation, UML pro-
poses interfaces [OMG05b], which describe operations of classes, their acces-
sible attributes, possible associations under defined constraints and protocols.
In UML 2 [OMG07b], the interfaces are drawn as specific classes stereotyped
«interface». Classes that implement given interfaces are connected to them
by „realisation“ relation (they provide the interfaces), while classes that access
to the interfaces are connected to them by „dependency“ relation (they require
the interfaces). In addition to „class“ style notation of stereotyped classes and
their relations, UML provides „lollipop“ style notation. Both notations are
shown in the example in Figure 3.1.

The components themselves are drawn as specific classes stereotyped
«component» interconnected by means of „assembly connectors“ binding their

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 33 — #47 i
i

i
i

i
i

3.4 Architecture Description Languages 33

Book CD

+ borrow()
+ return()
+ isOverdue()

< < Interface> >
Borrow

Library

0..*

1

0..*

1

Book CD

Library

Borrow

0..*

1

0..*

1

Fig. 3.1. An example of UML „class“ style notation with interface stereotypes
and corresponding „lollipop“ style notation where Borrow acts as an „assembly
connector“ between Library and Book or CD (the example is adopted from [AN05]).

interfaces in the „lollipop“ style notation. The UML 2 specification [OMG07b]
states for such classes the following: „a component represents a modular part
of a system that encapsulates its contents and whose manifestation is replace-
able within its environment“ . The components can be used to represent many
different entities, which are distinguished by stereotypes. For component-
based development, the following stereotypes [AN05] can be important:

• «specification» – it specifies a domain of abstract components without
defining their physical implementation;
• «implementation» – it specifies a separate implementation of a compo-

nent, which has no specification itself, but has a dependency on a specific
«specification» component;
• «service» – a stateless, functional component that computes a value;
• «subsystem» – a logical construct representing a unit of hierarchical

decomposition that can not be instantiated at runtime.

As structured classes, UML 2 components can have internal structure
and delegate their external interfaces to the parts of their internal assembly.
External interfaces of a structured component are connected to its ports and
by means of dependency relation to the corresponding internal interfaces (see
an example in Figure 3.2).

It is highly recommended that architects use UML 2 components (and
structured classes in general) to describe the hierarchical decomposition of
component-based systems. However, the UML 2 does not explicitly provide all
ADL’s constructs [Oqu05], e.g. for description of architectures with connectors
or of dynamic architectures.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 34 — #48 i
i

i
i

i
i

34 3 Software Component Architecture

< < component> >
Store

< < component> >
Order

< < component> >
Customer

< < component> >
Product

OrderEntity

Account
Account

OrderEntity

Person

OrderableItem

Fig. 3.2. An example of component Store, its internal structure and components
Order, Customer, and Product, as parts of its internal assembly (the example is
adopted from [OMG07b]).

3.4.3 ArchWare ADL

ArchWare [Arc06] was a 3 year project (since January 2002 to June 2005)
funded by the European Community’s Fifth Framework Programme. The
project was aimed to design, to develop, and to disseminate innovative
architecture-centric languages, frameworks, and tools for engineering evolvable
software systems. During the project, a formal architecture description
language has been created, together with fitting analysis, refinement, and
exchange languages. Those languages have been supported by appropriate
frameworks and tools.

In this section, we describe the ArchWare architecture description language
(ArchWare ADL, see [BMO+05]). The ArchWare ADL provides the core
(runtime) structure and behaviour constructs to describe dynamic software
architectures. It is a formal specification language designed to be executable
(by a virtual machine) and to support automated verification. The ArchWare
ADL is founded on three formal models:

1. π-ADL, which contains the core structure and behaviour constructs with
the higher-order typed π-calculus as a formal basis (see Section 2.3);

2. σπ-ADL, which contains style constructs for defining a base component-
connector style and other derived styles, founded on top of the π-ADL;

3. µπ-AAL (Architecture Analysis Language), which is extension of
the modal µ-calculus6 (with a predicate calculus) for description of
behavioural and structural properties of communicating and mobile
architectural elements.

The π-ADL [Oqu04] introduces a formal language for description of a
dynamic software architecture’s elements. The π-ADL is formally defined
by a formal transition and type system. The formal system is described
6 The µ-calculus allows to express properties of labelled transition systems by using

the least and greatest fixed point operators.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 35 — #49 i
i

i
i

i
i

3.4 Architecture Description Languages 35

in a layered approach: a formal system of a base language providing only
behaviour constructs, a formal system of a first-order language extending
the base language with value and structure constructs (base types and type
constructors), and a formal system of a higher-order language extending the
first-order language with the ability of the constructs to be declared, assigned,
to have equality defined, and to be persistent.

The behaviour constructs from the base language copy the π-calculus
constructs, which have been mentioned in Section 2.3. The base language
contains „restrict“ , „choose“ , „compose“ , „replicate“ , and „unobservable“ con-
structs, „send“ and „receive“ , „done“ behaviour (a null process), conditional
behaviour, and a construct for renaming of names in behaviour. The base types
are void, natural, integer, real, boolean, and string. The type constructors7
are tuple, view, union, any, quote, variant, location, and recursive, including
iterable collection type constructors: sequence, set, and bag. Finally, the last
behaviour construct is a connection of any type with support of mobility
(also typical for the π-calculus). Moreover, the higher-order language defines
behavioural abstraction and application, and behaviour definition (i.e. „a
given name is defined as a given behaviour“).

The σπ-ADL [BMO+05] is realised as the outer layer of ArchWare ADL,
which provides style constructs. It is formally constructed on a top of π-
ADL and µπ-AAL, and it builds a bridge between those two languages.
It allows definition of architectural element styles, represented by property-
guarded behaviour abstractions, definition of domain specific extensions of
the π-ADL or specific architectural patterns where their properties can be
explicitly defined and preserved.

The σπ-ADL is defined in two layers. The first (inner) layer is built on the
top of π-ADL and introduces a partial application of behaviour abstractions,
so-called hierarchical abstractions, allowing reuse of abstraction definitions at
different levels of application. The second (outer) layer introduces possibility
to declare properties, called an architectural style and expressed in µπ-AAL,
as well as to attach the properties to behaviour abstractions. A property
represents a constraint that is imposed to architectures that follow a specific
architectural style (it defines a family of the architectures). The σπ-ADL
allows also to build hierarchies of styles.

During the ArchWare project, an UML 2 profile for ArchWare ADL has
been developed [Oqu05], as well as several tools, e.g. for theorem proving and
model checking8 of ArchWare ADL and for generating a code for ArchWare
ADL models, which is executable by an ArchWare virtual machine. The
ArchWare ADL has been applied in several case studies and also been used
for designing and implementing the ArchWare Software Engineering Environ-
ment.

7 The view is a tuple with labelled elements, the quote is a label and the location
is a named container for storing and retrieving values.

8 The tools are described in documents D3.5b and D3.6c in [Arc06].

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 36 — #50 i
i

i
i

i
i

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 37 — #51 i
i

i
i

i
i

4

Service Oriented Architecture

Service-oriented architecture (SOA, [Erl05]) is an architectural style for align-
ing business and IT architectures. It is a complex solution for analysis, design,
maintaining, and integration of enterprise applications that are based on
services.

This chapter deals with basic description of the service-oriented archi-
tecture. At the beginning, in Section 4.1, we introduce fundamental SOA
principles and describe transformation of business processes in a Business
Process Modeling Notation into UML service diagrams. Section 4.2 provides
a short introduction to the services’ implementation with focus on their com-
munication. Finally, we describe a relation between services and component-
based systems in Section 4.3. The chapter provides a basis for linking the
services to underlying component-based systems, which will be proposed in
the next part of this book.

4.1 Design of Services

Service-oriented architecture represents a model in which functionality is
decomposed into small, distinct units, known as „services“ , which can be
distributed over a network and can be combined together and reused to create
business applications [Erl05]. Services are defined as autonomous platform-
independent entities enabling access to their capabilities via their provided
interfaces. They can communicate:

1. by passing data between two services – in service contracts, services
receiving data are requesters, while services sending the data are providers,

2. by coordinating an activity between two or more services – a multi-
party collaboration between services is usually known as service choreogra-
phy in case of the collaboration without a controlling service or as service
orchestration if there exists a service that controlls the collaboration.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 38 — #52 i
i

i
i

i
i

38 4 Service Oriented Architecture

A system that applies SOA can be described at the following three levels
of abstraction:

Business processes describe the system as a hierarchically composed business
process where each decomposable process (at each level of the composi-
tion) represents a sequence of steps in accordance with some business rules
leading to a business aim1.

Services implement business processes and their parts with well-defined in-
terfaces and interoperability for the benefit of business. Business (entity)
services encapsulate distinct sets of business logic, utility services provide
generic, non-application specific, and reusable functionality, and controller
(task-centric) services act as parent services to service composition mem-
bers and ensure their assembly and coordination to execution of an overall
business task [Erl05].

Components are implementations of services as CBSs with well-defined struc-
ture and description of their evolution for the benefit of the implementa-
tions.

4.1.1 Business Process Modelling

Communication of services in SOA is aimed for the benefit of business. A
new designed service has to meet business requirements that are traditionally
specified by a business process model represented as a business process diagram
(BPD). The diagram should capture which business processes are going to be
done, who is going to do them, when and where will they be done, how and
why will they be done, and who is dependent on their being done [CKO92]. A
business process is a sequence of structured activities (actions) leading to
a specific business aim. The activities have their own attributes and can
be decomposed into several collaborating sub-processes at a lower level of
abstraction.

There are several notations [LK06] for describing business process models
and drawing business process diagrams (e.g. Business Process Definition Meta-
model [OMG08a], Event Driven Process Chain [Sch00], IDEF3 [MMP+95],
Petri Net [SW01], and UML 2 Activity Diagram [OMG07b]). However, Busi-
ness Process Modelling Notation (BPMN, [OMG08b]) has played the most
dominant role in the past several years. It is a standard, readily understand-
able notation, which allows transformation into an execution language, namely
the Business Process Execution Language for Web Services (BPEL4WS,
[ACD+03, ODvdAtH06]), an application of BPEL.

Business process modelling depends on a specific notation of business
process models. It includes decomposing of business processes into their most
detailed representations, resulting in series of granular actions. Actions that
1 Business requirements are traditionally specified by a business process model

(BPM).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 39 — #53 i
i

i
i

i
i

4.1 Design of Services 39

are suitable for service encapsulation become potential service capability
candidates [Erl05].

4.1.2 Business-to-Service Transformation

According to [Ars04], the initial activity in development of a new SOA-based
system is a service identification [IB07], which is a part of service-oriented
analysis. It consists of a combination of top-down, bottom-up, and middle-out
techniques of domain decomposition of legacy systems, asset analysis, and
goal-service modelling when service capability candidates are grouped into
services. The result of the service identification is a set of candidate services
(business services that encapsulate distinct sets of business logic, see the three
levels of abstraction in Section 4.1).

In the context of service oriented design, the service identification is a
prerequisite for the business-to-service transformation. Initially, a business
process (BP), which is represented by a business process diagram (BPD) as
an input of the transformation, is decomposed into individual tasks. Then,
the transformation consists of two steps:

1. The first step is to identify which tasks from the BPD represent service
invocations and therefore will be modeled as services in service diagrams.
This decision is closely related to the service identification and takes into
account such aspects as possible runtime scenarios, functionality of service
providers, quality of service requirements, security issues, etc. [Ars04]

2. The transformation process itself [RW08] is based on a technique, which
is introduced in [Ams05]. The technique integrates business process mod-
elling and object modelling by providing a business services model (BSM)
that is a mediator between business requirements and their implementa-
tion.

In the second step and according to [RW08], each service is modeled
as an UML 2 component (see Section 3.4.2) with additional stereotype
«service», which interacts with its environment via interfaces with stereo-
types «interface». During the interaction, the service can act in two different
roles: as a service provider or as a service consumer. These two roles are
distinguished in the service model by means of different ports. Provider ports
of a service implement interfaces that specify functional capabilities provided
to possible consumers of the service, while consumer ports require interfaces of
specific services to consume their functionality. Relationships between services
and interfaces are stereotyped as «use» for interfaces of required services and
by UML implementation relations for provided interfaces.

Finally, in addition to business services, which have been derived from
predefined business entities in the previous step, utility services and controller
services are created and modelled in UML in a similar way. Controller ser-
vices are designed to controll service contracts and to finalize the required
composition logic [Erl05] (see the services level of abstraction in Section 4.1).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 40 — #54 i
i

i
i

i
i

40 4 Service Oriented Architecture

4.1.3 Service Composition

Design of controller services puts less emphasis on exploring reusability, while
it is more focused on services’ roles as parent controllers [Erl05]. These services
orchestrate subordinate services. However, from the structural point of view,
SOA is a flat model where „composite“ services do not enclose their „internal“
services participating in the orchestration.

To fulfil the flat model and to support reusability of controller services
in general, it is useful to design them as „stateless services“ . Nevertheless, in
the case of controller services, there are some problems we must cope with.
The problems are related to the ability of controller services to synchronise
actions of their subordinate services during their orchestration, e.g. to hold
data between individual calls of individual subordinate services that are
participating in the orchestration, realisation of a controller service with
multiple interfaces that will be invoked in a specific order, etc. The solution
can be to encode and to store a (hidden) state of a controll service into values
of parameters of a subordinate service’s invocation, which will be required
later, as a return value of the invocation, and utilised during next processing
when the state of the control service will be restored [RW08].

Both, the flat model of SOA and statelessness of its services, put more
importance on adequate design of the service composition as well as design of
individual services.

4.2 Implementation of Services

Passing data between services of SOA can be implemented in different ways.
We can distinguish the following styles of services implementation:

• remote procedure calls (RPC) where the emphasis is on services’
interfaces with strictly defined properties determining their compatibility
(e.g. SOAP [GHM+07], JSON-RPC [AK06], and XML-RPC [Win99]);
• resource oriented services where predefined interfaces are independent

on actual types of transferred resources, objects represented by unique
identifiers, so that each of them is interacted with in the same way (e.g.
Representational State Transfer, REST [Fie00]);
• syndication-style publishing where interfaces respect given standards

for capturing all messages (e.g. Atom Publishing Protocol [Gdh07] and
RSS [RSS07]);
• vendor-specific services where generic RPC capabilities are difficult to

use (e.g. Oracle Database SOAP [PGG+06]).

Probably the most widely used implementation of SOA are Web Services.
They are built on top of XML as a language for the data exchange and
of SOAP as a framework for exchanging information. Individual Web ser-
vices are described by means of Web Services Description Language (WSDL,

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 41 — #55 i
i

i
i

i
i

4.3 Services and Components 41

SOA CBD/CBS
communication

of entities
various forms of data passing

(RPC, resources, etc.)
message passing via bindings of

compatible interfaces
architecture
of a system

service contracts on demand
(via service brokers)

given by actual configuration,
dynamic reconfiguration, and

mobility
composition
of entities

business, utility, and
controller services

hierarchic composition (primitive
and composite components)

compatibility
of interfaces

by description of an interface
and a type of communication

by behaviour of a component and
specification of its interface

statefulness,
statelessness

a service should not have
externally visible state

a state can be given by and can
affect behaviour/structure of a

component

Table 4.1. The comparison of Service Oriented Architecture (SOA) and
Component-Based Development and Systems (CBD/CBS), which has been pub-
lished in [Ryc08].

[CMRW07]), which provides a component model and defines XML format of
services. Operations and messages of Web services are described abstractly
and then bound to concrete network protocols SOAP and HTTP and to
message format MIME to define specific endpoints. The specific endpoints
are combined into abstract endpoints, which form individual services.

Finally, service brokers (service registries) store information about avail-
able service providers for potential service requesters. Web Services uses Uni-
versal Description, Discovery and Integration (UDDI, [CHvRR04]) registries
of WSDL documents, which describe specific Web Services.

4.3 Services and Components

While the design of services in SOA is business oriented, components in
Component-Based Development (CBD, see Section 3.2) are implementation
oriented and usually need not respect any business rules or aims. Component-
based systems are defined only by their initial configuration, component
hierarchy (encapsulation), and components’ behaviour.

Table 4.1 compares features of SOA and Component-Based Development
and Systems (CBD/CBS) from an implementation point of view—in aspects
of communication of entities, description of their interconnections (i.e. their
architecture), composition of entities, compatibility of their interfaces, and
visibility of their states (i.e. „statefulness“ or „statelessness“ of the entities).
For a detailed comparison, see [CCC+07].

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 42 — #56 i
i

i
i

i
i

42 4 Service Oriented Architecture

4.3.1 Service Component Architecture

Service Component Architecture (SCA, [OSO07b, OSO07c, OSO07a]) is a
general approach for design and implementation of SOA as component-based
systems. It is a set of specifications [Ope08], which define a common mecha-
nism for assembling of components and services into SOA applications using
a wide range of technologies.

The SCA provides a model for assembling of service components and
a model for creation of component-based services. In accordance with these
models, a process of architectural design and implementation of a SOA
application can be divided into two steps [Cha07]:

1. service components are implemented in such a way that each of them
provides specific services and consumes other services;

2. sets of components are combined at design-time into composites, which
are interconnected by wiring of service references to services.

In the first step, services of SOA are implemented in SCA as service
components realising some business logic of a business application. The com-
ponents [OSO07a, Cha07] offer capabilities through service interfaces and
consume functions offered by other components through reference interfaces.
Each interface offers or refers a number of operations and is described by
means of a specific technology (e.g. in WSDL for a component implemented
in BPEL, see Section 4.2 and Section 4.1.1). Moreover, a component can have
one or more properties with values specific for individual instantiations of the
component.

In the second step, the SCA components are combined at design-time
into larger logical structures called composites [OSO07a, Cha07, OSO07b].
They are logical constructs for design purposes and usually do not determine
the components’ distribution at a runtime. A composite can be described
in a XML-based Service Component Definition Language (SCDL, [OSO07a,
Ope07]) as a set of its services, references, and properties, included internal
components with their services, references, and properties, and a set of wires.
The wires connect source component references to target component services
in a case of connections of two components or promote composite references to
internal component references and composite services to internal component
service in a case of composites and their components.

Finally, service components are grouped into SCA domains, which repre-
sent complete runtime configurations potentially distributed over a series of
interconnected runtime nodes [OSO07a]. Components in the same domain
must be implemented by the same technology and can be interconnected
directly by means of SCA wires. In a case of connections of services inside and
outside a domain, there must by bound specific mechanisms for addressing and
accessing the services (e.g. WSDL endpoint URIs in a case of Web services
technology). External clients of a service that is developed and deployed using
SCA should not be able to tell that SCA was used to implement the service—
the SCA is an implementation detail [OSO07a].

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 43 — #57 i
i

i
i

i
i

4.3 Services and Components 43

The SCA [Ope08] allows to describe service components in programming
languages Java, C, C++, COBOL, and WS-BPEL. It supports environments
and frameworks Spring and Java EE. Services can be accessed as Web ser-
vices, Java Message Services, Enterprise JavaBeans, and J2EE Connector
Architecture entities. Reference implementations are provided in „traditional“
programming languages such as Java, C++, and BPEL, but also in scripting
languages such as PHP and JavaScript and in declarative languages such as
XQuery and SQL [OSO07a].

The SCA allows to implement and assemble services at a business level
and suppress implementation details of infrastructure capabilities and access
methods used to invoke the services. However, in comparison with the com-
ponent models from Section 3.3, the SCA does not provide any formalism for
description of behaviour of component services and their composites.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 44 — #58 i
i

i
i

i
i

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 45 — #59 i
i

i
i

i
i

Part II

Component Model for Mobile Architectures

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 46 — #60 i
i

i
i

i
i

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 47 — #61 i
i

i
i

i
i

5

Component Model

The previous part of this book has dealt with the state-of-the-art review of soft-
ware component architecture in Chapter 3 and service-oriented architecture in
Chapter 4. In this part, we will build on previous works and introduce a high-
level component model for mobile architectures addressing the current issues
of the existing component models and architecture description languages
(see Section 3.3 and Section 3.4, respectively). The issues are related to
the problem factors F1–F5, which have been described in Section 1.1. The
component model allows dynamic reconfiguration, component mobility, and a
specific combination of control and business logic of components. Behavioural
description of individual components and their mutual communication is
based on the calculus of mobile processes from Section 2.3.

The component model can be presented in two views1: logical (structural)
view and process (behavioural) view. At first, in Section 5.1, we introduce the
component model’s metamodel, which describes basic entities of the compo-
nent model and their relations and features. The second view, in Section 5.2,
is focused on behaviour of the component model’s entities, especially on
component mobility. Finally, in Section 5.3, an example of a component-based
system is introduced and its structure and behaviour are described.

5.1 Logical View

The component model for mobile architectures is described as a metamodel in
the context of a four-layer modelling architecture [OMG05a]. The metamodel
is implemented in OMG’s Meta Object Facility (MOF, [OMG06a]), which is
used as a meta-metamodel. The modelling architecture comprises the follow-
ing four layers:

M0: An information layer, which is comprised of the actual data objects.
This layer contains particular instances of component-based systems, their

1 The scope of the views is described in Section 3.1.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 48 — #62 i
i

i
i

i
i

48 5 Component Model

< < metamodel> >
MOF

< < metamodel> >
UML

< < metamodel> >
CM for Mobile Architectures

< < systemModel> >
System Models

Component- Based System

M3

M2

M1

M0

< < use> >< < use> >

< < use> >

Fig. 5.1. The four-layer modelling architecture of the component model and UML
as metamodels in layer M2 and MOF as a meta-metamodel in layer M3 (UML 2
notation).

runtime configurations, specific deployments of their components and
connectors, etc.

M1: A model layer, which contains models of the M0 data. The models include
structure and behaviour models that describe different perspectives of
component-based systems such as, for example, UML component models
or communication diagrams.

M2: A metamodel layer provides a language that can be used to build M1
models. Component models fall in this layer, as well as models of the
UML language.

M3: A meta-metamodel layer, which is used to define modelling languages. It
holds a model of the information from M2, e.g. MOF.

The four-layer modelling architecture is shown in Figure 5.1. Between
models of layer M1, layer M2, and layer M3, there is a relationship denoted
by a dependency with UML 2 stereotype «use», i.e. the models in lower
layers use classes from metamodels in upper layers to create their objects.
In the context of component-based development, a specific component-based
system (layer M0) contains instances of elements from its model (stereotyped
as «systemModel» in layer M1). The model contains instances from a specific
component model (a metamodel in layer M2), which is described by a given
meta-metamodel (layer M3), both with stereotypes «metamodel».

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 49 — #63 i
i

i
i

i
i

5.1 Logical View 49

+ name : string

NamedElement
(CM::metamodel::EMOF)

Operation
(CM::metamodel::EMOF)

TypedElement
(CM::metamodel::EMOF)

+ isOrdered : boolean = false
+ isUnique : boolean = false
+ lower : int
+ upper : int

MultiplicityElement
(CM::metamodel::EMOF)

Parameter
(CM::metamodel::EMOF)

0..*+ ownedParameter

+ operat ion
owns

Fig. 5.2. A simplified part of the EMOF metamodel [OMG06a] with classes that
will be extended by the component model.

5.1.1 Metamodel

This section deals with description of the component model for mobile archi-
tectures as a metamodel. The metamodel is defined in Meta Object Facility
version 2.0 (MOF, [OMG06a]). MOF is in layer M3 in the four-layer modelling
architecture (see Section 5.1). It is defined in two parts: Essential MOF and
Complete MOF (EMOF and CMOF). The EMOF contains packages Basic,
Reflection, Identifiers, and Extension, which form a minimal set of
modelling elements to define simple metamodels. The CMOF extends EMOF
by Constructs package from UML 2 Core (see [OMG07a]). For purposes of
this chapter, the EMOF is sufficient to describe the component model.

The component model, as a model of layer M2 in the four-layer modelling
architecture, can be described by means of UML 2 diagrams in two contexts:

1. as an object diagram of instances of EMOF classes from layer M3 (entities
in layer M2 are instances of classes in layer M3), i.e. it is described as „a
model“ ,

2. as a class diagram from layer M1 (entities in layer M1 are instances of
classes in layer M2), i.e. it is described as „a metamodel“ .

For better clearness, the component model will be described as an
UML 2 class diagram from layer M1. To reuse well-established concepts
of MOF, the component model’s metamodel extends EMOF classes
EMOF::NamedElement, EMOF::TypedElement, and EMOF::Operation, which
are outlined in Figure 5.2. A complete and detailed definition of the EMOF
classes can be found in [OMG06a].

Components and Interfaces

Figure 5.3 describes the first part of the component model as an exten-
sion of EMOF. The metamodel defines an abstract component, its reali-
sations as a primitive component and a composite component, and their
interfaces. All classes of the metamodel inherits (directly or indirectly) from
class EMOF::NamedElement in package Basic of EMOF.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 50 — #64 i
i

i
i

i
i

50 5 Component Model

Component

+ behaviouralDescript ion

PrimitiveComponent

CompositeComponent

+ name : string

NamedElement
(CM::metamodel::EMOF)

+ getOwner() : Component

Interface

ProvidedInterface

RequiredInterface

ExternalProvInterface

ExternalReqInterface

InternalProvInterface

InternalReqInterface

0..*

1

+ required

+ owner

0..*

1

+ provided

+ owner

0..*
0..1

+ subcomponent

+ parent

0..*

1
+ providedIn

+ owner

0..*

1

+ requiredIn

+ owner

requires inside

provides inside

requires

provides

consists of

Fig. 5.3. Abstract component, realisations, and interfaces, extending
EMOF::NamedElement in the metamodel of the component model.

In our approach, a component, which is an active communicating entity of
a component-based software system, can be described form two sides: as an
abstract component without considering its internal structure („black-box“
view) and as a component realisation in the form of a primitive component
or a composite component („grey-box“ view). The abstract component (class
Component in the metamodel) can communicate with neighbouring compo-
nents via its interfaces (class Interface). The interfaces can be provided
(class ExternalProvInterface) or required (class ExternalReqInterface)
by the component.

The component realisation can be primitive or composite. The primitive
component realisation (class PrimitiveComponent) is implemented directly,
beyond the scope of architecture description. It is a „black-box“ with described
observable behaviour (attribute behaviouralDescription). The composite
component realisation (class CompositeComponent) is decomposable on a
system of subcomponents at the lower level of architecture description (it is a
„grey-box“). Those subcomponents are represented by abstract components
(class Component and relation „consists of“). Moreover, every composite com-
ponent realisation can communicate with its subcomponents via its provided
(class InternalProvInterface) and required (class InternalReqInterface)
internal interfaces (relations „provides inside“ and „requires inside“ , respec-
tively).

The specific interfaces have to implement methods getOwner(), which
return their owners, i.e. objects that act as the abstract components in a
case of the abstract component interfaces or as instances of the composite
component realisations in a case of their internal interfaces (in accordance
with owner roles of components in the relations with their interfaces).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 51 — #65 i
i

i
i

i
i

5.1 Logical View 51

Binding BindOutwardBindInward

+ name : string

NamedElement
(CM::metamodel::EMOF)

TypeOfBinding

ProvidedInterface

RequiredInterface

ExternalProvInterface

ExternalReqInterface

InternalProvInterface

InternalReqInterface

BindSiblings

CompositeComponent

1

0..1

+ provided

10..*

+ provided

1

0..1

+ required

1

0..1

+ required

1

0..1

+ required

*

1

+ binding
+ owner

1

0..1

+ provided

0..1

0..*

+ type
has

imports from

exports to

imports to

exports from

bound from

bound to

contains

Fig. 5.4. Binding and its different realisations between interfaces of a composite
component realisation in the metamodel of the component model. Classes Compos-
iteComponent and ...Interface are identical to the classes in Figure 5.3.

Composite Components and Binding

Binding is a connection of required and provided interfaces of the identical
types into a reliable communication link. It is described in Figure 5.4. Inter-
faces of a component (classes ExternalProvInterface and ExternalReqIn-
terface) can be provided to and required from its neighbouring components,
while interfaces of a composite component realisation (classes InternalProv-
Interface and InternalReqInterface) can be provided to and required
from its subcomponents only. Therefore, we distinguish three types of the
binding (the realisations of class Binding):

1. Binding of provided interfaces to required interfaces in the same composite
component realisation is represented by class BindSiblings. The inter-
faces have to be internal interfaces of the composite component realisation
or external interfaces of subcomponents in the same composite compo-
nent realisation2. The binding interconnects required interfaces (class
RequiredInterface) via relations „bound from“ to provided interfaces
(class ProvidedInterfaces) via relations „bound to“ .

2. Binding of external provided interfaces of a composite component realisa-
tion to its internal required interfaces is represented by class BindInward.
The external interfaces are provided to neighbouring components of the
composite component acting as an abstract component (relation „imports
from“ an instance of class ExternalProvInterface), while the internal

2 The diagram in Figure 5.4 does not restrict relations of BindSiblings to the
interfaces of the same composite component realisations; this will be defined later
by means of additional constraints.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 52 — #66 i
i

i
i

i
i

52 5 Component Model

CtrlRefProvInterface

CtrlBindReqInterface

ProtectedIntType PublicIntType

Operation

CtrlStart

CtrlStop

CtrlClone

CtrlAttach CtrlDetach

RefToProvInterface RefToComponent

PrivateIntType

TypeOfInterface

Operation
(CM::metamodel::EMOF)

+ name : string

NamedElement
(CM::metamodel::EMOF)+ getOwner() : Component

Interface

Component

RequiredInterface

ProvidedInterface

1

+ operat ion

1

*

+ type

1

+ component

1

0..1

+ operat ion

+ referrer

1

0..1

+ operat ion

+ binder

has

refers to

refers to

sets binding from

gets reference to

Fig. 5.5. Types of interfaces with class Operation extending EMOF::Operation in
the metamodel of the component model. Classes Interface, ProvidedInterface,
RequiredInterface, and Component are identical to the classes in Figure 5.3.

interfaces are required from the composite component’s subcomponents
(relation „exports to“ an instance of class ExternalReqInterfaces).

3. Binding of internal provided interfaces of a composite component realisa-
tion to its external required interfaces is represented by class BindOutward.
The internal interfaces are provided to the composite component’s subcom-
ponents (relation „exports from“ an instance of class InternalProvIn-
terface), while the external interfaces are required from neighbouring
components of the composite component acting as an abstract component
(relation „exports to“ an instance of class ExternalReqInterfaces).

The bindings (i.e. instances of the realisations of class Binding) are owned
by the composite component realisations. Each binding can have a type
(class TypeOfBinding), a specialisation of EMOF::TypedElement, which can
describe a communication style (buffered and unbuffered connection), a type
of synchronisation (blocking and output non-blocking), etc.

Types of the Interfaces

To ensure type compatibility of interfaces in a binding, each interfaces
has a type (class TypeOfInterface, which is a specialisation of class
EMOF::NamedElement in package Basic of EMOF). Hierarchy of the types
of interfaces is described in Figure 5.5.

According to a scope of visibility of the interfaces in a composite compo-
nent realisation, we can distinguish public interfaces, private interfaces, and
protected interfaces. The public interfaces (classes realising PublicIntType)
of a component can be accessed by its neighbouring components (via binding

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 53 — #67 i
i

i
i

i
i

5.1 Logical View 53

BindSiblings). If the component is a composite component realisation, its
external public interfaces can be also accessed by its subcomponents and its
internal public interfaces can be accessed by its neighbouring components
(i.e. the interfaces can pass the component’s border via binding BindInward
and BindOutward owned by the component). They can be interconnected by
means of all kinds of bindings.

Contrary to the public interfaces, the private interfaces (classes realising
PrivateIntType) are specific types of interfaces, which can be provided only
by a composite component realisation and only to its subcomponents as the
component’s internal interfaces3. They can be interconnected only by means
of binding BindSiblings.

Finally, the protected interfaces (classes realising ProtectedIntType) of
a component can be accessed by its neighbouring components as the com-
ponent’s external interfaces, but if the component is a composite component
realisation, they are not reachable by its subcomponents. They can be inter-
connected only by means of binding BindSiblings.

According to functionality, we can distinguish the following types of inter-
faces (see Figure 5.5):

• Public interface Operation, which extends class EMOF::Operation from
package Basic of EMOF and represents a business oriented service with
typed input and output parameters.
• Protected interface CtrlRefProvInterface provides references to given

provided interface ProvidedInterface of type Operation4, while pro-
tected interface CtrlBindReqInterface allows to establish a new binding
of specific required interface RequiredInterface of type Operation4 to
a provided interface of another component formerly referred by means of
CtrlRefProvInterface.
• Protected interfaces CtrlStart and CtrlStop allow to control behaviour

of a component (i.e. to start and to stop the component, respectively).
• Private interfaces CtrlAttach and CtrlDetach provided by a composite

component realisation allow to attach of a new component as a sub-
component of the composite component realisation („nesting“ of the
component) and detach of an old subcomponent from the composite
component realisation, respectively.
• Protected interface CtrlClone provides references of a fresh copy of a

component.
• Protected interface RefToInterface is able to pass references of provided

interfaces ProvidedInterface of type Operation4, while public interface
3 The private interfaces can be required by the subcomponents as their external

interfaces, but they can not pass borders of the subcomponents (nor any other
component). It means that the subcomponents have to be primitive components.

4 The restriction to the interface of type Operation will be defined explicitly by
additional constraints.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 54 — #68 i
i

i
i

i
i

54 5 Component Model

RefToComponent allows to pass references of a whole component Compo-
nent, which is required to support component mobility.

Interfaces of type Operation are also known as functional interfaces, while
the others are known as control interfaces5.

Additional Constraints

We need to define additional constraints to ensure type compatibility of inter-
faces in bindings, i.e. instances of realisations of class Binding in Figure 5.4.
Types of the interfaces are given by relation to specific instances of realisations
of class TypeOfInterface and according to the hierarchy of the types of
interfaces in Figure 5.5. The following formulae use a first-order logic with
extra predicate symbols „o : T“ and „o is T“ for restriction of o to type T,
predicate symbol „i ∈ L“ for restriction of l to list L, predicate symbol „x = y“
to check equality of x and y, and function symbol „i. getOwner()“ to get an
owner of interface i (see method getOwner() of Interface in Section 5.1.1).

1. Bindings BindInward and BindOutward in a composite component reali-
sation can interconnect only interfaces of the same composite component
realisation.

(∀c : CompositeComponent) (
((∀b : BindInward ∈ c.binding)

(b.provided. getOwner() = c ∧ b. required. getOwner() = c)
) ∧ ((∀b : BindOutward ∈ c.binding)

(b.provided. getOwner() = c ∧ b. required. getOwner() = c)
)

)

2. Binding BindSiblings in a composite component realisation can intercon-
nect only internal interfaces of the same composite component realisation
or external interfaces of its subcomponents.

(∀c : CompositeComponent) (∀b : BindSiblings ∈ c.binding) (
(∀i : InternalProvInt ∈ b.provided) (i. getOwner() = c)
∧ (∀i : InternalReqInt ∈ b. required) (i. getOwner() = c)
∧ (∀i : ExternalProvInt ∈ b.provided)

(i. getOwner() ∈ c. subcomponent)
∧ (∀i : ExternalReqInt ∈ b. required)

(i. getOwner() ∈ c. subcomponent)
)

5 The functional and control interfaces in the metamodel can be compared with
the functional and control interfaces in Section 3.3.5.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 55 — #69 i
i

i
i

i
i

5.1 Logical View 55

3. Bindings Binding in a composite component realisation can interconnect
only provided interfaces with required interfaces of compatible types.

(∀c : CompositeComponent) (∀b : Binding ∈ c.binding)
(b.provided. type = b. required. type)

4. Bindings BindInward and BindOutward can interconnect only public in-
terfaces, i.e. instances of class PublicIntType.

(∀c : CompositeComponent) (
((∀b : BindInward ∈ c.binding)

(b.provided. type is PublicIntType
∧ b. required. type is PublicIntType)

) ∧ ((∀b : BindOutward ∈ c.binding)
(b.provided. type is PublicIntType
∧ b. required. type is PublicIntType)

)
)

5. Bindings BindSiblings that are inside a composite component realisation
can be connected to private interfaces, only if the interfaces are internal
interfaces of the composite component realisation.

(∀c : CompositeComponent) (∀b : BindSiblings ∈ c.binding)
(b.provided. type is PrivateIntType ⇒ b.provided ∈ c.providedIn)

6. Instances of classes CtrlBindReqInterface, CtrlRefProvInterface,
and RefToProvInterface, and their relations to interfaces via „sets
binding from“, „gets reference to“ and „refers to“ , respectively, have to
be connected with the interfaces of type Operation only.

(∀t : CtrlBindReqInterface) (t. operation. type is Operation)
∧ (∀t : CtrlRefProvInterface) (t. operation. type is Operation)
∧ (∀t : RefToProvInterface) (t. operation. type is Operation)

5.1.2 System Model

The component model’s metamodel is a model of layer M2 where it exists
alongside UML (see Figure 5.1 in Section 5.1). Both the component model
and UML are based on the same meta-metamodel MOF in layer M3, although
they are distinct in purpose and also in practice. In this section, we utilise the
notation of UML 2 component diagrams to describe system models of the
component model’s metamodel6.

A system model, as a model of layer M1 in the four-layer modelling
architecture, can be described in UML in two contexts:
6 The aim of the utilisation is to reuse the well-established UML notation, although

it is not formally defined as an UML profile (see Section 3.4.2).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 56 — #70 i
i

i
i

i
i

56 5 Component Model

component : CompositeComponent

subcomp : PrimitiveComponent

op1 : Operation

intOp1Req : InternalReqInterface

bind1 : BindSiblings extOp1Prov : ExternalProvInterface

intOp1Prov : ExternalProvInterface

: BindInward

op2 : Operation

: BindSiblings

intOp2Req : ExternalReqInterface intOp2Prov : InternalProvInterface

extOp2Req : ExternalReqInterface: BindOutward

provRefOp1 : ExternalProvInterface

rop1 : CtrlRefProvInterfacescAttachReq : ExternalReqInterface

scAttachProv : InternalProvInterface

: BindSiblings: CtrlAttach

compClone : ExternalProvInterface

: CtrlClone

Fig. 5.6. The example of description of a system model as an object diagram with
instances of classes from the component model’s metamodel.

< < component> >
component

< < component> >
subcomp

bindOp2
bop2 : CtrlBindReqInterface
rop1 : CtrlRefProvInterface

provRefOp1

compClone
: CtrlClone

scAttachReq/ Prov

: CtrlAttach

: CtrlAttach

op2 : Operat ion

intOp2Req/ Prov

intOp1Req

op1 : Operat ion intOp1Prov

extOp2Req

extOp1Prov

op2 : Operat ion

op1 : Operat ion

bind1

Fig. 5.7. An example of proposed notation of a system model in layer M1 by means
of the component model from layer M0.

1. as an object diagram where objects in M1 layer are instances of classes
from a metamodel in layer M2 (see Figure 5.6);

2. as a specific class diagram where entities in layer M0 are instances of
classes from a diagram in layer M1 (see Figure 5.7).

The following example of a simple system model is described in both
contexts, i.e. as the object diagram, to demonstrate an application of the
metamodel, and as a specific component diagram, to introduce the notation

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 57 — #71 i
i

i
i

i
i

5.1 Logical View 57

based on UML 2 component diagrams. The example contains composite
component component and its primitive subcomponent subcomp.

The subcomponent from the example has one provided interface in-
tOp1Prov with type op1 : Operation, one required interface intOp2Req with
type op2 : Operation, and one required interface scAttachReq with a type
represented by a nameless instance of class CtrlAttach.

The component from the example contains three internal interfaces, namely
required intOp1Req with type op1 : Operation, provided intOp2Prov with
type op2 : Operation, and provided scAttachProv with a type represented
by a nameless instance of class CtrlAttach. These internal interfaces
are bound to the interfaces of the subcomponent by binding bind1 and
two nameless bindings with a type represented by a nameless instance of
class BindSiblings. Moreover, the component has five external interfaces,
namely provided extOp1Prov with type op1 : Operation, required extOp2Req
with type op2 : Operation, provided compClone with a type represented
by a nameless instance of class CtrlClone, provided bindOp2 with type
bop2 : CtrlBindReqInterface binding required interface extOp2Req, and
provided provRefOp1 with type rop1 : CtrlRefProvInterface referencing
provided interface extOp1Prov. External interfaces extOp1Prov and ex-
tOp2Req are bound to internal interfaces intOp1Req and intOp2Prov by two
bindings with types represented by nameless instances of classes BindInward
and BindOutward, respectively.

The example is described as an object diagram in Figure 5.6. All objects
are either identified or nameless instances of relevant classes of the metamodel.

To provide straightforward description of the component model, as a
class diagram with classes in layer M1, we utilise the notation of component
diagrams from UML 2, as it is described in Figure 5.7. In this way, individual
instances of classes from the metamodel can be denoted as follows:

• PrimitiveComponent – Primitive components are denoted by UML com-
ponents, i.e. classes stereotyped as «component» (e.g. component subcomp
in Figure 5.7).
• CompositeComponent – Composite components are denoted by UML

components that are able to have subcomponents, i.e. nested UML com-
ponents (e.g. component component in Figure 5.7).
• ProvidedInterface – Provided interfaces are denoted by UML interfaces,

i.e. classes stereotyped as «interface» realised by related components
that own the interfaces (e.g. interface intOp1Prov of component subcomp
in Figure 5.7).
• RequiredInterface – Required interfaces are denoted by UML inter-

faces used by related components that own the interfaces (e.g. interface
intOp1Req of component component in Figure 5.7).
• TypeOfInterface – A type of a component’s interface is denoted by an

UML port. The UML port’s (optional) name and (mandatory) type are
identical to a name and a class of the type of the component’s interface

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 58 — #72 i
i

i
i

i
i

58 5 Component Model

(e.g. port op1 : Operation realised by interface intOp1Prov of component
subcomp in Figure 5.7 assigns instance op1 of class Operation to the
interface as its type).
• Binding and TypeOfBinding – Bindings of functional required and pro-

vided interfaces are denoted by UML relations of dependency stereotyped
as «use». Each binding can have its (optional) name and its type, if
needed (e.g. binding bind1 of required interface intOp1Req of component
component and provided interface intOp1Prov of component subcomp in
Figure 5.7). In a case of a nameless binding of interfaces, which is common
for control interfaces, it is possible to interconnect the interfaces directly
(e.g. the binding of interfaces scAttachReq/Prov of components subcomp
and component, respectively, in Figure 5.7).
• CtrlBindReqInterface and CtrlRefProvInterface – Relations of

UML ports of types CtrlBindReqInterface or CtrlRefProvInterface,
which represent control provided interfaces for binding of required
functional interfaces or referencing functional provided interfaces,
respectively, are denoted by UML relations stereotyped as «use» (e.g.
port rop1 : CtrlRefProvInterface realised by interface provRefOp1
of component component in Figure 5.7 provides references to interface
extOp1Prov of the same component; analogously for the port of interface
bindOp2).

5.2 Process View

In this section, the component model is presented in the process view (see
Section 3.1). Behaviour of individual components and their mutual communi-
cation is described by means of the π-calculus (see Section 2.3).

According to the metamodel from Section 5.1.1, each component of a
component-based system can be realised either as a primitive component or
as a composite component. Since the primitive component is described as „a
black-box“ , its behaviour has to be defined directly by its developer and can
be described as a π-calculus process (a value of attribute behaviouralDe-
scription in an instance of class PrimitiveComponent, see Figure 5.3 in
Section 5.1.1). The π-calculus process describes processing of names that
represent the component’s provided and required functional interfaces and
names for specific control actions provided by the component via its control
interfaces (e.g. requests to start or stop the component).

On the contrary to the primitive component, the composite component
is decomposable at a lower level of component hierarchy into a system of
subcomponents communicating via their interfaces and their bindings (i.e. a
component-based system; the component is „a grey-box“). Formal description
of the composite component’s behaviour is a π-calculus process, which is
composition of processes representing behaviour of the component’s sub-
components, processes implementing bindings between interfaces of the sub-

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 59 — #73 i
i

i
i

i
i

5.2 Process View 59

components (class BindSiblings in the metamodel), bindings of internal
interfaces of the component to its external interfaces (classes BindInward
and BindOutward), and processes describing specific control actions of the
component’s control interfaces (e.g. requests to start or stop the composite
component including their distribution to the component’s subcomponents,
etc.).

5.2.1 Notation

Before π-calculus processes describing behaviour of a component will be
presented, we need to define the component’s interfaces within the terms of
the π-calculus, i.e. as names used by the π-calculus processes. The following
names can be used in an external view or an internal view of a component,
i.e. for description of an abstract component or a composite component as
specific instances of classes Component or CompositeComponent, respectively:

• the external view of an abstract component: s0, s1, c, ps1, . . . , psn, p
g
1, . . . ,

pgm;
• the internal view of a composite component only: a, p′s1 , . . . , p′sm, p′g1 , . . . ,
p′gn .

where n and m are numbers of the component’s required and provided func-
tional interfaces, respectively (i.e. the component’s external interfaces of type
Operation), and the individual names have the following semantics:

via s0 – a running component accepts a request for its stopping7 (it represents
an interface of type CtrlStop in the metamodel),

via s1 – a stopped component accepts a request for its starting7 (it represents
an interface of type CtrlStart in the metamodel),

via c – a component accepts a request for its cloning and returns a new
stopped instance of the component as a reply (it represents an interface
of type CtrlClone in the metamodel),

via psi – a component accepts a request for binding a specific provided func-
tional interface (included in the request) to required functional interface
ri (it represents an interface of type CtrlBindReqInterface in the meta-
model),

via pgj – a component accepts a request for referencing provided functional
interface pj , which reference is returned as a reply (it represents an
interface of type CtrlRefProvInterface in the metamodel),

via a – a composite component accepts a request for attaching its new sub-
component, i.e. for attaching the subcomponent’s s0 and s1 names (stop
and start interfaces), which can be called when the composite component
will be stopped or started, respectively, and as a reply, it returns a name
accepting requests to detach the subcomponent (the names represent
interfaces of types CtrlAttach and CtrlDetach in the metamodel).

7 In a composite component, the requests are distributed to all subcomponents of
the component.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 60 — #74 i
i

i
i

i
i

60 5 Component Model

We should remark that there is a relationship between names representing
functional interfaces in the external view and names representing correspond-
ing functional interfaces in the internal view of a composite component.
The composite component interconnects its external functional interfaces
r1, . . . , rn (required) and p1, . . . , pm (provided) accessible via names ps1, . . . , psn
and pg1, . . . , p

g
m, respectively, to internal functional interfaces p′1, . . . , p

′
n

(provided) and r′1, . . . , r
′
m (required) accessible via names p′g1 , . . . , p

′g
n and

p′s1 , . . . , p
′s
m, respectively.

As a result, requests received via external functional provided interface pj
are forwarded to an interface that is bound to internal functional required
interface r′j (and analogously for interfaces p′i and ri). This ensures binding of
external interfaces of the composite component to its internal interfaces and
vice versa, as it has been described in the medamodel (see classes BindInward
and BindOutward in Figure 5.4 in Section 5.1.1).

5.2.2 Interface’s References and Binding

At first, we define an auxiliary process Wire8, which can receive a message
via name x (i.e. input) and send it to name y (i.e. output) repeatedly till the
process receives a message via name d (i.e. disable processing).

Wire
∆= (x, y, d).(x(m).y〈m〉.Wirebx, y, dc + d)

Binding of components’ functional interfaces is done via their control
interfaces. These control interfaces allow to get a reference to a component’s
functional provided interface (via an interface of type CtrlRefProvInterface
in the metamodel) and use the reference to bind a functional required interface
of another component (via an interface of type CtrlBindReqInterface in the
metamodel). Process CtrlIfs describes processing of requests via the control
interfaces as follows:

SetIf
∆= (r, s, d).s(p).(d.Wirebr, p, dc | SetIfbr, s, dc)

GetIf
def
= (p, g).g(r).r〈p〉

Plug
def
= (d).d

CtrlIfs
def
= (r1, . . . , rn, ps1, . . . , p

s
n, p1, . . . , pm, p

g
1, . . . , p

g
m).

(
n∏
i=1

(rdi)(Plug〈rdi 〉 | SetIfbri, psi , rdi c) |
m∏
j=1

!GetIf〈pj , pgj 〉)

where names r1, . . . , rn, ps1, . . . , psn, p1, . . . , pm, pg1, . . . , p
g
m have been defined in

Section 5.2.1. Let us assume CtrlIfs shares its names r1, . . . , rn and p1, . . . , pm
with a process describing a component’s core functionality via its required and
8 The process will be used also in the following parts of Section 5.2.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 61 — #75 i
i

i
i

i
i

5.2 Process View 61

provided interfaces, respectively. Pseudo-application GetIf〈pj , pgj 〉 enables
process CtrlIfs to receive a name x via pgj and to send pj via name x as
a reply (it provides a reference to an interface represented by pj). Constant
application SetIfbri, psi , rdi c enables process CtrlIfs to receive a name x via psi ,
which will be connected to ri by means of a new instance of process Wire (it
binds a required interface represented by ri to a provided interface represented
by x). To remove a former binding of ri, a request is sent via rdi (in case it is
the first binding of ri, i.e. there is no former binding, the request is accepted
by pseudo-application Plug〈rdi 〉).

In a composite component, the names representing external functional
interfaces r1, . . . , rn, p1, . . . , pm are connected to the names representing inter-
nal functional interfaces p′1, . . . , p′n, r′1, . . . , r′m. Requests received via external
functional provided interface pj are forwarded to an interface that is bound
to internal functional required interface r′j (and analogously for interfaces p′i
and ri). This behaviour is described in process CtrlEI :

CtrlEI
def
= (r1, . . . , rn, p1, . . . , pm, r

′
1, . . . , r

′
m, p

′
1, . . . , p

′
n).

n∏
i=1

(d)Wirebri, p′i, dc |
m∏
j=1

(d)Wirebr′j , pj , dc

5.2.3 Control of a Component’s Life-cycle

Control of a composite component’s life-cycle9 can be described as process
CtrlSS .

Dist
∆= (p,m, r).(p〈m〉.Distbp,m, rc + r)

Life
∆= (sx, sy, px, py).sx(m).(r)(Distbpx,m, rc | r.Lifebsy, sx, py, pxc)

Attach
def
= (a, p0, p1).a(c0, c1, cd)(d)

(cd(m).d〈m〉.d〈m〉 | Wirebp0, c0, dc | Wirebp1, c1, dc)

CtrlSS
def
= (s0, s1, a).(p0, p1)(Lifebs1, s0, p1, p0c | !Attach〈a, p0, p1〉)

where names s0 and s1 represent the component’s interfaces that accept
stop and start requests, respectively (i.e. interfaces of types CtrlStop and
StrlStart in the metamodel), and name a that can be used to attach stop
and start interfaces of the component’s new subcomponent (at one step, i.e.
via an interface of type CtrlAttach in the metamodel).

The requests for stopping and starting the component are distributed to its
subcomponents via names p0 and p1. Constant application Lifebs1, s0, p1, p0c
enables process CtrlSS to receive message m via s0 or s1. This message
is distributed to the subcomponents by means of constant application
Distbpx,m, rc via shared name px, which can be p0 in a case the component
9 A primitive component handles stop and start interfaces directly.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 62 — #76 i
i

i
i

i
i

62 5 Component Model

is running or p1 in a case the component is stopped. When all subcomponents
have accepted message m, the process of starting or stopping the component
is finished, which is announced via name r, and the component is ready to
receive new requests to stop or start, respectively.

Pseudo-application Attach〈a, p0, p1〉 enables process CtrlSS to receive a
message via a, i.e. a request to attach a new subcomponent’s stop and
start interfaces represented by names c0 and c1, respectively. The names are
connected to p0 and p1 via constant applications of process Wire. Third name
received via a, cd, can be used later to detach the subcomponent’s previously
attached stop and start interfaces.

5.2.4 Cloning of Components and Updating of Subcomponents

Cloning of a component allows to create the component’s fresh copy and
to transport it into different location, i.e. for attaching as a subcomponent
of anther component. Process Ctrlclone describes processing of requests for
clonning of a component as follows:

Ctrlclone
∆= (x).x(k).(s0, s1, c, ps1, . . . , p

s
n, p

g
1, . . . , p

g
m, r, p)

(k〈s0, s1, c, r, p〉 | r〈ps1, . . . , psn〉 | p〈p
g
1, . . . , p

g
m〉

| Component〈s0, s1, c, ps1, . . . , psn, p
g
1, . . . , p

g
m〉 | Ctrlclonebxc)

where pseudo-application Component〈s0, s1, c, ps1, . . . , psn, p
g
1, . . . , p

g
m〉 with

well-defined parameters describes behaviour of the cloned component. When
process Ctrlclone receives a request k via name x, it sends names s0, s1, c, r, p
via name k as a reply. The first three names represent „stop“ , „start“ , and
„clone“ interfaces of a fresh copy of the component. The process is also
ready to send names representing control interfaces for binding functional
requested interfaces and referencing functional provided interfaces of the new
component, i.e. names ps1, . . . , psn via name r and names pg1, . . . , p

g
m via name

p, respectively.
The fresh copy of a component can be used to replace a subcomponent of

a composite component. The process of update10, which describes replacing
of the old subcomponent with a new one, is not a mandatory part of the com-
posite component’s behaviour and its implementation depends on particular
configuration of the component (e.g. ability of the component to update its
subcomponents, a context of the replaced subcomponent, presence of parts of
the component that have to be stopped during the update, etc.). For example,
we can describe replacing a subcomponent as process Update:
10 The process is also known as „updating“ or „nesting“ of a component.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 63 — #77 i
i

i
i

i
i

5.2 Process View 63

Update
∆= (u, a, s0, sd, ps1, . . . , p

s
m, p

g
1, . . . , p

g
n).(k, s

′
d)

(u〈k〉.k(s′0, s′1, c, r′, p′).s0.a〈s′0, s′1, s′d〉.sd
.r′(p′s1 , . . . , p

′s
n).(x)(pg1〈x〉.x(p).p′s1 〈p〉 . . . p

g
n〈x〉.x(p).p′sn 〈p〉)

.p′(p′g1 , . . . , p
′g
m).(x)(p′g1 〈x〉.x(p).ps1〈p〉 . . . p

′g
n 〈x〉.x(p).psm〈p〉)

.s′1.Updatebu, a, s′0, s′d, ps1, . . . , psm, p
g
1, . . . , p

g
nc)

Process Update sends via name u a request for a clone of a component.
A new component that is the clone of the requested component will be used
in update as a replacement of the old subcomponent in a parent component
implementing the update process (i.e. as its subcomponent). As a return value,
process Update receives a vector of names representing control interfaces for
binding and referencing the new component’s functional interfaces (see the
process of cloning above). Name a represents the parent component’s internal
control interface to attach the new component’s stop and start interfaces
(s′0 and s′1 names). Before the attaching, name s0 is used to stop the old
subcomponent and name sd to detach its stop and start interfaces. Finally,
names ps1, . . . , psm, pg1, . . . , p

g
n represent a context of the old subcomponent,

i.e. interfaces of neighbouring subcomponents, which have to be rebound to
interfaces of the new component.

5.2.5 Primitive and Composite Components

Finally, we can describe complete behaviour of primitive and composite com-
ponents. Let us assume that process abstraction Compimpl with parameters
s0, s1, r1, . . . , rn, p1, . . . , pm describes behaviour of the core of a primitive
component (i.e. excluding behaviour of processing of its control actions),
as it is defined by the component’s developer. Further, let us assume that
process abstraction Compsubcomps with parameters a, p′s1 , . . . , p′sm, p′g1 , . . . , p

′g
n

describes behaviour of a system of subcomponents interconnected by means
of their interfaces into a composite component (see Section 5.2.2). Names
s0, s1, r1, . . . , rn, p1, . . . , pm and names a, ps1, . . . , psm, pg1, . . . , p

g
n are defined in

Section 5.2.1.
Processes Compprim and Compcomp that describe behaviour of the men-

tioned primitive and composite components can be defined as follows:

Compprim
def
= (s0, s1, c, ps1, . . . , p

s
n, p

g
1, . . . , p

g
m).(r1, . . . , rn, p1, . . . , pm)

(CtrlIfs〈r1, . . . , rn, ps1, . . . , psn, p1, . . . , pm, p
g
1, . . . , p

g
m〉

| Ctrlclonebcc
| Compimpl〈s0, s1, r1, . . . , rn, p1, . . . , pm〉)

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 64 — #78 i
i

i
i

i
i

64 5 Component Model

Compcomp
def
= (s0, s1, c, ps1, . . . , p

s
n, p

g
1, . . . , p

g
m).

(a, r1, . . . , rn, p1, . . . , pm, r
′
1, . . . , r

′
m, p

′
1, . . . , p

′
n)

(CtrlIfs〈r1, . . . , rn, ps1, . . . , psn, p1, . . . , pm, p
g
1, . . . , p

g
m〉

| CtrlIfs〈r′1, . . . , r′m, p′s1 , . . . , p′sm, p′1, . . . , p′n, p
′g
1 , . . . , p

′g
n 〉

| CtrlEI〈r1, . . . , rn, p1, . . . , pm, r
′
1, . . . , r

′
m, p

′
1, . . . , p

′
n〉

| Ctrlclonebcc
| CtrlSS〈s0, s1, a〉 | Compsubcomps〈a, p′s1 , . . . , p′sm, p

′g
1 , . . . , p

′g
n 〉)

where the pseudo-applications of CtrlIfs represent behaviour of control parts
of the components related to their functional interfaces (see Section 5.2.2), the
constant applications of Ctrlclone describe behaviour of control parts of the
components related to their cloning (see Section 5.2.4), the pseudo-application
of CtrlSS represents behaviour of the composite component’s control part
processing its stop and start requests (see Section 5.2.3), and the pseudo-
application of CtrlEI describes communication between internal and external
functional interfaces of the composite component (see Section 5.2.2).

5.3 An Example of a Component-Based System and its
Description

As an example, we will describe a simple component-based system that dy-
namically changes its behaviour. At first, the system receives an input from an
user as pair (username, password) and verifies the user’s password in order
to check the user’s identity. If the user’s credentials passes the verification, the
system creates its fresh subcomponent providing user-specific functionality by
initialising a clone of a user-specific component in a predefined state. The
functionality of the new subcomponent is offered via the system’s external
interface, i.e. the system offers different functionality via its external interface
according to the user’s credentials received during the initialisation (as it is
described above). The functionality can change after next initialisation with a
different user’s credentials. Between initialisations, the subcomponent’s state
can vary and affect behaviour of the whole system.

The component-based system is represented by component system com-
posed of

• component init that verifies a user’s credentials and initiating user-specific
functionality,
• component workerA that provides functionality specific for user „A“,
• component workerB that provides functionality specific for user „B“ .

For simplicity, let us assume that the system can distinguish only two
users („A“ and „B“) and each of the user-specific components workerA and
workerB has only one provided interface and implements a simple storage of

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 65 — #79 i
i

i
i

i
i

5.3 An Example of a Component-Based System and its Description 65

< < component> >
system

< < component> >
workerB

< < component> >
init

< < component> >
workerA

initLogin

sysLoginlogin

provRefBF

provRefAF

sysAttachP/ R

: CtrlAttach

: CtrlAttach

bFunc

aFunc

bCloneP/ R

aCloneP/ R

bindSysFuncP/ R

sysFunc

function
: CtrlBindReqInterface opFunc : Operat ion

: CtrlClone

: CtrlClone

: CtrlRefProvInterface

opFunc : Operat ion

: CtrlRefProvInterface

opFunc : Operat ion

: CtrlClone

: CtrlClone

Fig. 5.8. The example of a simple component-based system that dynamically
changes its behaviour, component system and its subcomponents init, workerA, and
workerB (an initial configuration, i.e. without bound interface sysFunc).

one variable. The interface accepts an input value that will be stored in a
component where it will replace a previously stored value returned via the
interface as a response. Components workerA and workerB differ in the value
returned on the first call.

The component-based system from the example is described in Figure 5.8
as follows. After the user’s credentials received by component init via its
interface initLogin pass the verification, a clone of component workerA or
workerB is acquired by component init via its required interface aCloneR or
bCloneR, respectively. The new component is attached as a subcomponent
of composite component system by component init via its required interface
sysAttachR. Provided interface aFunc or bFunc of the new component workerA
or workerB, respectively, is bound to required internal interface sysFunc of
composite component system (i.e. a reference to aFunc or bFunc is acquired
by profRefAF or provRefBF of the new component, respectively, and sent to
provided internal interface bindSysFuncP of composite component system).

5.3.1 Definition of the Components’ Implementations

At first, we describe behaviour of cores of primitive components, i.e. the
components’ implementations that have to be defined by developers of the
component-based system from the example (see Section 5.2.5). Description of
behaviour of component workerA and workerB is11:

workerAcore
def
= (paFunc).workerA′corebundefA, paFuncc

workerA′core
∆= (val, paFunc).(paFunc(val′, ret)
.(workerA′corebval′, paFuncc | ret〈val〉))

11 The notation of π-calculus processes describing components has been defined in
Section 5.2.1.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 66 — #80 i
i

i
i

i
i

66 5 Component Model

workerBcore
def
= (pbFunc).workerB′corebundefB, pbFuncc

workerB′core
∆= (val, pbFunc).(pbFunc(val′, ret)
.(workerB′corebval′, pbFuncc | ret〈val〉))

where processes workerA′core and workerB′core can save a message received
via name paFunc and pbFunc, respectively, as name val′ and send a previously
saved message val as a reply via name ret. Names undefA and undefB repre-
sent initial values stored in components workerA and workerB, respectively.

Behaviour of the init component’s core can be described as process abstrac-
tion initcore with name pinitLogin representing a provided functional interface,
rsysAttach as a required interface to attach new subcomponents into the system
(see Section 5.2.3), raClone and rbClone as required interfaces for cloning
components workerA or workerB (see Section 5.2.4), rssysFunc as a required
interface for binding provided functional interfaces of the cloned components
to a required functional interface of component system represented by sysFunc
(see Section 5.2.2), and auxiliary name d. The behaviour is described as
follows:

initcore
def
= (pinitLogin, rsysAttach, raClone, rbClone, rssysFunc, d).

pinitLogin(username, password).
(okA, okB , fail)(initverify〈username, password, okA, okB , fail〉
+ okA.init

′
corebpinitLogin, rsysAttach, raClone, rbClone, rssysFunc, dc

+ okB .init
′′
corebpinitLogin, rsysAttach, raClone, rbClone, rssysFunc, dc

+ fail.init′′′corebpinitLogin, rsysAttach, raClone, rbClone, rssysFunc, dc)

init′core
∆= (pinitLogin, rsysAttach, raClone, rbClone, rssysFunc, d).(new, d

′, t)
(raClone〈new〉.new(s′0, s

′
1, c
′, r′, p′).rsysAttach〈s′0, s′1, d′〉.

p′(p′gaFunc).p
′g
aFunc〈t〉.t(aFunc

′).rssysFunc〈aFunc
′〉.

initcore〈pinitLogin, rsysAttach, raClone, rbClone, rssysFunc, d′〉) | d

init′′core
∆= (pinitLogin, rsysAttach, raClone, rbClone, rssysFunc, d).(new, d

′, t)
(rbClone〈new〉.new(s′0, s

′
1, c
′, r′, p′).rsysAttach〈s′0, s′1, d′〉.

p′(p′gbFunc).p
′g
bFunc〈t〉.t(bFunc

′).rssysFunc〈bFunc
′〉.

initcore〈pinitLogin, rsysAttach, raClone, rbClone, rssysFunc, d′〉) | d

init′′′core
∆= (pinitLogin, rsysAttach, raClone, rbClone, rssysFunc, d).

initcore〈pinitLogin, rsysAttach, raClone, rbClone, rssysFunc, d〉 | d.d

where process abstraction initcore receives an user’s initial request via name
pinitLogin as a pair of names (username, password) and after successful
verification of the user’s name and password via the pseudo-application of
initverify, the process continues either as the constant application of init′core
or as the constant application of init′′core.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 67 — #81 i
i

i
i

i
i

5.3 An Example of a Component-Based System and its Description 67

The constant application of init′core or init′′core requests a process repre-
senting behaviour of a cloned user-specific component via name raClone or
name rbClone, respectively. As a result, it receives control interfaces as names
s′0, s

′
1, c
′ and sends them to a process representing component system via name

rsysAttach to attach the user-specific component as its subcomponent. It also
binds the user-specific component’s functional provided interface represented
by name aFunc′ or name bFunc′ and obtained via name p′gaFunc or name
p′gbFunc, respectively, to an internal interface of component system by means of
name rssysFunc. Concurrently with the attaching the user-specific component
as the subcomponent of system, an old subcomponent is detached via name
d12.

The pseudo-application of initverify〈username, password, okA, okB , fail〉
represents behaviour of a user’s authentication and authorisation process (e.g.
defined as initverify

def
= (. . .).okA to authorise users to component workerA).

5.3.2 Description of the Component Based System

Now, we can describe behaviour of the individual components including their
control parts, as well as behaviour of a composite component that repre-
sents the whole component-based system from the example. According to
Section 5.2.5, complete behaviour of components workerA and workerB can be
described as follows:

workerA
def
= (s0, s1, c, p

g
aFunc).(paFunc)

(CtrlIfs〈paFunc, pgaFunc〉 | Ctrlclonebcc | workerAcore〈paFunc〉)

workerB
def
= (s0, s1, c, p

g
bFunc).(pbFunc)

(CtrlIfs〈paFunc, pgbFunc〉 | Ctrlclonebcc | workerBcore〈pbFunc〉)

Behaviour of component init has to be described differently from the others,
because it uses required control interfaces represented by names rsysAttach,
raClone, rbClone, and rssysFunc, which can not be referenced (contrary to
functional interfaces, see Section 5.1.1). This case can be compared with the
description of Update process in Section 5.2.4. The behaviour of component
init can be described as follows:

init
def
= (s0, s1, c, p

g
initLogin, rsysAttach, raClone, rbClone, r

s
sysFunc).(pinitLogin, d)

(CtrlIfs〈pinitLogin, pginitLogin〉 | Ctrlclonebcc
| initcore〈pinitLogin, rsysAttach, raClone, rbClone, rssysFunc, d〉 | d)

Finally, behaviour and structure of a composite component system, which
represents the whole component-based system, can be described as follows:
12 In a case of unsuccessful verification of the user’s credentials, an actual subcom-

ponent is detached and a trivial response to future attempts to detach is prepared
(see d.d in the second part of process constant init′′′core).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 68 — #82 i
i

i
i

i
i

68 5 Component Model

system
def
= (s0, s1, c, p

g
login, p

g
function).

(plogin, rsysLogin, pssysLogin, pfunction, rsysFunc, p
s
sysFunc, psysAttach)

(Ctrlclonebcc | CtrlIfs〈plogin, pglogin〉 | CtrlIfs〈rsysLogin, p
s
sysLogin〉

| CtrlIfs〈pfunction, pgfunction〉 | CtrlIfs〈rsysFunc, p
s
sysFunc〉

| CtrlEI〈plogin, rsysLogin〉 | CtrlEI〈pfunction, rsysFunc〉
| CtrlSS〈s0, s1, psysAttach〉
| system′〈psysAttach, pssysLogin, pssysFunc〉)

system′
def
= (psysAttach, pssysLogin, p

s
sysFunc).

(rsysAttach, p
g
initLogin, r

s
sysFunc, s

init
0 , sinit1 , sA0 , s

A
1 , s

B
0 , s

B
1 , c
′, d′)

(raClone, paClone, rbClone, pbClone, p
g
aFunc, p

g
bFunc)

(init〈sinit0 , sinit1 , c′, pginitLogin, rsysAttach, raClone, rbClone, r
s
sysFunc〉

| psysAttach〈sinit0 , sinit1 , d′〉
| workerA〈sA0 , sA1 , paClone, p

g
aFunc〉 | psysAttach〈s

A
0 , s

A
1 , d

′〉
| workerB〈sB0 , sB1 , pbClone, p

g
bFunc〉 | psysAttach〈s

B
0 , s

B
1 , d

′〉
| WirebraClone, paClone, d′c | WirebrbClone, pbClone, d′c
| WirebrsysAttach, psysAttach, d′c | WirebrssysFunc, pssysFunc, d′c

| pginitLogin〈t〉.t(pinitLogin).rssysLogin〈pinitLogin〉)

Process abstraction system describes processing names representing con-
trol interfaces by means of the pseudo-applications of process abstractions
Ctrlclone (see Section 5.2.4), CtrlIfs (see Section 5.2.2), CtrlEI (see Sec-
tion 5.2.2), and CtrlSS (see Section 5.2.3). As process abstraction system′,
it also creates concurrent pseudo-applications of process abstractions init,
workerA, and workerB representing components init, workerA, and workerB,
respectively, attaches them to the system via name psysAttach, interconnects
names of required and provided control interfaces by means of the three
constant applications of process constant Wire. Finally, it creates binding of
name pinitLogin from process abstraction init representing component init to
name rsysLogin representing internal interface sysLogin of component system
by means of names pginitLogin and rssysLogin.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 69 — #83 i
i

i
i

i
i

6

Behavioural Modelling of Services

This chapter deals with linking individual services of service-oriented architec-
ture (SOA, see Chapter 4) to their underlying implementations as component-
based systems. It provides an approach to formal description of these services
as the component-based systems by means of the component model from
Chapter 5. The approach builds on a description of SOA and on its relation
to component-based systems (CBSs, see Section 3.2) from Section 4.3.

According to the three levels of SOA abstraction from Section 4.1 and
with respect to features of entities in SOA and CBSs (see Table 4.1 in the
same section), a service can be described in two views:

1. The service is an entity of SOA architecture and is described by provided
functionality and relations to its neighbouring services (the „services“
level of abstraction from Section 4.1). The neighbouring services can
act as requesters of the service or providers of functionality required
by the service. The service itself can also act as a parent service to
the neighbouring services to ensure their assembly and coordination (i.e.
as a „task-centric“ service controlling service composition members, see
[Erl05]).

2. The service can be implemented as a component-based system (the
„components“ level of abstraction from Section 4.1). It is a component
with external interfaces accessible by neighbouring components (neigh-
bouring services at the „services“ level of abstraction, i.e. independent
requesters, providers, as well as potential service composition members).
The component can be realised either as a primitive component or as a
composite component where the component’s structure and its behaviour
describe the service’s internal implementation.

The first view requires description of the service’s behaviour in the context
of communication with its neighbouring services, with respect to the flat model
of SOA (see Section 4.1.3). Formal description of services according to the
first view is introduced in Section 6.1.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 70 — #84 i
i

i
i

i
i

70 6 Behavioural Modelling of Services

The second view shows the service as a component of CBS. Its internal
structure and behaviour can be specified in the common way, as it has been
described in Chapter 5. This approach is clarified in Section 6.2.

Finally, in Section 6.3, the approach is illustrated on an exemplary business
process, specification of its services and description of their behaviour in the
context of SOA and CBSs.

6.1 Service as a Part of Service Oriented Architecture

The result of business-to-service transformation [RW08], which forms SOA
services from business processes (see Section 4.1.2), is an UML class diagram.
Individual services are modelled as UML classes with stereotype «service»
and connected by means of UML relationships of „realisation“ and „use“ to
UML classes with stereotype «interface» (for an example, see Figure 6.3).
While the classes with stereotype «service» represent specific services, the
classes with stereotype «interface» describe, by means of their methods,
individual interfaces provided or required by the services (i.e. „services“
provided or required by their „providers“ or „consumers“ , respectively, in
the terminology of Section 4.1).

Let us assume a service Service that is described as an entity of SOA by
its interfaces I1 to In and relations to its neighbouring services (i.e. at the
„services“ level of abstraction from Section 4.1 and in the first view according
to the introduction of Chapter 6). Behaviour of the service can be described
as π-calculus process abstraction Service as follows:

Service
def
= (i1, . . . , in).(b1, . . . , bm)

(Svcinit〈i1, . . . , in, b1, . . . , bm〉.
∏n
j=1 Svcj〈ij , b1, . . . , bm〉)

where names i1, . . . , in represent the service’s interfaces I1, . . . , In, respec-
tively, the pseudo-application of Svcinit initiates the service’s behaviour, and
the pseudo-application of Svcj , for each j ∈ {1, . . . , n}, describes behaviour
of processing of requests via the service’s interface represented by name ij
including possible communication via shared names b1, . . . , bm.

6.1.1 Communication of Services and Service Broker

Communication of services in SOA is realised by means of various styles
of passing data (see Section 4.2). In a case of existing service choreography
or orchestration in SOA (see Section 4.1), roles of participating services
are predefined and the architecture is static. Then, the choreography or
orchestration is described by means of a composition of π-calculus processes
representing individual services, which communicate directly via names that
represent the services’ interfaces and that are shared among the processes.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 71 — #85 i
i

i
i

i
i

6.2 Service as a Component Based System 71

However, a serious SOA will likely discover its services throughout an
enterprise and beyond [Erl05]. To support the dynamic service discovery
and invocation, SOA provides service brokers (e.g. UDDI registries, see
[CHvRR04]), which allow to publish, find, and bind services at runtime.

A service broker stores information about available service providers for
potential service requesters, e.g. as references to the providers’ published
interfaces. Its behaviour can be described as π-calculus process abstraction
Broker as follows:

Broker
def
= (pub, find).(q)(Publishbq, pubc | Findbq, find, pubc)

Publish
∆= (t, pub).pub(i, d).(t′)(t〈t′, i, d〉 | Publishbt′, pubc)

Find
∆= (h, find, pub).h(h′, i, d)
.(Findbh′, find, pubc | (find〈i〉.pub〈i, d〉 + d))

where names representing the providers’ interfaces (denoted by i internally)
can be stored via name pub and retrieved back via name find, which are sub-
sequently handled by constant applications of Publish and Find, respectively.
By the composition of the constant applications of Publish and Find with
shared name q, process constant Broker implements basic operations on a
simple queue (i.e. a First-In-First-Out (FIFO) data structure).

The constant application of Publish receives a pair of names (i, d) via name
pub and creates name t′. Then, it proceeds as a composition of a constant
application of Publishbt′, pubc, which handles future requests, and process
t〈t′, i, d〉, which enqueues the received pair (i, d) by sending them via name
t, that represents the current tail of the queue, together with name t′, that
represents a new tail of the queue used in the future requests.

The constant application of Find dequeues a front item of the queue as
a triple of names (h′, i, d) via name h, that represents the current head of
the queue. Then, it proceeds as a composition of a constant application of
Findbh′, find, pubc, which handles future requests, and a sum of capabilities
of process find〈i〉.pub〈i, d〉, which provides name i as an interface for potential
service requesters and enqueues it back to the queue via name pub, and process
d, which, after receiving a name via name d, allows to remove the interface
and does not provide it to potential service requesters anymore.

6.2 Service as a Component Based System

A service’s underlying implementation, its behaviour, and internal structure,
can be described as a component-based system. The service can be imple-
mented as a component with external provided and required interfaces, which
correspond to the services’ interfaces provided to its possible consumers and
required from other services to consume their functionality, respectively. This
approach is related to the „components“ level of abstraction from Section 4.1
and the second view from the introduction of Chapter 6.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 72 — #86 i
i

i
i

i
i

72 6 Behavioural Modelling of Services

To describe a service Service with interfaces I1 to In as a component-
based system and by means of the component model from this book (see
Chapter 5), we need to transform π-calculus process abstraction Service
from Section 6.1 describing behaviour of the service into a formal description
of behaviour of a component representing the component-based system (see
Section 5.2). We focus on pseudo-application Svcj〈ij , b1, . . . , bm〉, which de-
scribes specific processing of the service’s interface ij (for j ∈ {1, . . . , n}) and
communication with other parts of the service via shared names b1, . . . , bm.
Process abstraction Svcj can be defined as

Svcj
def
= (ij , b1, . . . , bm).Svc′j〈ij , bx1 , . . . , bxk , by1 , . . . , by(m−k)〉

where k ∈ {1, . . . ,m} and x1, . . . , xk, y1, . . . , y(m−k) ∈ {1, . . . ,m}, and sets
{bx1 , . . . , bxk}∩{by1 , . . . , by(m−k)} = ∅ and {bx1 , . . . , bxk}∪{by1 , . . . , by(m−k)} =
{b1, . . . , bm} (see the pseudo-application of Svcj in Section 6.1).

Name ij represents the interface Ij provided by the service, names
bx1 , . . . , bxk are all of the shared names that are used as channels of input
prefixes in Svc′j and names by1 , . . . , by(m−k) are all of the shared names that
are used as channels of output prefixes in Svc′j (for input and output prefixes,
see Section 2.3). Thereafter, process abstraction Svc′j can be understand as
a description of core behaviour of a component with functional provided
interfaces represented by names ij , bx1 , . . . , bxk and functional required
interfaces represented by names by1 , . . . , by(m−k) in the external view (see
Section 5.2).

The mentioned component implements a part of the service that is related
to its interface Ij as a component-based system. To extract the desired core
behaviour from the component’s complete behaviour, process abstraction Svc′j
can be defined as follows:

Svc′j
def
= (ij , bx1 , . . . , bxk , by1 , . . . , by(m−k)).

(s0, s1, c, ps1, . . . , p
s
(m−k), p

g
1, . . . , p

g
(k+1))

(
k∏
u=1

(d, t)(pg(u+1)〈t〉.t(p).Wirebbxu , p, dc) |
m−k∏
v=1

psv〈byv 〉

| (d, t)(pg1〈t〉.t(p).Wirebij , p, dc)
| Compj〈s0, s1, c, ps1, . . . , ps(m−k), p

g
1, . . . , p

g
(k+1)〉)

where process constant Wire has been defined in Section 5.2.2 and process
abstraction Compj describes the component’s complete behaviour and is
fully compatible with behavioural description of primitive and composite
components from Section 5.2.5.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 73 — #87 i
i

i
i

i
i

6.3 An Example of a Service-Oriented Architecture 73

6.3 An Example of a Service-Oriented Architecture

In this section, the approach proposed in Section 6.1 and Section 6.2 is
illustrated on an exemplary business process of „Process Purchase Order“ ,
which is adopted from [OMG06b].

The business process is described in a business process model (BPM,
see Section 4.1.1) in Figure 6.1. There are three categories of activities that
are responsible for realisation of the „Process Purchase Order“ : „Invoicing“ ,
„Shipping“ , and „Scheduling“ . Processing starts by receiving a purchase order
message. Afterwards, the „Invoicing“ activities calculate an initial price. This
price is not yet complete, because the total price depends on where the
products are produced and on the amount of the shipping cost. In parallel,
the „Shipping“ activities determine when the products will be available and
from what locations. After the shipping information is known, the complete
price can be calculated. At the same time, the process requests a shipping
schedule from the „Scheduling“ activities. Finally, when the complete price,
the shipping info and the shipping schedule are available, the invoice can be
completed and sent to the customer.

6.3.1 Service Identification

In the first step of service identification (see Section 4.1.2), the following tasks
from the BPM can be identified as invocations of services: „Initiate Price
Calculation“ , „Complete Price Calculation“ , „Request Shipping“ , „Request
Production Scheduling“ , and „Send Shipping Schedule“ .

Figure 6.2 shows an UML component diagram [OMG07b] of the services
in the „lollipop“ style notation (see Section 3.4.2). Classes stereotyped as
«service» represent five business (entity) services InitPriceCalculator,
CompletePriceCalculator, Shipping, ProductionScheduling, and Ship-
pingScheduling, and two controller (task-centric) services PurchaseOrder-
Processing and Scheduling.

The business services are derived according to the service invocation
tasks and provide functional capabilities defined by the tasks, while the
controller services are access points to orchestrations of another business
or controller services (see Section 4.1). Service PurchaseOrderProcessing
represents the whole business process of „Process Purchase Order“ from
Figure 6.1. It orchestrates services InitPriceCalculator, CompletePrice-
Calculator, Shipping, and Scheduling. Service Scheduling orchestrates
services ProductionScheduling and ShippingScheduling.

Service providers and service consumers are distinguished in Figure 6.2 by
means of provider and consumer ports, respectively, as it has been introduced
in [RW08]. Each class representing a service realises at least one interface
at its provider port, which describes a functional capability provided by the
service. Moreover, services PurchaseOrderProcessing, CompletePriceCal-
culator, Shipping, and Scheduling can be invoked asynchronously. After

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 74 — #88 i
i

i
i

i
i

74 6 Behavioural Modelling of Services

Process Purchase Order
SchedulingShippingInvoicing

R
ec

ei
ve

 P
u

rc
h

as
e

O
rd

er

U
p

d
at

e
Sh

ip
p

in
g

 R
es

u
es

t

In
it

ia
te

 P
ri

ce
 C

al
cu

la
ti

o
n

C
o

m
p

le
te

 P
ri

ce
 C

al
cu

la
ti

o
n

Pr
o

ce
ss

 I
n

vo
ic

e

R
eq

u
es

t
Sh

ip
p

in
g

Pr
o

ce
ss

 S
ch

ed
u

le

R
eq

u
es

t
Pr

o
d

u
ct

io
n

 S
ch

ed
u

lin
g

Se
n

d
 S

h
ip

p
in

g
 S

ch
ed

u
le

Sc
h

ed
u

le Sc
h

ed
u

le
Sc

h
ed

u
le

C
u

st
o

m
er

Sh
ip

p
in

g
 I

n
fo

Pu
rc

h
as

e
O

rd
er

C
u

st
o

m
er Pu

rc
h

as
e

O
rd

er

C
u

st
o

m
er

Sh
ip

p
in

g
 I

n
fo

Pu
rc

h
as

e
O

rd
er

C
u

st
o

m
er

Fig. 6.1. Business process model of „Process Purchase Order“ (adopted from
[OMG06b]).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 75 — #89 i
i

i
i

i
i

6.3 An Example of a Service-Oriented Architecture 75

< < service> >
PurchaseOrderProcessing

< < service> >
ProductionScheduling

< < service> >
ShippingScheduling

< < service> >
Scheduling

< < service> >
InitPriceCalculator

< < service> >
CompletePriceCalculator

< < service> >
Shipping

provider

RequestProductionScheduling
consumer

provider

SendShippingSchedule

AsyncReplyPS
provider

ProcessScheduling

AsyncReplyRS
RequestShipping

AsyncReplyCPC

ProcessPurchaseOrder

provider

AsyncReplyPPO

provider

CompletePriceCalculationconsumer
provider

InitPriceCalculation

Fig. 6.2. An overview of identified services and their interconnections.

their asynchronous invocations, specific responses can be obtained via in-
terfaces AsyncReplyPPO, AsyncReplyPPC, AsyncReplyRS, and AsyncReplyPS,
respectively. These interfaces are provided at consumer ports of classes that
represent replying services (i.e. the asynchronously invoked services), instead
of at their provider ports, to distinguish them from regular service invocations.

6.3.2 Service Model

To provide an example of behavioural description of SOA, we focus on
controller service Scheduling, which orchestrates ProductionScheduling
and ShippingScheduling. Detailed description of these services as classes
with stereotype «service» and their interfaces with stereotype «interface»
is provided in the UML class diagram in Figure 6.3. The relationships between
services and interfaces are stereotyped as «use» (the services require the
interfaces) or they are UML relations of „realisation“ (the services provide
the interfaces).

Service Scheduling is invoked asynchronously with parameters describing
customer, purchaseOrder, an identification of the request (requestID), and
a service that will accept a reply (replyToURL). Its behaviour is described by
means of an UML sequence diagram in Figure 6.4 as a sequence of service
invocations.

After receiving an external request from a consumer, service Purchase-
OrderProcessing asynchronously calls its orchestrated services, including
controller service Scheduling. Then, service Scheduling synchronously calls
its first orchestrated service ProductionScheduling, its second orchestrated
service ShippingScheduling and finally, it notifies service PurchaseOrder-

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 76 — #90 i
i

i
i

i
i

76 6 Behavioural Modelling of Services

<
<

se
rv

ic
e>

>
Sc

h
ed

u
li

n
g

<
<

sy
n

cC
al

l>
>

 +
as

yn
cR

ep
ly

(d
at

a
:

A
sy

n
cR

ep
ly

D
at

a,
 r

eq
u

es
tI

D
 :

 i
n

t)
 :

 v
o

id

<
<

In
te

rf
ac

e>
>

A
sy

n
cR

ep
ly

P
S

<
<

sy
n

cC
al

l>
>

 +
p

ro
ce

ss
Sc

h
ed

u
lin

g
(c

u
st

o
m

er
In

fo
 :

 C
u

st
o

m
er

,
p

u
rc

h
as

eO
rd

er
 :

 P
u

rc
h

as
eO

rd
er

)
:

vo
id

<
<

as
yn

cC
al

l>
>

 +
p

ro
ce

ss
Sc

h
ed

u
lin

g
(c

u
st

o
m

er
In

fo
 :

 C
u

st
o

m
er

,
p

u
rc

h
as

eO
rd

er
 :

 P
u

rc
h

as
eO

rd
er

,
re

p
ly

T
o

U
R

L
:

st
ri

n
g

,
re

q
u

es
tI

D
 :

 i
n

t)
 :

 v
o

id

<
<

In
te

rf
ac

e>
>

P
ro

ce
ss

Sc
h

ed
u

li
n

g

<
<

sy
n

cC
al

l>
>

 +
se

n
d

Sh
ip

p
in

g
Sc

h
ed

u
le

(s
ch

ed
u

le
 :

 S
ch

ed
u

le
)

:
vo

id

<
<

In
te

rf
ac

e>
>

Se
n

d
Sh

ip
p

in
g

Sc
h

ed
u

le

<
<

sy
n

cC
al

l>
>

 +
re

q
u

es
tP

ro
d

u
ct

io
n

Sc
h

ed
u

lin
g

(c
u

st
o

m
er

 :
 C

u
st

o
m

er
,

p
u

rc
h

as
eO

rd
er

 :
 P

u
rc

h
as

eO
rd

er
)

:
vo

id

<
<

In
te

rf
ac

e>
>

R
eq

u
es

tP
ro

d
u

ct
io

n
Sc

h
ed

u
li

n
g

<
<

se
rv

ic
e>

>
Sh

ip
p

in
g

Sc
h

ed
u

li
n

g
<

<
se

rv
ic

e>
>

P
ro

d
u

ct
io

n
Sc

h
ed

u
li

n
g

<
<

u
se

>
>

<
<

u
se

>
>

<
<

u
se

>
>

Fig. 6.3. Controller service Scheduling and its orchestration of business services
ProductionScheduling and ShippingScheduling.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 77 — #91 i
i

i
i

i
i

6.3 An Example of a Service-Oriented Architecture 77

: ShippingScheduling: Product ionScheduling: Scheduling: PurchaseOrderProcessing

4: asyncReply()
3: sendShippingSchedule()

2: requestProduct ionScheduling()
1: processScheduling()

Fig. 6.4. Behaviour of service Scheduling as a sequence of service invocations.

Processing via its interface AsyncReplyPS that the processing has been
finished.

6.3.3 Description of Services as Entities of SOA

Now, we are ready to describe behaviour of services Scheduling, Produc-
tionScheduling, and ShippingScheduling as entities of SOA by means of
π-calculus process abstractions S, PS, and SS, respectively (see Section 6.1).
These process abstractions use names ps, rps, and sss as representations of
the services’ interfaces ProcessScheduling, RequestProductionScheduling,
and SendShippingSchedule, respectively. The process abstractions are de-
fined as follows:

S
def
= (ps, getrps, getsss).(rps, sss)

(Sinit〈getrps, getsss, rps, sss〉.Simplbps, rps, sssc)

Sinit
def
= (getrps, getsss, rps, sss).getrps(rps).getsss(sss)

PS
def
= (rps, setrps).(d)(PSinit〈rps, setrps, d〉.PSimplbrpsc)

PSinit
def
= (rps, setrps, d).setrps〈rps, d〉

SS
def
= (sss, setsss).(d)(SSinit〈sss, setsss, d〉.SSimplbsssc)

SSinit
def
= (sss, setsss, d).setsss〈sss, d〉

where ps, rps, and sss are the names representing the interfaces and sub-
sequently processed by applications of process constants Simpl, PSimpl, and
SSimpl, respectively. Initialisation of the services is described by means of pro-
cess abstractions Sinit, PSinit, and SSinit, which are applied before the men-
tioned process constants. The process abstractions use names getrps, setrps,
getsss, and setsss as connections to process abstractions describing behaviour
of specific service brokers. The brokers allow to store and retrieve references
to interfaces RequestProductionScheduling and SendShippingSchedule of
services ProductionScheduling and ShippingScheduling, respectively.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 78 — #92 i
i

i
i

i
i

78 6 Behavioural Modelling of Services

Finally, complete service-oriented architecture of communicating services
and brokers can be described as process abstraction System as follows:

System
def
= (ps).(getrps, setrps, getsss, setsss)

(S〈ps, getrps, getsss〉 | (rps)PS〈rps, setrps〉 | (sss)SS〈sss, setsss〉
| Broker〈setrps, getrps〉 | Broker〈setsss, getsss〉)

For testing purposes (e.g. to verify an interoperability of the services), we
may need to finish π-calculus description of process constants Simpl, PSimpl,
and SSimpl. These process constants describe internal behaviour of the in-
dividual services, which will be defined later as behavioural description of
underlying component-based systems in Section 6.3.4. However, without addi-
tional knowledge of the services’ underlying implementation, we can describe
their communication behaviour as follows:

Simpl
∆= (ps, rps, sss).(rrps, rsss, s)

(ps(ci, po, rps).rps〈ci, po, rrps〉.rrps.sss〈s, rsss〉.rsss.rps)

PSimpl
∆= (rps).rps(ci, po, rrps).rrps

SSimpl
∆= (sss).sss(s, rsss).rsss

where the process constants describe the sequences of service invocations
according to the sequence diagram in Figure 6.4, names ci, po, and s rep-
resent parameters customer, purchaseOrder, and schedule, respectively, of
methods processScheduling, requestProductionScheduling, and send-
ShippingSchedule in the specific interfaces according to the class diagram in
Figure 6.3.

6.3.4 Description of Services as Component-Based Systems

This section deals with description of service Scheduling, which is a controller
service of business services ProductionScheduling and ShippingSchedul-
ing, as an underlying component-based system. The system is represented as
a component of the component model from Chapter 5. We continue in the
service’s behavioural description from Section 6.3.3 as it has been proposed
in Section 6.2.

Constant application Simplbps, rps, sssc has been used in process abstrac-
tion S in Section 6.3.3 to represent behaviour of the component that imple-
ments service Scheduling. It contains name ps, which represents an interface
provided by service Scheduling, and names rps and sss, which represent
interfaces required by the service from services ProductionScheduling and
ShippingScheduling, respectively.

Process constant Simpl can be defined as follows:

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 79 — #93 i
i

i
i

i
i

6.3 An Example of a Service-Oriented Architecture 79

Simpl
def
= (ps, rps, sss).(s0, s1, c, rpss, ssss, psg)

(rpss〈rps〉 | ssss〈sss〉 | (d, t)(psg〈t〉.t(p).Wirebps, p, dc)
| Scomp〈s0, s1, c, rpss, ssss, psg〉)

where pseudo-application of Scomp describes behaviour of the component that
implements service Scheduling, names s0 and s1 represent control interfaces
of the component’s life-cycle, name c represents an interface for its cloning,
name psg represents a control interface for referencing the component’s pro-
vided functional interface and names rpss and ssss represent control interfaces
for binding the component’s required functional interfaces.

Definition of process abstraction Scomp, as well as process abstractions
PScomp and SScomp, can be derived from models of component-based systems,
which realise individual services Scheduling, ProductionScheduling and
ShippingScheduling, respectively, as it has been proposed in Section 5.2.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 80 — #94 i
i

i
i

i
i

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 81 — #95 i
i

i
i

i
i

Part III

Application

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 82 — #96 i
i

i
i

i
i

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 83 — #97 i
i

i
i

i
i

7

Development Process

In this chapter, we propose an application of the component model from
Chapter 5 and the behavioural modelling of services from Chapter 6 in a
software development process. The development process should conform to
principles of the component-based development (CBD, see Section 3.2) and
should incorporate service-oriented architecture (SOA, see Chapter 4).

The behavioural modelling of services and the component model can be
applied in a design phase of the development process as it is described in
Section 7.1 and Section 7.2, respectively. Section 7.3 briefly outlines integra-
tion of a formal description resulting from the behavioural modelling into the
development process.

7.1 Application of the Behavioural Modelling of Services

When a specification of a software system is finished, we are ready to design
the system’s architecture. Let us assume that we have decided to use SOA
and we need a formal description of behaviour of its services. We will proceed
as follows:

1. Business processes of the services will be analysed at the level of individual
actions and the services’ goals will be modelled. The goals will be arranged
into candidate services, i.e. business services encapsulating distinct sets of
business logic will be identified.
Service identification has been described in Section 4.1.2 and demon-
strated in the example in Section 6.3.1.

2. The candidate services and their interfaces1 will be modelled as UML
classes. The classes of services will be stereotyped as «service», while
the interfaces will be stereotyped as «interface» and connected to the
classes of services by means of UML relationships of „realisation“ (a

1 Services that invoke asynchronously other services have to implement extra
auxiliary interfaces for receiving asynchronous replies.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 84 — #98 i
i

i
i

i
i

84 7 Development Process

service realises its interface, i.e. it is a „provider“). Utility services and
controller services will be created and modelled in the same way as the
business services. Then, the resulting UML class diagram will be trans-
formed into an UML component diagram, according to [RW08], where
possible interconnections of the services will be modelled2. Moreover, these
interconnections will be connected to the classes of services in the UML
class diagram by means of UML relationships of „use“ (a service uses
another service via its interface, i.e. it is a „consumer“). Choreography of
the services will be described in UML interaction diagrams, e.g. modelled
in UML sequence diagrams.
Modelling of services has been described in Sections 4.1.2 and 4.1.3 and
demonstrated in the example in Section 6.3.2.

3. Behaviour of each service will be described formally as a π-calculus process
abstraction with parameters matching the service’s interfaces. The process
abstraction will describe complete communication behaviour of the service
and will be defined directly by a developer of the service (i.e. the service
is a „black-box“) or by means of a specific pseudo-application of a process
abstraction that will represent behaviour of an underlying component-
based system (i.e. the service is a „grey-box“). In a case of services that
can be published and found via service brokers and subsequently bound at
runtime, behaviour of the service brokers will be also described as specific
process abstractions with two parameters (i.e. „publish“ and „find“).
Behavioural modelling of services in the π-calculus has been described in
Chapter 6 and demonstrated in the example in Section 6.3.3.

The result of the behavioural modelling of services will be a single π-
calculus process abstraction representing behaviour of a whole service-oriented
architecture of the system (i.e. behaviour of its main control service that
orchestrates the system’s private services and provides functionality pub-
licly offered by the system, including behaviour of the private services). The
behavioural description will continue with specification of behaviour of un-
derlying component-based systems that implement individual services of the
architecture (see Section 7.2).

7.2 Application of the Component Model

A component-based system can be modelled in a logical view (structural
description, see Section 5.1) and in a process view (behavioural description,
see Section 5.2). During the development process, we will proceed from the
logical view to the process view as follows:

1. In the logical view, the component-based system will be described as a
hierarchy of components obtained by applying top-down decomposition.

2 However, the component diagram may be created during the service identification,
as it has been described in Section 6.3.1.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 85 — #99 i
i

i
i

i
i

7.2 Application of the Component Model 85

Internal nodes of the hierarchic tree will be composite components, while
its leaf nodes will be primitive components. Then, the whole component-
based system will be represented as a single composite component in
the tree’s root. The components, at each level of the hierarchy, will
have defined their provided and required interfaces of specific types. The
interfaces of cooperating components will be bound (a required interface
to a provided interface of an identical type). Each component will offer a
set of standard control provided interfaces. Moreover, for each functional
interface of the component, there will be defined auxiliary control inter-
faces that allow referencing (for provided) and binding (for required) the
functional interface. Composite components will have additional internal
functional and control interfaces that will be accessible by their direct
subcomponents only. The components, their interfaces and their bindings
will be described in a system model.
Structural modelling of component-based systems has been described in
Section 5.1 and demonstrated in the example in Section 5.3.

2. In the process view, behaviour of each primitive component will be
described formally as a π-calculus process abstraction with parameters
matching the component’s interfaces from the logical view of the
component-based system. The component’s core behaviour3 will be
defined directly by a developer of the component, while its complete
behaviour will be composed of the core behaviour and default behaviour
of control parts that handle the component’s control provided interfaces.
Process abstractions and constants representing the default behaviour
of the component’s control parts will be adopted from the component
model.
Formal description of behaviour of primitive components has been intro-
duced in Section 5.2 and demonstrated in the example in Section 5.3.

3. Finally, behaviour of each composite component will be described formally
as a π-calculus process abstraction. It will be defined as a composition of
process abstractions that describe behaviour of the component’s subcom-
ponents and behaviour of bindings of their interfaces in the logical view
and process abstractions and constants that represent default behaviour
of the component’s control parts. The description of behaviour of the
bindings and the component’s control parts will be adopted from the com-
ponent model, while the behaviour of the component’s subcomponents will
have been described previously. This step can be done automatically, i.e.
without additional input from a developer, by processing the component
hierarchy in a bottom-up approach.
Behaviour of composite components has been formally described in Sec-
tion 5.2 and demonstrated in the example in Section 5.3.

3 The core behaviour describes processing of functional interfaces and custom
control interfaces only (see process abstraction Compimpl in Section 5.2.5).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 86 — #100 i
i

i
i

i
i

86 7 Development Process

The result of the component model’s application will be the system model
describing the component-based system in the logical view and a single π-
calculus process abstraction representing the system’s behaviour in the process
view. In a case of multiple services (from Section 7.1) realised as underlying
component-based systems, each service will be modelled and its behaviour
described separately as a stand-alone component-based system.

7.3 Integration of a Formal Description

Formal description of behaviour of service-oriented architectures and
component-based systems can be utilised in various phases of the development
process, when an exact specification of a system’s functionality and evolution
of its architecture is needed. However, the behavioural description is probably
the most useful in a design phase where it allows to detect design faults and
to prevent future errors before post-design phases of the development process
will be realised. For example, it is possible:

• to design and to describe the exact behaviour of systems and evolution of
their architectures,
• to check if individual services and components behave correctly, they are

always ready to handle external requests from their environment, and a
system can not reach a forbidden state (e.g. a deadlock state or a wrong
configuration of the system’s architecture),
• to verify that two substitutable services or components behave equally,

e.g. π-calculus processes describing their behaviour are open bisimilar,
• to validate all possible deployments of services in a service-oriented archi-

tecture or components in a component-based system’s dynamic architec-
ture, etc.

Since the formal description of behaviour uses the polyadic π-calculus (see
Definition 8 in Section 2.3) without any special extensions, several existing
tools can be used for model checking of resulting π-calculus processes and
formal verification of their properties. Some of the tools will be introduced in
Section 8.2 and their applications will be demonstrated in Section 9.6.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 87 — #101 i
i

i
i

i
i

8

Tools

This chapter deals with software tools that support the proposed component
model from Chapter 5. The tools can be divided into two groups: component
modelling tools and verification tools, which are described in Section 8.1 and
Section 8.2, respectively.

The component modelling tools provide developers with ability to de-
sign models of component-based systems (i.e. the system models from Sec-
tion 5.1.2), while the verification tools allow to simulate and analyse formally
described behaviour of the systems (i.e. the π-calculus processes from Sec-
tion 5.2 and Chapter 6).

8.1 Component Modelling Tools

Component modelling tools provide a supporting environment for integration
of the component model into software development processes.

8.1.1 Component Diagrams in UML

According to Section 5.1.2, models of component-based systems can be de-
scribed as specific component diagrams. Their notation is based on UML com-
ponent diagrams where it utilises a „dependency“ relation (see Section 3.4.2),
which represents bindings of required functional interfaces to provided func-
tional interfaces, as well as connections between components’ control interfaces
of special types and related functional interfaces or another components1.
Therefore, the specific component diagrams are compatible with standard
1 The special types are namely, CtrlBindReqInterface, CtrlPrefProvInterface,
RefToProvInterface, and RefToComponent, of control interfaces for binding
required functional interfaces, for referencing provided functional interfaces, for
passing references to provided functional interfaces, and for passing references to
components, respectively (see Section 5.1.1).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 88 — #102 i
i

i
i

i
i

88 8 Tools

UML component diagrams [OMG07b] and the component-based systems can
be modelled in common UML modeling tools (e.g. Visual Paradigm for UML
or Poseidon for UML2).

However, these modeling tools do not respect semantics associated with
the component model’s entities and can not check its constraints. A developer
may be allowed to design models of component-based systems that do not
implement the component model’s metamodel (see Section 5.1.1).

8.1.2 A Tool for Modelling of Component-Based Systems

To design component-based systems according to the component model’s
metamodel, a tool for modelling of component-based systems has been de-
veloped. The tool is a product of master’s thesis [Gal09], which has been
supervised by one of the authors of this book. It uses Eclipse Modeling Frame-
work (EMF) [BSM+03, Ecl07b] and Eclipse Graphical Modeling Framework
(GMF) [Ecl07a] to provide a graphical editor of models of component-based
systems. At the time of writing this book, a stable version of the tool is based
on a metamodel that has been published in [Ryc09]. The metamodel is a
preliminary and different version of the component model’s metamodel from
Section 5.1.1.

The metamodel, which is used in the tool, is described in Figure 8.1 as an
Eclipse Ecore diagram designed for EMF. It distinguishes between a binding
of two interfaces that are at the same level of a component hierarchy (class
Connection) and a binding of a composite component’s external interfaces
to its internal interfaces and vice versa (class InternalComponentProxy)3.
As the preliminary version, the proposed metamodel lacks many extended
features of the component model’s metamodel, such as typed functional
interfaces or the control interfaces.

Figure 8.2 shows a model of the component-based system from Section 5.3,
which has been created by means of the tool for modelling of component-based
systems (a reduced version of the original model without control interfaces).
Composite components are represented by instances of CompositeCompo-
nent from the metamodel and denoted by icon , primitive components
are instances of PrimitiveComponent denoted by icon , required interfaces
are instances of RequiredInterface denoted by icon , and provided in-
terfaces are instances of ProvidedInterface denoted by icon . Interfaces
are interconnected by means of connections, which are instances of Connec-
tion from the metamodel and denoted by grey arrows and icon . Grey
arrows and icons or denote bindings of internal required or provided
interfaces of a composite component to its external provided or required
2 See http://www.visual-paradigm.com/product/vpuml/ and http:
//www.gentleware.com/products.html, respectively.

3 In the component model’s metamodel from Section 5.1.1, these bindings are
unified in class Binding and its different realisations (see Figure 5.4)

http://www.visual-paradigm.com/product/vpuml/
http://www.gentleware.com/products.html
http://www.gentleware.com/products.html

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 89 — #103 i
i

i
i

i
i

8.1 Component Modelling Tools 89

Component
Name : EString

Primit iveComponent
Descript ion : EString

CompositeComponent

Interface
Name : EString

ProvidedInterface RequiredInterfaceConnect ion
Name : EString

InternalComponentProxy
Name : EString

ICPOutward ICPInward

subcomponents
0..*

interfaces
0..*

connect ions
0..*

output
1..1

input
1..1

prox ies
0..*

inner
1..1 outer

1..1

inner

1..1
outer

1..1

parentComponent
0..1

component

1..1

Fig. 8.1. Eclipse Ecore diagram of the metamodel, which is used in the tool for
modelling of component-based systems (adopted from [Gal09], a full version can be
found in [Ryc09]).

init

process init

workerA

process workerA

workerB

process workerB

system

initLogin

loginsysLogin

aFunc

bFunc

funct ion

sysFunc

proxyLogin

bindLogin

proxyFunc
bindFunc

Fig. 8.2. The model of the component-based system from the example in Section 5.3
(adopted from Figure 5.8) with component system and its subcomponents init,
workerA, and workerB, without control interfaces.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 90 — #104 i
i

i
i

i
i

90 8 Tools

interfaces, respectively, as instances of ICPInward or ICPOutward from the
metamodel. Relations of composite components and their internal interfaces
or subcomponents are denoted by black or grey arrows, respectively (see the
relation of CompositeComponent as a parent component and Component as
its subcomponent or the relation of CompositeComponent and Interface in
the metamodel).

Composite component system consists of its subcomponents init, workerA,
and workerB4 and provides external interfaces login and function. Requests
arriving at these interfaces are forwarded inside the composite component by
means of proxyLogin and proxyFunc and by means of its internal required
interfaces sysLogin and sysFunc, respectively. The internal interfaces are
bound via bindLogin and bindFunc to provided interfaces initLogin and
aFunc of components init and workerA, respectively (provided interface bFunc
of component workerB is not bound in this configuration). Behaviour of the
subcomponents has been described by means of process abstractions „init“ ,
„workerA“ and „workerB“ in Section 5.3.

In the tool, the model of the component-based system can be stored in
XML Metadata Interchange (XMI) format, which is an Object Management
Group’s (OMG) standard for exchanging metadata information in XML and
which is commonly used as an interchange format for MOF-based models
(e.g. UML models; see Section 5.1). Listing 8.1 describes the model of the
component-based system from Figure 8.2 in XMI format.

8.2 Verification Tools

Behaviour of a component-based system designed according to the component
model from Chapter 5 can be described formally as a π-calculus process (see
Section 5.2). The formally described behaviour can be verified by means of
external verification tools.

In this section, we describe the verification tools of polyadic π-calculus
processes. Section 8.2.1 deals with The Mobility Workbench (MWB, [Vic95]),
a model checker and an open bisimulation checker of mobile concurrent sys-
tems described in the π-calculus. In Section 8.2.2, we describe the Anoth-
er/Advanced Bisimulation Checker (ABC, [Bri05]), which allows to check
open-equivalences in the π-calculus, in a similar way as MWB but with some
improvements. Finally, in Section 8.2.3, the Pi-Calculus Equivalences Tester
(PiET, [Mio06]) is described, which is able to check non-open equivalences,
such as (strong/weak) early and late equivalence, (strong/weak) early and
late congruence, and (strong/weak) ground equivalence.

The open bisimulation checkers, i.e. MWB and ABC, will be used later
in Section 9.6. For the theoretical background and further references, see
Section 2.3.2 and [SW03].
4 The tool connects subcomponents and their parent component via relations

denoted by grey arrows.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 91 — #105 i
i

i
i

i
i

8.2 Verification Tools 91

<?xml version="1.0" encoding="UTF -8"?>
<xmi:XMI xmi:version="2.0"

xmlns:xmi="http: //www.omg.org/XMI"
xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance"
xmlns:diagram2="http:// diagram /1.0">

<diagram2:CompositeComponent/>
<diagram2:CompositeComponent Name="system">

<interfaces xsi:type="diagram2:ProvidedInterface"
Name="login"/>

<interfaces xsi:type="diagram2:ProvidedInterface"
Name="function"/>

<subcomponents
xsi:type="diagram2:PrimitiveComponent"
Name="init" Description="process␣init">

<interfaces
xsi:type="diagram2:ProvidedInterface"
Name="initLogin"/>

</subcomponents >
<subcomponents

xsi:type="diagram2:PrimitiveComponent"
Name="workerA" Description="process␣workerA">

<interfaces
xsi:type="diagram2:ProvidedInterface"
Name="aFunc"/>

</subcomponents >
<subcomponents

xsi:type="diagram2:PrimitiveComponent"
Name="workerB" Description="process␣workerB">

<interfaces
xsi:type="diagram2:ProvidedInterface"
Name="bFunc"/>

</subcomponents >
<connections Name="bindLogin"

output="/1/ @subcomponents .0/ @interfaces .0"
input="/1/ @proxies .0/ @inner"/>

<connections Name="bindFunc"
output="/1/ @subcomponents .1/ @interfaces .0"
input="/1/ @proxies .1/ @inner"/>

<proxies xsi:type="diagram2:ICPInward"
Name="proxyLogin" outer="/1/ @interfaces .0">

<inner Name="sysLogin"/>
</proxies >
<proxies xsi:type="diagram2:ICPInward"

Name="proxyFunc" outer="/1/ @interfaces .1">
<inner Name="sysFunc"/>

</proxies >
</diagram2:CompositeComponent >
<diagram2:ProvidedInterface Name="test"/>

</xmi:XMI >

Listing 8.1. The model of a component-based system from Section 8.1.2 stored in
XMI, the OMG standard XML metadata interchange format.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 92 — #106 i
i

i
i

i
i

92 8 Tools

8.2.1 The Mobility Workbench (MWB)

The Mobility Workbench5 (MWB, [Vic95]) is a tool for open bisimulation
checking, model checking, finding deadlocks, and interactive simulation of
mobile concurrent systems described in the π-calculus. It has been developed
by Bjorn Victor, Faron Moller, Lars-Henrik Eriksson, and Mads Dam in
functional programming language Standard ML (SML), a dialect of Robin
Milner’s ML programming language, for its compiler Standard ML of New
Jersey6 (SML/NJ).

The tool is based on an algorithm published in [Vic94], which allows to
decide the open (strong and weak) bisimulation equivalences (see Section 2.3.2)
for agents in the polyadic π-calculus possible containing an positive match
operator7 [Vic95].

In MWB, π-calculus process abstractions are represented by agents and
described by means of the π-calculus grammar with modified syntax: input
prefix x(m) is typed as x(m), output prefix y〈m〉 is typed as ’y<m>, internal
(silent) action τ is typed as t, restriction (z)P is typed as (^z)P, abstrac-
tion P

∆= (a1, . . . , an). . . . is typed as P=(\a1,...,an)..., and application
P ba1, . . . , anc is typed as P(a1,...,an)8.

The agents have to be closed, i.e. their free names must be a subset of
their argument lists [Vic95]. Moreover, recursively defined agents can not
be reduced by their applications without any input actions, output actions
or internal (silent) actions (see Definitions 6 and 11 in Section 2.3), i.e.
only guarded recursions are handled correctly. For this reason, MWB does
not support constant applications of recursively defined π-calculus process
constants that implement the replication operator (i.e. !P , see Definition 6 in
Section 2.3).

Process abstractions and constants representing formal description of be-
haviour of service-oriented architectures and component-based systems can
be transformed into MWB agents. In cases of the process abstractions or con-
stants that use constant applications of recursively defined process constants
to implement the replication operator, we have to bypass the limitation of
MWB and insert a π-calculus prefix before each recursive constant application
(see Definition 11 in Section 2.3). After this modification, the recursions will
be guarded. The modification of the problematic process constants must not
affect communication with their well-established environment (the process
constants describe behaviour of specific services, components or their parts,
which should not be affected by the modification). Therefore, the inserted
5 The Mobility Workbench can be found at http://www.it.uu.se/research/
group/mobility/mwb.

6 For Standard ML of New Jersey, see http://www.smlnj.org/.
7 A process [x = y]π.P , which contains the positive match operator [x = y], can

evolve as π.P iff x and y are the same name (see [SW03]).
8 The MWB does not distinguish a pseudo-abstraction/application from a constant

abstraction/application.

http://www.it.uu.se/research/group/mobility/mwb
http://www.it.uu.se/research/group/mobility/mwb
http://www.smlnj.org/

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 93 — #107 i
i

i
i

i
i

8.2 Verification Tools 93

prefix should be reducible by an internal (silent) action, i.e. it has to be an
unobservable prefix τ , which directly meets the requirement, or an input or
output prefix with an additional name, which meets the requirement after
composition with an auxiliary process communicating via the same name.

The MWB can be used, for example:

• to verify that agents representing behaviour of two components are open
bisimilar (see Definition 16 in Section 2.3.2), e.g. after an update of a
component in a component-based system, when a proof of equivalence of
original and updated behaviour is needed;
• to check if a specific agent contains deadlocks and to obtain their descrip-

tions, which means that a component may not be ready to handle external
requests from its environment;
• to trace possible reductions of a specific agent in a specific environment,

i.e. to simulate each step of a component’s behaviour and its external
communication, and to debug the component’s behaviour.

8.2.2 Another/Advanced Bisimulation Checker (ABC)

The Another Bisimulation Checker9, also referred as Another Bisimilarity
Checker or Advanced Bisimulation Checker (ABC, [Bri05]), is a tool that
checks for open bisimulation between terms of the π-calculus. The tool has
been developed by Sébastien Briais and implemented in functional program-
ming language Objective Caml10 (OCaml), an object-oriented extension of a
dialect of Robin Milner’s ML programming language.

In comparison with MWB (see Section 8.2.1), the ABC does not im-
plement model checking and finding deadlocks, but provides an user with
improved equivalence checking [BN07] and interactive simulations. However,
analogously to the limitations of MWB and due to the same theoretical rea-
sons, the ABC does not support constant applications of recursively defined
π-calculus process constants.

8.2.3 Pi-Calculus Equivalences Tester (PiET)

The Pi-Calculus Equivalences Tester11 (PiET, [Mio06]) is a tool for checking
of 10 different types of π-calculus equivalences: strong and weak ground
equivalences, strong and weak early equivalences (which are equal to barbed
equivalences), strong and weak early congruences (which are equal to ground
congruences and to barbed congruences), strong and weak late equivalences,
and strong and weak late congruences. The congruences corresponding to the
9 The Another Bisimulation Checker can be found at http://lamp.epfl.ch/
~sbriais/abc/.

10 For Objective Caml, see http://caml.inria.fr/ocaml/.
11 The Pi-Calculus Equivalences Tester can be found at http://piet.sourceforge.

net/.

http://lamp.epfl.ch/~sbriais/abc/
http://lamp.epfl.ch/~sbriais/abc/
http://caml.inria.fr/ocaml/
http://piet.sourceforge.net/
http://piet.sourceforge.net/

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 94 — #108 i
i

i
i

i
i

94 8 Tools

ground, early, and late equivalences are obtained with closure over all contexts
[Mio06].

The tool has been developed by Matteo Mio, theoretically based on [Lin00]
and implemented in functional programming language Fresh Objective Caml12
(Fresh O’Caml), an extended version of the Objective Caml, with a graphical
user interface implemented in Java.

In comparison with MWB and ABC (see Section 8.2.1 and Section 8.2.2,
respectively), the PiET does not implement checking of open bisimulation,
which is a finer relation than the late and early bisimulations [Lin00].

12 For Fresh Objective Caml, see http://www.fresh-ocaml.org/.

http://www.fresh-ocaml.org/

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 95 — #109 i
i

i
i

i
i

9

Case Study

In this chapter, we will demonstrate an application of service-oriented architec-
tures, the component model, and the behavioural description of component-
based systems from Chapters 5 and 6. To validate our approach, we will
adopt a case study of a service-oriented architecture for functional testing of
complex safety-critical systems from [DMM+08]. It allows to distribute and
run specific tests over a wide range of different testing environments, varying
in their logical positions in a system’s architecture. We will proceed according
to the development process that has been described in Chapter 7.

In the context of our approach, the case study has the following interesting
features:

• the safety-critical systems usually „consist of many subcomponents which
are tightly coupled and have highly complex interactions“ [BS93] – it is
useful to describe a safety-critical system as a component-based system
from Section 3.2;
• the tests are distributed to different parts of the system’s architecture, run

in different contexts, and interact with their local testing environments –
the architecture is evolving as the mobile architecture from Section 3.1;
• the original case study [DMM+08] describes the system’s architecture as

a specific service-oriented architecture – we can use our approach from
Chapter 6 to describe individual services as component-based systems;
• the functional testing process has been described and verified on ex-

isting testing environments of a railway interlocking control system in
[DMM+08] – the provided case study is based on a real-world instance of
a problem1;

1 Railway systems, in general, have been subjects of many formal approaches in
recent years [BS93].

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 96 — #110 i
i

i
i

i
i

96 9 Case Study

test
script

tester test log

external systems
simulators

MMI

CBCS

external systems
interface

control
software

external
systems

test ing
environment

SUT

Fig. 9.1. Testing environment of a railway interlocking control system (adopted
from [DMM+08]).

• the formal description and possible verification of functional testing in a
complex safety-critical system can increase reliability of test results and
contribute to the safety of the system2.

9.1 System Description

A testing environment of a railway interlocking control system is described
in Figure 9.1 and in [DMM+08] as a composition of a set of external system
simulators and a tester. The external system simulators interact with a system
under testing (SUT) and represent and simulate behaviour of its field objects
(points, track circuits, coloured signals, etc.3). A tester automatically executes
specific tests, which are coded in test scripts, and coordinates relevant external
system simulators. It also interacts with SUT by means of its man machine
2 The railway interlocking control systems, as well as their testing environments,

have to be verified and certified as required by international standards.
3 Each track circuit detects, by means of sensors, a presence of trains in a specific

section of a track and properly alters the coloured signals to reflect their presence
or absence. According to the presence or absence of the individual trains in the
individual tracks and their sections, the railway interlocking system switches
specific points (also called „railroad switches“) and establishes safe routes for
the trains to pass a railway junction or an entire rail yard. The rail yard is
a complex series of railroad tracks and related points, track circuits, coloured
signals, etc., e.g. for separation of trains to individual cars and their subsequent
loading, unloading, and combination according to their cargoes and destinations.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 97 — #111 i
i

i
i

i
i

9.2 Service Identification 97

interface (MMI), i.e. simulates operators, enters specific control commands,
and monitors feedback information.

The SUT is represented by a computer based control system (CBCS). It
runs the control software, interacts with operators (and testers, see above) by
means of the MMI, and monitors and controls external systems of rail yards3
via an external systems interface (e.g. monitors sensors of the rail yards’ track
circuits and controls actuators of their points3).

Each rail yard has its own instance of the testing environment with
specific external system simulators derived from particular external systems.
To implement a system for distribution and execution of the tests, which are
represented by test scripts, over various instances of the testing environments,
it has been proposed in [DMM+08] to use a service-oriented architecture
(see Chapter 4). The system consists of a test manager and a set of testing
environments. Available testing environments are registered by a broker and
provided to the test manager at its request. Then, the test manager is able
to receive a test script and execute it in an instance of a specific testing
environment.

In the remaining sections of this chapter, we will focus on a description of
the testing environment as the service-oriented architecture and an underlying
component-based system. The environment will be described by means of the
component model from Chapter 5 and the behavioural modelling of services
from Chapter 6. We will prove that the proposed approach can be used in
the practice. Formally described behaviour of services and components will
allow us to make simulations of the behaviour, to detect deadlocks, and to
check strong and weak open bisimulation equivalences between behaviours
of different services and components. This will be useful, especially to check
the test scripts, which are processed by the tester, and to control the tester’s
behaviour and communication with other parts of the environment and with
SUT. The wrong behaviour or the erroneous communication can cause the
tests to fail and, moreover, may block future requests to the testing environ-
ment (for details, see Section 9.6.2).

9.2 Service Identification

From the description of the testing environment and the system’s architecture,
the following tasks can be identified as invocations of services: „Submit Test“ ,
„Execute Test“ , „Log Results“ , „Read Log“ , „Publish Environment“ , and
„Find Environment“ . The tasks can be implemented by the following business
(entity) services, as it is described in Figure 9.24: TestManager, TestEnvi-
ronment, TestEnvironmentBroker, and TestLogger.
4 The UML component diagram describes identified services by means of the

notation from Section 6.3.1, which has been published in [RW08].

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 98 — #112 i
i

i
i

i
i

98 9 Case Study

< < service> >
TestLogger

< < service> >
TestEnvironmentBroker

< < service> >
TestEnvironment

< < service> >
TestManager

AsyncReplyET

providerExecuteTest

consumer

PublishEnvironment
provider

FindEnvironment

consumer

LogResults

provider
ReadLog

provider
SubmitTest

Fig. 9.2. An overview of identified services of the testing environment and their
interconnections.

: TestLogger: TestManager : TestEnvironmentBroker : TestEnvironment

Tester

6:

7: asyncReply()

10:

9: readLog()

8: logResults()

5: executeTest()

4:

3: searchForService()2: testSubmission()

1: publishService()

Fig. 9.3. The choreography of services in the testing environment.

At first, service TestManager receives a test script from a tester via its
interface SubmitTest. Then, it calls FindEnvironment of service TestEnvi-
ronmentBroker to search for a testing environment that would be suitable
for the test script. The broker, which has previously accepted a registration
request from a specific service TestEnvironment via its interface PublishEn-
vironment, provides service TestManager with a reference to the registered
service as a return value of the call of FindEnvironment.

After that, service TestManager passes the test script to the referred
service TestEnvironment via its interface ExecuteTest. When the test script
is finished, service TestEnvironment forwards its results back to service
TestManager, which logs the results via LogResults of service TestLogger.
Those results can be viewed later via ReadLog, which is provided by service
TestLogger to the tester.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 99 — #113 i
i

i
i

i
i

9.2 Service Identification 99

<
<

se
rv

ic
e>

>
T

es
tM

an
ag

er

<
<

se
rv

ic
e>

>
T

es
tE

n
vi

ro
n

m
en

t

<
<

se
rv

ic
e>

>
T

es
tE

n
vi

ro
n

m
en

tB
ro

k
er

<
<

se
rv

ic
e>

>
T

es
tL

o
g

g
er

<
<

sy
n

cC
al

l>
>

 +
te

st
Su

b
m

is
si

o
n

(s
p

ec
 :

 s
tr

in
g

)
:

in
t

<
<

In
te

rf
ac

e>
>

Su
b

m
it

T
es

t

<
<

sy
n

cC
al

l>
>

 +
re

ad
Lo

g
()

 :
 s

tr
in

g

<
<

In
te

rf
ac

e>
>

R
ea

d
Lo

g

<
<

sy
n

cC
al

l>
>

 +
lo

g
R

es
u

lt
s(

re
su

lt
s

:
st

ri
n

g
,

te
st

ID
 :

 i
n

t)
 :

 v
o

id

<
<

In
te

rf
ac

e>
>

Lo
g

R
es

u
lt

s

<
<

as
yn

cC
al

l>
>

 +
ex

ec
u

te
T

es
t(

sp
ec

 :
 s

tr
in

g
)

:
in

t

<
<

In
te

rf
ac

e>
>

E
xe

cu
te

T
es

t

<
<

sy
n

cC
al

l>
>

 +
se

ar
ch

Fo
rS

er
vi

ce
(n

am
e

:
st

ri
n

g
)

:
st

ri
n

g

<
<

In
te

rf
ac

e>
>

Fi
n

d
E

n
vi

ro
n

m
en

t

<
<

sy
n

cC
al

l>
>

 +
p

u
b

lis
h

Se
rv

ic
e(

u
ri

 :
 s

tr
in

g
)

:
vo

id

<
<

In
te

rf
ac

e>
>

P
u

b
li

sh
E

n
vi

ro
n

m
en

t

<
<

sy
n

cC
al

l>
>

 +
as

yn
cR

ep
ly

(r
es

u
lt

s
:

st
ri

n
g

,
re

q
u

es
tI

D
 :

 i
n

t)
 :

 v
o

id

<
<

In
te

rf
ac

e>
>

A
sy

n
cR

ep
ly

E
T

<
<

u
se

>
>

<
<

u
se

>
>

<
<

u
se

>
>

<
<

u
se

>
>

<
<

u
se

>
>

Fig. 9.4. Services of the testing environment as UML classes.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 100 — #114 i
i

i
i

i
i

100 9 Case Study

Figure 9.3 shows a choreography of the services in the testing environment
as an UML sequence diagram5. Detailed description of the services as classes
and their interfaces with relevant stereotypes is described in the UML class
diagram5 in Figure 9.4. Service TestEnvironment is invoked asynchronously
via ExecuteTest (see Section 6.3.1), i.e. a reply corresponding to the request
will be returned later via the service’s interface AsyncReplyET.

9.3 Component-Based System

Railway interlocking control systems are safety-critical systems and can be
described as component-based systems [BS93]. A testing environment of such
systems has to interact with the systems’ components, as it is described in
Section 9.1. For that reason, a part of the testing environment, which is directly
connected to a system under testing (via the external systems simulators, see
Figure 9.1), has character of a component neighbouring to the system under
testing and therefore, it can be described by means of the component model
from Chapter 5.

Figure 9.5 shows composite component testEnvironment, which represents
service TestEnvironment from Section 9.2, by means of the notation from
Section 5.1.2. The composite component consists of components controller,
environment, test, and output.

Component testEnvironment receives a test script represented by a fresh
copy (a clone) of a specific component via provided interface executeTest.
The test script is processed by component controller, which attaches the new
component as a subcomponent test of component testEnvironment by means
of its control interface teAttachP. The controller also binds interfaces6 tIn-
teract and tResult of component test to interface eInteract of component
environment and interface oResult of component output, respectively. Then,
component test is activated via interface startTestP and executed with a
new identifier via interface executeWithID. The identifier is also returned by
component testEnvironment as a reply of the test script’s submission.

Component test performs the test script by interacting with component
environment via its interface eInteract. When the test script is finished, com-
ponent test sends the test’s results and its identifier to component output via
its interface oResult. Then, component output notifies component controller
via its interface cDone and forwards the results and the identifier out of the
component testEnvironment via its external interface asyncReplyET.

After component controller is notified about the finished test script, it is
able to receive and execute another test script, i.e. to attach a new component
5 The notation used in the UML sequence diagram and in the UML class diagram

is described in Section 6.3.2.
6 According to Section 5.1.1, control interfaces can not be dynamically bound. The

control interfaces of subcomponent test are bound as a part of its nesting into the
component testEnvironment, which is permitted (see Section 5.2.4).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 101 — #115 i
i

i
i

i
i

9.3 Component-Based System 101

<
<

co
m

p
o

n
en

t>
>

te
st

E
n

vi
ro

n
m

en
t

<
<

co
m

p
o

n
en

t>
>

co
n

tr
o

ll
er

<
<

co
m

p
o

n
en

t>
>

te
st

<
<

co
m

p
o

n
en

t>
>

en
vi

ro
n

m
en

t

<
<

co
m

p
o

n
en

t>
>

o
u

tp
u

t

ex
ec

u
te

W
it

h
ID

ex
ec

 :
 O

p
er

at
io

n
st

ar
tT

es
tP

:
C

tr
lS

ta
rt

d
et

ac
h

T
es

tP
/R

:
C

tr
lD

et
ac

h

:
C

tr
lD

et
ac

h

st
o

p
T

es
tP

/R

:
C

tr
lS

to
p

:
C

tr
lS

to
p

p
ro

vR
ef

O
R

es
P

/R

:
C

tr
lR

ef
Pr

o
vI

n
te

rf
ac

e

:
C

tr
lR

ef
Pr

o
vI

n
te

rf
ac

e

te
A

tt
ac

h
P

/R

:
C

tr
lA

tt
ac

h

:
C

tr
lA

tt
ac

h

d
o

n
e

:
O

p
er

at
io

n

cD
o

n
e

o
D

o
n

e
te

R
ep

ly
o

R
ep

ly

re
p

 :
 O

p
er

at
io

n

re
s

:
O

p
er

at
io

n

o
R

es
u

lt
b

in
d

T
R

es
P

:
C

tr
lB

in
d

R
eq

In
te

rf
ac

e

:
C

tr
lR

ef
Pr

o
vI

n
te

rf
ac

e

te
E

xe
cT

es
tP

/R

tR
es

u
lt

b
in

d
T

In
tP

tI
n

te
ra

ct

p
ro

vR
ef

E
In

tP
/R

eI
n

te
ra

ct

:
C

tr
lR

ef
Pr

o
vI

n
te

rf
ac

e

in
t

:
O

p
er

at
io

n
re

s
:

O
p

er
at

io
n

:
C

tr
lB

in
d

R
eq

In
te

rf
ac

e

in
t

:
O

p
er

at
io

n

d
o

n
e

:
O

p
er

at
io

n
:

R
ef

T
o

C
o

m
p

o
n

en
t

re
p

 :
 O

p
er

at
io

n
:

R
ef

T
o

C
o

m
p

o
n

en
t

as
yn

cR
ep

ly
E

T
ex

ec
u

te
T

es
t

Fig. 9.5. Structure of composite component TestEnvironment with attached compo-
nent test.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 102 — #116 i
i

i
i

i
i

102 9 Case Study

in the place of component test. Before that, component test with the old
script is stopped via interface stopTestP and detached via its control interface
detachTestP7.

9.4 Formal Description of the Service-Oriented
Architecture

In this section, we describe behaviour of the services in the testing environ-
ment. Behaviour of services TestManager, TestEnvironmentBroker, TestEn-
vironment, and TestLogger can be described by means of π-calculus process
abstractions TM , TEB, TE, and TL, respectively, according to Chapter 6.
These process abstractions use names st, pe, fe, et, ar, lr, and rl as rep-
resentations of the services’ interfaces SubmitTest, PublishEnvironment,
FindEnvironment, ExecuteTest, AsyncReplyET, LogResults, and ReadLog,
respectively.

According to Section 6.1, process abstraction TM describing behaviour of
service TestManager is defined as follows:

TM
def
= (st, fe, lr).(s)(TMstbst, fe, sc | TMarblr, sc)

TMst
∆= (st, fe, s).st(test, ret).(r, r′)

(fe〈r〉.r(et′, ar′).et′〈test, r′〉
.(r′(id).ret〈id〉 | s〈ar′〉 | TMstbst, fe, sc))

TMar
∆= (lr, s).s(ar′)ar′(res, id).lr〈res, id〉 | TMarblr, sc

where st, fe, and lr are names representing the service’s interfaces and
subsequently processed by constant applications of TMst and TMar.

Constant application TMstbst, fe, sc receives a pair of names (test, ret)
from a client via name st. In the pair, name test represents a submitted
test script and name ret will be used later to send a return value to the
client. Then, a request for a testing environment is sent via name fe and the
environment as a reply is received via name r. Name et′, which represents
an interface ExecuteTest of the environment, is used to send test. Name id,
which is received as a return value, is forwarded to the client, while name ar′
is sent via shared name s into process constant TMar. Constant application
TMarblr, sc receives name ar′ via shared name s. After the test script is
finished, name ar′ is used to receive the test’s result res and its id. These
names, as a pair (res, id), are immediately sent via name lr.
7 In the diagram in Figure 9.5, only these two interfaces of test are connected

with controller, because the rest of the test’s interfaces are used only during its
nesting and their connections do not exist outside of controller component (see
Section 9.5).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 103 — #117 i
i

i
i

i
i

9.4 Formal Description of the Service-Oriented Architecture 103

Process abstraction TEB, which describes behaviour of service TestEn-
vironmentBroker, is defined as follows:

TEB
def
= (pe, fe).(q)(TEBpubbq, pec | TEBfindbq, fe, pec)

TEBpub
∆= (t, pe).pe(i, d).(t′)(t〈t′, i, d〉 | TEBpubbt′, pec)

TEBfind
∆= (h, fe, pe).h(h′, i, d).(TEBfindbh′, fe, pec | (fe〈i〉.pe〈i, d〉 + d))

where pe and fe are names representing the service’s interfaces PublishEn-
vironment and FindEnvironment, respectively, and subsequently processed
by the constant applications of TEBpub and TEBfind. Process abstraction
TEB represents behaviour of a service broker, as it has been described in
Section 6.1.1 (see the process abstraction Broker).

Behaviour of service TestEnvironment is described as process abstraction
TE and defined as follows:

TE
def
= (et, ar, pe).TEinit〈et, ar, pe〉.TEimpl〈et, ar〉

TEinit
def
= (et, ar, pe).pe〈et, ar〉

TEimpl
def
= (et, ar).(s0, s1, c, ars, etg)

(ars〈ar〉 | (d, t)(etg〈t〉.t(p).Wirebet, p, dc)
| TEcomp〈s0, s1, c, etg, ars〉)

where et, ar, and pe are names representing the service’s interfaces Exe-
cuteTest, AsyncReplyET, and PublishEnvironment, respectively. Initialisa-
tion of the service is described as process abstraction TEinit, which sends
the service’s interfaces represented by names et and ar via name pe (i.e.
publishes the corresponding interfaces via interface PublishEnvironment).
After the initialisation, names et and ar are processed by pseudo-application
TEimpl〈et, ar〉, which describes behaviour of a component-based system im-
plementing the service (see Section 6.2) and will be defined in Section 9.5.

Finally, process abstraction TL, which describes behaviour of service
TestLogger, is defined as follows:

TL
def
= (lr, rl).(s)(TLlrblr, sc | TLrlbrl, sc)

TLlr
∆= (lr, t).lr(res, id).(t′)(t〈t′, res, id〉 | TLlrblr, t′c)

TLrl
∆= (rl, h).h(h′, res, id).rl(ret).ret〈res, id〉.TLrlbrl, h′c

where lr and rl are names representing the service’s interfaces LogResults
and ReadLog, respectively, and subsequently processed by the applications of
process constants TLlr and TLrl. The process abstraction TL uses an internal
queue to store log results. The queue is accessed in process constants TLlr
and TLrl via name h for a head of the queue and name t for a tail of the
queue, respectively. At the beginning, both h and t are identical to name s in
process abstraction TL.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 104 — #118 i
i

i
i

i
i

104 9 Case Study

Constant application TLlrblr, tc receives a pair of names (res, id) via name
lr, which will be added into the internal queue. It creates name t′ (as a new
tail of the queue) and sends via t′ the pair of names (res, id) and name
t (an original tail of the queue). Concurrently, the process proceeds as the
application of process constant TLlr with name t′ (the new tail of the queue).

Constant application TLrlbrl, hc receives a first queued item via name
h (from a head of the queue). This item contains a pair of names (res, id)
and name h′ (a new head of the queue). After the pair of names (res, id)
is requested via name rl, it is sent via name ret as a reply and the process
proceeds as the application of process constant TLrl with name h′ (the new
head of the queue).

Behaviour of the whole system of the interconnected services can be
described as process abstraction System, which provides names st and rl
representing interfaces SubmitTest and ReadLog, respectively, and which is
defined as follows8:

System
def
= (st, rl).(et, ar, lr, pe, fe)

(TM〈st, fe, lr〉 | TE〈et, ar, pe〉 | TL〈lr, rl〉 | TEB〈pe, fe〉)

9.5 Formal Description of the Component-Based System

The previous section has described behaviour of the testing environment as the
service-oriented architecture from Section 9.2. All processes, which represent
behavioural descriptions of individual services, have been described com-
pletely, except for process abstraction TE of service TestEnvironment. This
service is implemented as a component-based system according to Section 6.2
with behaviour described by pseudo-application TEcomp〈s0, s1, c, ars, etg〉 (see
Section 9.4).

In this section, we describe behaviour of primitive components controller,
environment, test, and output, as process abstractions Ctr, Env, Test, and
Out, respectively, and their parent composite component testEnvironment, as
process abstraction TEcomp from the previous section.

Core behaviour of primitive components output and controller (i.e. the
behaviour without default control actions, see Section 5.2.5) can be defined9

as process abstractions Outcore and Ctrcore, respectively, as follows:
8 We assume that connections of the services are static, without service brokers,

except for service broker TestEnvironmentBroker, which has been described by
process abstraction TEB (it can be compared with process abstraction System
from Section 6.3.3).

9 For notation of names in π-calculus processes describing components, see
Section 5.2.1. The components’ provided or required interfaces are represented by
names p... or r..., respectively, without the last character of the names (. . . P/R,
see Figure 9.5).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 105 — #119 i
i

i
i

i
i

9.5 Formal Description of the Component-Based System 105

Outcore
def
= (poResult, roDone, roReply).Out′corebpoResult, roDone, roReplyc

Out′core
∆= (poResult, roDone, roReply).poResult(res, id).roDone〈id〉.

(roReply〈res, id〉 | Out′corebpoResult, roDone, roReplyc)

Ctrcore
def
= (pcDone, pteExecTest, rteAttach, rdetachTest,

rstopTest, rprovRefEInt, rprovRefORes).
Ctr′corebpcDone, pteExecTest,
rteAttach, rdetachTest, rstopTest, rprovRefEInt, rprovRefOResc

Ctr′core
∆= (pcDone, pteExecTest, rteAttach, rdetachTest,

rstopTest, rprovRefEInt, rprovRefORes).
pteExecTest(ts, ret).ts(r′stopTest, r

′
startTest, c, r

′, p′).
rstopTest.rdetachTest.rteAttach〈r′stopTest, r′startTest, rdetachTest〉.
r′(p′bindTInt, p

′
bindTRes).p

′(p′provRefExecuteWithID).(ret′)(

rprovRefEInt〈ret′〉.ret′(eInteract).p′bindTInt〈eInteract〉.
rprovRefORes〈ret′〉.ret′(oResult).p′bindTRes〈oResult〉.
p′provRefExecuteWithID〈ret

′〉.ret′(p′executeWithID).r′startTest
.((id)ret〈id〉.p′executeWithID〈id〉.id
| pcDone(id′).id′.Ctr′corebpcDone, pteExecTest,
rteAttach, rdetachTest, r

′
stopTest, rprovRefEInt, rprovRefOResc))

Process abstraction Outcore is defined as the constant application of
Out′core, which receives a pair of names (res, id) via name poResult representing
interface oResultP. Then, name id is sent via name roDone of interface oDoneR
and the complete pair (res, id) is forwarded via name roReply representing
interface oReplyR out of the composite component.

Process constant Ctr′core, which is applied by process abstraction Ctrcore,
receives a pair of names (ts, ret) via name pteExecTest. Moreover, via name
ts, the process constant receives also names r′stopTest, r

′
startTest, c, and in-

directly also names p′bindTInt, p
′
bindTRes, and p′provRefExecuteWithID, which

represent interfaces of a new component compatible with component test and
implementing a test script. Name ret will be used later to send an identifier
of the test’s results as a return value. Then, a process of an old component
test is deactivated and detached by means of names rstopTest and rdetachTest.
A process, which describes behaviour of the new component (i.e. the actual
test script), is attached via name rteAttach as a subcomponent, bound via
names p′bindTInt and p′bindTRes, activated via name r′startTest, and finally, it
is executed via name p′executeWithID and with a new name id (the identifier).
Processing of Ctr′core can continue after the identical id is received via name
pcDone, i.e. the test script is finished and its results forwarded outside.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 106 — #120 i
i

i
i

i
i

106 9 Case Study

Description of core behaviour of primitive components environment and
test depends on a specific implementation of the testing environment and on
a specific test script. However, for demonstrating purposes, we define process
abstractions Envcore and Testcore as follows:

Envcore
def
= (peInteract).Env′corebpeInteractc

Env′core
∆= (peInteract).peInteract(ret).((val)ret〈val〉 | Env′corebpeInteractc)

Testcore
def
= (pexecuteWithID, rtInteract, rtResult).pexecuteWithID(id).

(ret)(rtInteract〈ret〉.ret(val).rtResult〈val, id〉)

Process constant Env′core receives a request from a test script via name
peInteract and returns a new name val as a reply. Process abstraction Testcore
receives identifier id via name pexecuteWithID, sends a request to a process
representing behaviour of a test environment via name rtInteract, receives a
reply and forwards it as the test’s results together with id via name rtResult.

According to Section 5.2.5, behaviour of components output, environment,
and test including their control parts can be defined as process abstractions
Out, Env, and Test, respectively, as follows:

Out
def
= (s0, s1, c, p

g
oResult, p

s
oDone, p

s
oReply).(poResult, roDone, roReply)

(CtrlIfs〈poResult, pgoResult〉 | CtrlIfs〈roDone, p
s
oDone〉

| CtrlIfs〈roReply, psoReply〉 | Ctrlclonebcc
| Outcore〈poResult, roDone, roReply〉)

Env
def
= (s0, s1, c, p

g
eInteract).(peInteract)

(CtrlIfs〈peInteract, pgeInteract〉 | Ctrlclonebcc | Envcore〈peInteract〉)

Test
def
= (s0, s1, c, p

g
executeWithID, p

s
tInteract, p

s
tResult).

(pexecuteWithID, rtInteract, rtResult)
(CtrlIfs〈pexecuteWithID, p

g
executeWithID〉

| CtrlIfs〈rtInteract, pstInteract〉 | CtrlIfs〈rtResult, pstResult〉
| Ctrlclonebcc | Testcore〈pexecuteWithID, rtInteract, rtResult〉)

where names s0, s1, c, pg... and ps... have been described in Section 5.2.1, process
abstraction CtrlIfs has been defined in Section 5.2.2, and process constant
Ctrlclone has been defined in Section 5.2.4.

Behaviour of component controller has to be defined differently from
the others, because it uses required control interfaces represented by names
rteAttach, rdetachTest, rstopTest, rprovRefEInt, and rprovRefORes, which can not
be referenced (contrary to functional interfaces, see Section 5.1.1 and the
example from Section 5.3). The behaviour is defined by means of process
abstraction Ctr as follows:

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 107 — #121 i
i

i
i

i
i

9.5 Formal Description of the Component-Based System 107

Ctr
def
= (s0, s1, c, p

g
cDone, p

g
teExecTest,

rteAttach, rdetachTest, rstopTest, rprovRefEInt, rprovRefORes).
(pcDone, pteExecTest)
(CtrlIfs〈pcDone, pgcDone〉 | CtrlIfs〈pteExecTest, p

g
teExecTest〉

| Ctrlclonebcc | Ctrcore〈pcDone, pteExecTest,
rteAttach, rdetachTest, rstopTest, rprovRefEInt, rprovRefORes〉)

Finally, and according to Section 5.2.5, behaviour of composite compo-
nent testEnvironment, which represents the whole component-based system
implementing the core of service TestEnvironment (see pseudo-application
TEcomp〈s0, s1, c, etg, ars〉 in Section 9.4), can be described as process abstrac-
tion TEcomp as follows:

TEcomp
def
= (s0, s1, c, p

g
executeTest, p

s
asyncRepltET).

(pexecuteTest, rteExecTest, psteExecTest,
rasyncRepltET , pteReply, p

g
teReply, pteAttach)

(CtrlIfs〈pexecuteTest, pgexecuteTest〉
| CtrlIfs〈rasyncRepltET , psasyncRepltET 〉
| CtrlEI〈pexecuteTest, rteExecTest〉
| CtrlEI〈pteReply, rasyncRepltET 〉
| CtrlIfs〈rteExecTest, psteExecTest〉 | CtrlIfs〈pteReply, p

g
teReply〉

| Ctrlclonebcc | CtrlSS〈s0, s1, pteAttach〉
| TE′comp〈pteAttach, psteExecTest, p

g
teReply〉)

TE′comp
def
= (pteAttach, psteExecTest, p

g
teReply).

(sctr0 , sctr1 , cctr, sout0 , sout1 , cout, senv0 , senv1 , cenv,

pgcDone, p
g
eInteract, p

g
oResult, p

g
teExecTest, p

s
oDone, p

s
oReply,

rdetachTest, rprovRefEInt, rprovRefORes, rstopTest, rteAttach)
(Ctr〈sctr0 , sctr1 , cctr, pgcDone, p

g
teExecTest,

rteAttach, rdetachTest, rstopTest, rprovRefEInt, rprovRefORes〉
| Out〈sout0 , sout1 , cout, pgoResult, p

s
oDone, p

s
oReply〉

| Env〈senv0 , senv1 , cenv, pgeInteract〉 | (d)pteAttach〈s
env
0 , senv1 , d〉

| (d)pteAttach〈sctr0 , sctr1 , d〉 | (d)WirebrprovRefEInt, pgeInteract, dc
| (d)pteAttach〈sout0 , sout1 , d〉 | (d)WirebrprovRefORes, pgoResult, dc
| (d)WirebrteAttach, pteAttach, dc | Testplug〈rdetachTest, rstopTest〉
| (ret)(pgteExecTest〈ret〉.ret(pteExecTest).psteExecTest〈pteExecTest〉)
| (ret)(pgteReply〈ret〉.ret(pteReply).psoReply〈pteReply〉)

| (ret)(pgcDone〈ret〉.ret(pcDone).psoDone〈pcDone〉))

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 108 — #122 i
i

i
i

i
i

108 9 Case Study

Testplug
def
= (rdetachTest, rstopTest).(rdetachTest | rstopTest)

where process abstractions CtrlEI and CtrlSS have been defined in Sec-
tion 5.2.2 and Section 5.2.3, respectively.

Process abstraction TE′comp, which is applied in process abstraction
TEcomp, creates concurrent processes given by pseudo-applications of Ctr,
Out, and Env and sends their names s...0 and s...1 via name pteAttach, i.e.
attaches components controller, output, and environment, respectively, as
subcomponents of component testEnvironment. It also interconnects names
representing required and provided control interfaces of the components
by means of three constant applications of process constant Wire (see
Section 5.2.2). Concurrently with the previous step, TE′comp applies process
abstraction Testplug and binds name pteExecTest of the pseudo-application of
Ctr to name rteExecTest of the pseudo-application of TEcomp, name pcDone of
Ctr to name rcDone of Out, and name pteReply of TEcomp to name rteReply of
Out. The pseudo-application of process abstraction Testplug handles requests
initiated by the pseudo-application of Ctr and received by names rstopTest
and rdetachTest to stop and to detach a process representing behaviour of a
previous but non-existent component with a test script (e.g. a non-existent
predecessor of component test).

9.6 System Properties and Their Verification

The behaviour formally described in the previous sections can be used for
verification and model checking by means of the tools from Section 8.2.
The utilisation is demonstrated by examples of interactive simulation in
Section 9.6.1, finding deadlocks in Section 9.6.2, bisimulation checking in
Section 9.6.3, and model checking in Section 9.6.4.

The examples utilise The Mobility Workbench (MWB) and Anoth-
er/Advanced Bisimulation Checker (ABC), which have been described in
Section 8.2.1 and Section 8.2.2, respectively. Complete transcription of process
abstraction System from Section 9.4 and the applied process abstractions
and constants as agents of MWB and ABC can be found in Appendix A.
Unguarded constant applications of recursive process constants are prefixed
by unobservable prefix τ (see Section 8.2.1).

9.6.1 Simulation

To simulate behaviour of agent System, i.e. behaviour of the system from the
case study (see process abstraction System in Section 9.4 and the agent in
Appendix A), we need to submit a sample test to the system, wait for its
processing and finally, receive its results. Therefore, agent Tester is defined
as follows:

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 109 — #123 i
i

i
i

i
i

9.6 System Properties and Their Verification 109

agent Tester =
(^s0,s1,pgexecuteWithID ,pstInteract ,pstResult ,rl,st)
(
Test(s0,s1,pgexecuteWithID ,pstInteract ,pstResult)
| System(st,rl) | (^ts ,ret ,r,p) ’st <ts ,ret > .
’ts<s0,s1,r,p> . ’r<pstInteract ,pstResult > .
’p<pgexecuteWithID > . ret(id1) . (^r2) ’rl<r2 > .
r2(res ,id2) . 0)

Agent Tester is a composition of the applications of agents Test and Sys-
tem, and an auxiliary π-calculus process (after the last composition operator).
The auxiliary process submits all names of the application of agent Test (i.e.
names s0, s1, pgexecuteWithID, pstInteract and pstResult) indirectly via
name st to the application of agent System and receives name id1 as a reply
via name ret. Then, it waits for results of a test performed by the application
of agent Test, which can be received via name rl of the application of agent
System.

Behaviour of agent Tester can be interactively simulated in MWB by
means of command „step Tester“10.

9.6.2 Deadlocks

A deadlock occurs in a π-calculus process iff the process can not perform any
reduction step, i.e. the process is not responding to any action on its free
names (see Definitions 11 and 12 in Section 2.3).

To permit concurrent processing of multiple requests, process abstractions
and constants TMst, TMar, TEBpub, TEBfind, TLlr TLrl, Out′core, and
Env′core, from Sections 9.4 and 9.5, and SetIf , CtrlIfs, and Attach, from
Sections 5.2.2 and 5.2.3, use unguarded or weakly guarded recursions (i.e.
guarded by unobservable prefix τ). These processes, as separate units, do not
come to deadlocks, because each of them can always perform at least one
reduction step (namely, reduction step R-Tau from Definition 11)11.

Agents representing the processes from the case study (see Appendix A)
have been checked for deadlocks, by means of command „deadlocks“ in
MWB. In some cases, the deadlock-checking can not be finished due to
the unguarded or weakly guarded recursions (see the previous paragraph).
However, the deadlocks have been found in agents TestCore, TestPlug, Wire,
Dist, TE2comp, and TEimpl.

Agents TestCore, TestPlug, Wire, and Dist have deadlocks in process
0, which is reachable by 1, 4, 2, and 1 commitments, respectively. These
10 However, the simulation is not transparent but demanding for an user because of

large amount of possible internal (silent) actions.
11 Nevertheless, these processes can come to a live-lock in their mutual co-operation.

In such a case, the processes will communicate only between themselves and will
periodically change , but as a whole system, they will not be responding to any
external actions on their free names.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 110 — #124 i
i

i
i

i
i

110 9 Case Study

deadlocks are desired, since the agents represent process abstractions Testcore
and testplug (see Section 9.5) and process constants Wire and Dist (see
Section 5.2.2 and Section 5.2.3, respectively), which describe finite behaviour
and can be reduced to process 0 by input, output, and τ actions on their free
names.

Process abstraction Testcore describes behaviour of a core functionality of
component test, which implements a test script. The behaviour is finished after
the test script is performed, so Testcore is reduced to process 0. Analogously,
process abstraction testplug, which describes processing of first requests to
stop and to detach a non-existent component before it can be replaced by a
real component implementing a specific test script (e.g. component test), is
performed only once and reduced to process 0. Process constants Wire and
Dist describe behaviour of a connector of two interfaces and distribution of
a start/stop request from a composite component among its subcomponents,
respectively. Although they contain recursions and their behaviour can be
infinite, they can be terminated instantly (e.g. when the connector is removed
or the request has been already submitted to all of the subcomponents).
In such case, process constants Wire or Dist can be reduced to process 0
(by means of an input action on name d or an output action on name r,
respectively; see Sections 5.2.2 and 5.2.3).

Agents TE2comp and TEimpl have deadlocks in processes that are reachable
by 22 and 31 commitments, respectively. The deadlocks are related to the
ability of process abstraction TEcomp, which describes behaviour of composite
component testEnvironment, and of process abstraction TE, which describes
behaviour of service TestEnvironment, to receive and to execute a test script.
During the execution, behaviour of the component and the service is controlled
by the test script (the component’s subcomponent controller is waiting for an
input on its interface cDone, see Section 9.3). If the test script is incompatible
with its environment and can not be finished, the component and the service
come to a deadlock.

In our approach, the deadlock-checking can be utilised to detect erroneous
behaviour of individual services and components.

9.6.3 Bisimulation Checking

The ABC allows to check strong and weak open bisimulation equivalences by
means of commands „eq“ and „weq“ . Moreover, in a case of of two agents
that have the same free names, the bisimulation equivalences can be checked
also by means of commands „eqd“ and „weqd“ , which suppose the free names
of the first agent are distinct from the free names of the second agent. For
details, see Definition 16 in Section 2.3.2.

To demonstrate bisimulation checking in our case study, we check the
equivalences of process Testcore and its possible replacements. The process
describes core behaviour of component test representing a test script (see
Section 9.5). The bisimulation checking of behaviour of the original test script,

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 111 — #125 i
i

i
i

i
i

9.6 System Properties and Their Verification 111

which is supposed to be correct, and behaviour of its replacements, which may
be wrong, can prevent the deadlock in agents TE2comp and TEimpl, as it has
been described in Section 9.6.2.

In addition to agent TestCore, we define two agents with the same free
names. The following definitions include original agent TestCore and new
agents TestCoreEquiv and TestCoreNonequiv (see also Appendix A.2):

agent TestCore =
(\ pexecuteWithID ,rtInteract ,rtResult)
pexecuteWithID(id) . (^ret) ’rtInteract <ret > .
ret(val) . ’rtResult <val ,id> . 0

agent TestCoreEquiv =
(\ pexecuteWithID ,rtInteract ,rtResult)
pexecuteWithID(id) . (^comm) ((^ret)
’rtInteract <ret > . ret(val) . ’comm <val > . 0 |
comm(res) . ’rtResult <res ,id> . 0)

agent TestCoreNonequiv =
(\ pexecuteWithID ,rtInteract ,rtResult)
pexecuteWithID(id) . (^ret) ’rtInteract <ret > .
ret(val) . (^resid) ’rtResult <val ,resid > . 0

Agents TestCore and TestCoreEquiv are not strongly open bisimilar,
because agent TestCoreEquiv can perform an internal communication via
name comm (according to rule L-Comm in Definition 13 from Section 2.3.1),
that can not be performed by agent TestCore. However, these agents are
weakly open bisimilar and according to ABC, a core relation12 of their
bisimulation contains 12 members.

The agents TestCore and TestCoreNonquiv are neither strongly open
bisimilar nor weakly open bisimilar. The problem is at the end of processing,
when agent TestCore sends via name rtResult name id, which has been
previously received via name pexecuteWithID, while agent TestCoreNonquiv
creates and sends a fresh name resid, which differs from the original name id.
The replacement of agent TestCore, which describes behaviour of component
test, by agent TestCoreNonequiv leads to a deadlock (see the context of
component test in Section 9.3).
12 The core relation of bisimulation is a ternary relation between an agent, a set of

distinctions, and an other agent, such that an union of its symmetric closure and
the identity relation is a bisimulation [Bri05].

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 112 — #126 i
i

i
i

i
i

112 9 Case Study

9.6.4 Model Checking

Model checking is possible by means of the MWB, which uses π-µ-calculus
[Dam94], an extension of the µ-calculus13, as a property specification lan-
guage.

In MWB, we can check safety and liveness properties by means of µ and
ν operators, respectively, as well as simply check the existence of specific
reduction steps by means of modal operators ♦ and �. The following command
verifies the ability of agent System to perform input actions on its free names
st and rl:

check System(st,rl) <st >TT & <rl>TT

Agent System describes behaviour of the system from our case study (see
process abstraction System in Section 9.4 and the agent in Appendix A). The
complete description of syntax and semantics of the π-µ-calculus in MWB can
be found in [Vic95].

9.7 Evaluation and Conclusion

In the previous sections, we have demonstrated the application of service-
oriented architectures, the component model, and the behavioural description
of component-based systems and services, as it has been proposed in Chap-
ters 5 and 6. The case study of a service-oriented architecture for functional
testing of complex safety-critical systems has been introduced in Section 9.1
and modelled as the service-oriented architecture in Section 9.2 and as the
component-based system in Section 9.3. In Sections 9.4 and 9.5, we have
formally described behaviour of services of the architecture and components
of the system, respectively. Finally, in Section 9.6, the behaviour has been
simulated, checked for deadlocks, strong and weak open bisimulations, and its
verification has been outlined, by means of the tools from Section 8.2.

Through the case study, we have successfully validated the proposed
modeling approaches. To evaluate the results, we will compare our approach
and important features of the case study solution with the related approaches
from Chapters 3 and 4. The related approaches can be divided into two groups
as follows:

1. formal approaches to modelling of service-oriented architectures, mostly
based on the formalisation of business process models mentioned in Sec-
tion 4.1.1 (e.g. transformations of BPEL to Petri nets [HSS05] or to π-
calculus processes [LM07, WDW07]);

13 The (modal) µ-calculus is a temporal logic with a least fix-point operator µ and a
greatest fix-point operator ν. It is used to specify properties of concurrent systems
represented as labelled transition systems (see Section 2.1).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 113 — #127 i
i

i
i

i
i

9.7 Evaluation and Conclusion 113

2. formal approaches to modelling of component-based systems, such as com-
ponent models and architecture description languages mentioned in Sec-
tions 3.3 and 3.4, which are usually focused only on CBSs without con-
sideration of SOA at the higher level of abstraction (e.g. Wright [AG96],
Tracta [Gia99], behaviour protocols of SOFA [Viš02], formal descriptions
of Fractive [Bar05], and, partially, SOFA 2.0 [BHP06]).

Our approach intends to bridge the gap and to provide a formal description
of service-oriented architectures from the choreography of their services to the
behaviour of individual components of underlying component-based systems,
as it has been demonstrated in the case study. Similar efforts can be found in
SOFA 2.0 (see Section 3.3.4) and the Reo coordination language [DA04].

In the SOFA 2.0, SOA becomes a specific case of a component-based
system where all components (services) are interconnected solely via their
utility interfaces. The interfaces can be referred and freely passed among the
components and used to establish new connections, independently of levels of
component hierarchy. The Reo coordination language [Arb04, DA04] is based
on the π-calculus and able to describe coordination of both services in SOA
and components in CBSs.

In comparison with SOFA 2.0 or the Reo coordination language, our
approach describes services and components separately and with respect to
their differences (i.e. services are not components and vice versa), but it allows
to go smoothly from a service level to a component level and to describe
behaviour of a whole system, services and components, as a single π-calculus
process (see process abstraction System in Section 9.4). Moreover, we use the
polyadic π-calculus without any special extensions, which allows us to utilise
existing tools for model checking of π-calculus processes and verification of
their properties, as it has been described in Section 9.6.

9.7.1 Important Merits

In comparison to the approaches mentioned above, our approach has the
following important merits:

• The proposed component model has been designed for mobile architec-
tures. It supports fully dynamic architectures with component mobility
(see Section 3.1).
• The component model permits combination of control and functional

interfaces in behaviour of primitive components. Dynamic reconfiguration
and component mobility can be initiated by functional requirements and
performed via the control interfaces (see Section 5.1.1).
• Behaviour of services and components is described in the π-calculus, which

has a native support for reconfiguration and mobility. The π-calculus is a
suitable formal basis for behavioural description of systems with mobile
architectures (see Section 3.1).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 114 — #128 i
i

i
i

i
i

114 9 Case Study

• We use the polyadic π-calculus without any special extensions, which
allows us to utilise existing tools for model checking of π-calculus processes
and formal verification of their properties (see Section 8.2 and Section 9.6).

• The proposed behavioural modelling of service-oriented architectures al-
lows a developer to go from a high level service design to a more precise
design of underlying component-based systems, with respect to differences
between services and components (see Section 4.3). Behaviour of a whole
system (individual services, their choreography, and their implementation
as the underlying component-based systems) can be described as a single
π-calculus process.

9.7.2 Possible Drawbacks

The proposed approach can suffer from the following possible drawbacks:

• The behavioural description of services and components in π-calculus
uses infinite recursions. These are implemented by unguarded or weakly
guarded applications and which can cause decidability issues (see Sec-
tion 8.2.1 and Section 9.6).

• The representation of system models uses the specific and informal UML-
like notation (see Section 5.1.2), instead of a formally defined UML 2
profile (see Section 3.4.2).

• The formal description of behaviour of services and components requires
an advanced knowledge of the π-calculus and may be a difficult task for
unskilled developers.

• The approach, which is presented in this book, describes how to model
a specific configuration and behaviour of a component-based system or a
service-oriented architecture as a π-calculus process. However, after sev-
eral dynamic reconfigurations and a corresponding sequence of reductions
of the π-calculus process, it may be difficult to determine a final configu-
ration from the resulting π-calculus process, especially without knowledge
of the exact sequence of reductions. For example, it may be difficult to
determine a deadlock configuration, which has been detected by means of
a verification tool in a specific π-calculus process (see Section 9.6.2).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 115 — #129 i
i

i
i

i
i

Part IV

Conclusion

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 116 — #130 i
i

i
i

i
i

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 117 — #131 i
i

i
i

i
i

10

Summary

This book provides a review of the state of the art of modelling of component-
based systems and introduces a novel component model for description of
mobile architectures. In comparison with the current state of the art, i.e.
the related approaches presented in Section 3.3, the proposed component
model has advantages in support of fully dynamic architectures including
mobility of their entities, in full integration of dynamic reconfiguration into
behaviour of components where functional requirements can initiate control
actions, in support of behavioural description of service-oriented architectures
and transition to component-based systems, and in utilisation of the standard
polyadic π-calculus, which is supported by existing tools for model checking
and formal verification. These features are related to the problem factors F1–
F5, which have been described in Section 1.1.

The book meets the objectives set out in Sections 1.1.1–1.1.5. We have
presented the component model, which allows to describe component-based
systems with support of mobile architectures (i.e. dynamic architectures al-
lowing component mobility). The component model’s metamodel has been
introduced to describe basic entities of the component model and their rela-
tions and features. We have also proposed the formal description of behaviour
of the component model’s entities as π-calculus processes. Moreover, the
formal description has included the behavioural description of service-oriented
architectures. It allows us to pass smoothly from service level to component
level and to describe behaviour of a whole system, services and components,
as a single π-calculus process.

We have also outlined the integration of our approach into a development
process and illustrated an application of our approach in the case study
of the environment for functional testing of complex safety-critical systems,
which has been described as a service-oriented architecture and an underlying
component-based system. The component-based system has been modelled as
a system model based on the component model’s metamodel. We have formally
described behaviour of the whole environment by means of the π-calculus

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 118 — #132 i
i

i
i

i
i

118 10 Summary

on the levels of the service-oriented architecture and the component-based
system.

Finally, the formally described services and components have been simu-
lated, checked for deadlocks, strong and weak open bisimulation equivalence,
and verification of their properties has been outlined.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 119 — #133 i
i

i
i

i
i

11

Future Research Directions

The research presented in this book has introduced the component model with
formal basis and support of mobile architectures. Its potential improvements
can result from missing features, which are supported by the related ap-
proaches (see Chapter 3), as well as from elimination of the possible drawbacks
(see Section 9.7.2). There are several lines of research arising from this work
which should be pursued:

• An UML 2 profile (see Section 3.4.2) for modelling of component-based
systems should be developed based on the component model’s metamodel.
It may replace the informal UML-like notation from Section 5.1.2.
• The tool for modelling of component-based systems, which has been intro-

duced in Section 8.1.2, should be updated to reflect the current metamodel
of the component model. In further work, the tool may be extended to pro-
vide automatic generation of behavioural description of a system according
to behavioural description of its primitive components and a model of
its structure (see Section 7.2). The extension will improve integration of
the tool into software development processes and reduce the qualification
requirements for developers (see the third item in Section 9.7.2).
• To support an implementation phase of the software development process

(see Chapter 7), the component model should be integrated into various
component-based environments, e.g. CORBA components, Java EE com-
ponents (JavaBeans) or Microsoft component technologies (COM model).
Moreover, an implementation framework should be provided.
• The behavioural description of services and components in π-calculus

should be modified in order to eliminate unguarded or weakly guarded
applications (infinite recursions), which can cause decidability issues (see
Sections 8.2.1 and 9.6). This may include a modification of the behavioural
description to use a specific variant of the π-calculus or a specific language
based on the π-calculus. However, such modification will eliminate ability
to utilise existing tools for model checking of standard π-calculus processes
and formal verification of their properties (see Section 9.7.1).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 120 — #134 i
i

i
i

i
i

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 121 — #135 i
i

i
i

i
i

References

ACD+03. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland,
Johannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug
Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana.
Business process execution language for Web Services, version 1.1.
Technical report, IBM, May 2003.

AG96. Robert Allen and David Garlan. The Wright architectural specifica-
tion language. Technical Report CMU-CS-96-TB, Carnegie Mellon
University, School of Computer Science, Pittsburgh, 1996.

AGM04. Paris Avgeriou, Nicolas Guelfi, and Nenad Medvidovic. Software
architecture description and UML. In UML Satellite Activities,
volume 3297 of Lecture Notes in Computer Science, pages 23–32.
Springer, 2004.

AK06. Atif Aziz and Jan-Klaas Kollhof. JSON-RPC 1.1 specification.
Working draft, August 2006.

AM02. Nazareno Aguirre and Tom Maibaum. A temporal logic approach to
the specification of reconfigurable component-based systems. In 17th
IEEE International Conference on Automated Software Engineering
(ASE’02), pages 271–274, Los Alamitos, CA, USA, 2002. IEEE
Computer Society.

Ams05. Jim Amsden. Business services modeling: Integrating WebSphere
business modeler and rational software modeler, December 2005. IBM
developerWorks.

AN05. Jim Arlow and Ila Neustadt. UML 2 and the Unified Process: Practical
Object-Oriented Analysis and Design. Addison-Wesley Professional,
Upper Saddle River, NJ, USA, second edition, July 2005.

Arb04. Farhad Arbab. Reo: a channel-based coordination model for com-
ponent composition. Mathematical Structures in Computer Science,
14(3):329–366, June 2004.

Arc06. ArchWare project. http://www.arch-ware.org/, November 2006.
Ars04. Ali Arsanjani. Service-oriented modeling and architecture: How to

identify, specify, and realize services for your SOA, November 2004.
IBM developerWorks.

http://www.arch-ware.org/

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 122 — #136 i
i

i
i

i
i

122 References

Bar05. Tomás Barros. Formal specification and verification of distributed
component systems. PhD thesis, Université de Nice – INRIA Sophia
Antipolis, November 2005.

BBC+06. Laurent Baduel, Françoise Baude, Denis Caromel, Arnaud Contes,
Fabrice Huet, Matthieu Morel, and Romain Quilici. Grid Computing:
Software Environments and Tools, chapter Programming, Deploying,
Composing, for the Grid. Springer-Verlag, January 2006.

BCK03. Len Bass, Paul Clements, and Rick Kazman. Software Architecture
in Practice. Addison Wesley Professional, second edition, 2003.

BCM03. Francoise Baude, Denis Caromel, and Matthieu Morel. From
distributed objects to hierarchical grid components. In Robert
Meersman, Zahir Tari, and Douglas C. Schmidt, editors, On The Move
to Meaningful Internet Systems 2003: Coopis, DOA, and ODBASE,
volume 2888 of Lecture Notes in Computer Science, pages 1226–1242.
Springer-Verlag, 2003.

BCMR06. Tomás Barros, Antonio Cansado, Eric Madelaine, and Marcela Rivera.
Model-checking distributed components: The Vercors platform. In
Frank S. de Boer and Vladimír Mencl, editors, Preliminary Pro-
ceedings of the Third International Workshop on Formal Aspects of
Component Software FACS’06, number 344 in UNU-IIST Reports,
P.O.Box 3058, Macau, September 2006.

BCS02. Eric Bruneton, Thierry Coupaye, and Jean-Bernard Stefani. Recur-
sive and dynamic software composition with sharing. In Proceedings
of the 7th International Workshop on Component-Oriented Program-
ming (WCOP’02), Malaga, Spain, June 2002.

BCS04. Eric Bruneton, Thierry Coupaye, and Jean-Bernard Stefani. The
Fractal component model. Draft of specification, version 2.0-3, The
ObjectWeb Consortium, February 2004.

BH95. Jonathan P. Bowen and Michael G. Hinchey. Seven more myths of
formal methods. IEEE Software, 12(4):34–41, 1995.

BH06. Jonathan P. Bowen and Michael G. Hinchey. Ten commandments of
formal methods . . . ten years later. Computer, 39(1):40–48, 2006.

BHP06. Tomáš Bureš, Petr Hnětynka, and František Plášil. SOFA 2.0:
Balancing advanced features in a hierarchical component model. In
Proceedings of SERA 2006, pages 40–48, Seattle, USA, August 2006.
IEEE Computer Society.

BMO+05. Dharini Balasubramaniam, Ron Morrison, Flavio Oquendo, Ian
Robertson, and Brian Warboys. Second release of ArchWare ADL.
Technical Report D1.7b (and D1.1b), ArchWare Project IST-2001-
32360, June 2005.

BN07. Sébastien Briais and Uwe Nestmann. Open bisimulation, revisited.
Theoretical Computer Science, 386(3):236–271, November 2007.

Bri05. Sébastien Briais. The ABC User’s Guide, May 2005.
BS93. Jonathan P. Bowen and Victoria Stavridou. Safety-critical systems,

formal methods and standards. IEE/BCS Software Engineering
Journal, 8(4):189–209, July 1993.

BSM+03. Frank Budinsky, Dave Steinberg, Ed Merks, Ray Ellersick, and
Timothy J. Grose. Eclipse Modeling Framework. The Eclipse Series.
Addison Wesley Professional, August 2003.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 123 — #137 i
i

i
i

i
i

References 123

CCC+07. Philippe Collet, Thierry Coupaye, Hervé Chang, Lionel Seinturier,
and Guillaume Dufrêne. Components and services: A marriage
of reason. Technical Report ISRN I3S/RR-2007-17-FR, Project
RAINBOW, CNRS, May 2007.

CCL06. Ivica Crnkovic, Michel Chaudron, and Stig Larsson. Component-
based development process and component lifecycle. In International
Conference on Software Engineering Advances, ICSEA’06, Tahiti,
French Polynesia, October 2006. IEEE.

Cha07. David Chappell. Introducing SCA. White paper, Chappell &
Associates, 2007.

CHvRR04. Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers.
UDDI version 3.0.2. Uddi spec technical committee draft, OASIS
Open, October 2004.

CKO92. Bill Curtis, Marc I. Kellner, and Jim Over. Process modeling.
Communications of the ACM, 35(9):75–90, September 1992.

CMRW07. Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva
Weerawarana. Web services description language (WSDL) version 2.0
part 1: Core language. W3c recommendation, W3C, June 2007.

ČVZ06. Ivana Černá, Pavlína Vařeková, and Barbora Zimmerová. Component-
interaction automata modelling language. Technical Report FIMU-
RS-2006-08, Faculty of Informatics, Masaryk University, October
2006.

CW96. Edmund M. Clarke and Jeannette M. Wing. Formal methods: State
of the art and future directions. ACM Computing Surveys, 28(4):626–
643, 1996.

DA04. Nikolay K. Diakov and Farhad Arbab. Compositional construction
of Web Services using Reo. In Savitri Bevinakoppa and Jiankun
Hu, editors, Proc. of International Workshop on Web Services: Mod-
eling, Architecture and Infrastructure (WSMAI 2004), pages 49–58.
INSTICC Press, April 2004.

dAH01. Luca de Alfaro and Thomas A. Henzinger. Interface automata. In
ESEC/FSE-9: Proceedings of the 8th European software engineering
conference held jointly with 9th ACM SIGSOFT international sym-
posium on Foundations of software engineering, pages 109–120, New
York, NY, USA, 2001. ACM Press.

Dam94. Mads Dam. Model checking mobile processes (full version). SICS
Research Report R94:01, Swedish Institute of Computer Science, Box
1263, S-164 28 Kista, Sweden, 1994.

DMM+08. Renato Donini, Stefano Marrone, Nicola Mazzocca, Antonio Orazzo,
Domenico Papa, and Salvatore Venticinque. Testing complex safety-
critical systems in SOA context. In CISIS, pages 87–93, Los Alamitos,
CA, USA, December 2008. IEEE Computer Society.

Ecl07a. The Eclipse Foundation. Eclipse graphical modeling framework
(GMF). http://www.eclipse.org/gmf/, September 2007.

Ecl07b. The Eclipse Foundation. Eclipse modeling framework project (EMF).
http://www.eclipse.org/modeling/emf/, September 2007.

Erl05. Thomas Erl. Service-Oriented Architecture: Concepts, Technology,
and Design. Prentice Hall PTR, Upper Saddle River, NJ, USA,
August 2005.

http://www.eclipse.org/gmf/
http://www.eclipse.org/modeling/emf/

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 124 — #138 i
i

i
i

i
i

124 References

Eva94. Andy S. Evans. Specifying & verifying concurrent systems using Z. In
FME’94 Industrial Benefits of Formal Methods, volume 873 of Lecture
Notes in Computer Science, pages 366–380. Springer-Verlag, 1994.

Fie00. Roy Thomas Fielding. Architectural styles and the design of network-
based software architectures. PhD thesis, University of California,
Irvine, 2000.

Gal09. Ivan Gal. A tool for modelling of component-based systems. Mas-
ter’s thesis, Brno University of Technology, Faculty of Information
Technology, Department of Information Systems, June 2009.

Gdh07. Joe Gregorio and Bill de hOra. The Atom publishing protocol. IETF
RFC 5023, October 2007.

GHM+07. Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques
Moreau, Henrik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon.
SOAP version 1.2 part 1: Messaging framework. W3c recommenda-
tion, W3C, April 2007.

Gia99. Dimitra Giannakopoulou. Model Checking for Concurrent Software
Architectures. PhD thesis, Imperial College of Science, Technology
and Medicine University of London, Department of Computing,
January 1999.

GMW00. David Garlan, Robert T. Monroe, and David Wile. ACME: Architec-
tural description of component-based systems. In Gary T. Leavens
and Murali Sitaraman, editors, Foundations of Component-Based
Systems, chapter 3, pages 47–68. Cambridge University Press, New
York, NY, 2000.

Hal90. Anthony Hall. Seven myths of formal methods. IEEE Software,
07(5):11–19, 1990.

HHS06. Denis Hatebur, Maritta Heisel, and Jeanine Souquières. A method for
component-based software and system development. In Proceedings
of the 32nd EUROMICRO Conference on Sotware Engineering and
Advanced Applications, pages 72–80. IEEE Computer Society, 2006.

HP06. Petr Hnětynka and František Plášil. Dynamic reconfiguration and
access to services in hierarchical component models. In Proceedings
of CBSE 2006, volume 4063 of Lecture Notes in Computer Science,
pages 352–359. Springer, 2006.

HSS05. Sebastian Hinz, Karsten Schmidt, and Christian Stahl. Transforming
BPEL to Petri nets. In Proceedings of the Third International
Conference on Business Process Management (BPM 2005), volume
3649 of Lecture Notes in Computer Science, pages 220–235, Nancy,
France, September 2005. Springer-Verlag.

IB07. Srikanth Inaganti and Gopala Krishna Behara. Service identification:
BPM and SOA handshake. BP Trends, March 2007.

IEE00. Recommended practice for architectural description of software inten-
sive systems. Technical Report IEEE P1471–2000, The Architecture
Working Group of the Software Engineering Committee, Standards
Department, IEEE, Piscataway, New Jersey, USA, September 2000.

ISO02. Information technology – Z formal specification notation – syn-
tax, type system and semantics. International Standard ISO/IEC
13568:2002, July 2002.

Kru95. Philippe Kruchten. The 4+1 view model of architecture. IEEE
Software, 12(6):42–50, 1995.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 125 — #139 i
i

i
i

i
i

References 125

KŽ00. Jaroslav Král and Michal Žemlička. Autonomous components. In
SOFSEM 2000: Theory and Practice of Informatics, volume 1963 of
Lecture Notes in Computer Science, pages 375–383. Springer, 2000.

KŽ03. Jaroslav Král and Michal Žemlička. Software confederations and
alliances. In CAiSE Short Paper Proceedings, volume 74 of CEUR
Workshop Proceedings, pages 229–232. CEUR-WS.org, 2003.

Lin00. Huimin Lin. Computing bisimulations for finite-control π-calculus.
Journal of Computer Science and Technology, 15(1):1–9, 2000.

LK06. Beate List and Birgit Korherr. An evaluation of conceptual business
process modelling languages. In SAC ’06: Proceedings of the 2006
ACM symposium on Applied computing, pages 1532–1539, New York,
NY, USA, April 2006. ACM.

LM07. Roberto Lucchi and Manuel Mazzara. A pi-calculus based seman-
tics for WS-BPEL. Journal of Logic and Algebraic Programming,
70(1):96–118, January 2007.

LW05. Kung-Kiu Lau and Zheng Wang. A taxonomy of software component
models. In Proceedings of the 31st EUROMICRO Conference on
Software Engineering and Advanced Applications, pages 88–95. IEEE
Computer Society, 2005.

LW06. Kung-Kiu Lau and Zheng Wang. A survey of software component
models (second edition). Pre-print CSPP-38, School of Computer
Science, The University of Manchester, Manchester M13 9PL, UK,
May 2006.

MB05. Vladimír Mencl and Tomáš Bureš. Microcomponent-based component
controllers: A foundation for component aspects. In Proceedings of
12th Asia-Pacific Software Engineering Conference (APSEC 2005),
pages 729–737, Taipei, Taiwan, December 2005. IEEE Computer
Society Press.

MDEK95. Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer.
Specifying distributed software architectures. In Proceedings of the 5th
European Software Engineering Conference, pages 137–153, London,
UK, 1995. Springer-Verlag.

Men98. Vladimír Mencl. Component definition language. Master’s thesis,
Charles University, Prague, May 1998.

Mio06. Matteo Mio. PiET – pi calculus equivalences tester. http://piet.
sourceforge.net/, September 2006.

MMP+95. Richard J. Mayer, Christopher P. Menzel, Michael K. Painter, Paula S.
deWitte, Thomas Blinn, and Benjamin Perakath. Information inte-
gration for concurrent engineering (IICE) IDEF3 process description
capture method report. Technical report, Knowledge Based systems
Incorprated (KBSI), September 1995.

MPW92. Robin Milner, Joachim Parrow, and David Walker. A calculus of
mobile processes, part I/II. Journal of Information and Computation,
100:41–77, September 1992.

MRRR02. Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and
Jason E. Robbins. Modeling software architectures in the Unified
Modeling Language. ACM Transactions on Software Engineering and
Methodology, 11(1):2–57, January 2002.

http://piet.sourceforge.net/
http://piet.sourceforge.net/

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 126 — #140 i
i

i
i

i
i

126 References

MT00. Nenad Medvidovic and Richard N. Taylor. A classification and
comparison framework for software architecture description languages.
IEEE Transactions on Software Engineering, 26(1):70–93, January
2000.

ODvdAtH06. Chun Ouyang, Marlon Dumas, Wil M.P. van der Aalst, and
Arthur H.M. ter Hofstede. From business process models to process-
oriented software systems: The BPMN to BPEL way. Technical report,
October 2006.

OMG98. OMG IDL syntax and semantics. Document formal/98-02-08, The
Object Management Group, February 1998. Chapter 3 of CORBA
2.2 specification, also available as ISO/IEC 14750:1999 standard.

OMG05a. Meta object facility (MOF) specification, version 1.4.1. Document
formal/05-05-05, The Object Management Group, July 2005. Also
available as ISO/IEC 19502:2005 standard.

OMG05b. Unified modeling language specification, version 1.4.2. Document
formal/05-04-01, The Object Management Group, January 2005. Also
available as ISO/IEC 19501:2005 standard.

OMG06a. Meta object facility (MOF) core specification, version 2.0. Document
formal/06-01-01, The Object Management Group, January 2006.

OMG06b. UML profile and metamodel for services (UPMS), request for pro-
posal. Document soa/2006-09-09, The Object Management Group,
September 2006.

OMG07a. UML infrastructure, version 2.1.2. Document formal/2007-11-04, The
Object Management Group, November 2007.

OMG07b. UML superstructure, version 2.1.2. Document formal/2007-11-02,
The Object Management Group, November 2007.

OMG08a. Business process definition metamodel (BPDM), version 1.0. Docu-
ment formal/2008-11-05, The Object Management Group, November
2008.

OMG08b. Business process modeling notation (BPMN), version 1.1. Document
formal/2008-01-17, The Object Management Group, January 2008.

Ope07. Open SOA Collaboration. SCA XML schema files. http://www.osoa.
org/xmlns/sca/1.0/, November 2007.

Ope08. Open SOA Collaboration. Service Component Architecture specifi-
cations. http://www.osoa.org/display/Main/Service+Component+
Architecture+Specifications, July 2008.

Oqu04. Flavio Oquendo. π-ADL: an architecture description language based
on the higher-order typed π-calculus for specifying dynamic and
mobile software architectures. ACM SIGSOFT Software Engineering
Notes, 29:1–14, 2004.

Oqu05. Flavio Oquendo. UML 2.0 profile for ArchWare ADL. Technical
Report D1.8, ArchWare Project IST-2001-32360, June 2005.

OSO07a. SCA service component architecture: Assembly model specification.
Technical Report SCA version 1.00, Open SOA Collaboration, March
2007.

OSO07b. SCA policy framework. Technical Report SCA version 1.00, Open
SOA Collaboration, March 2007.

OSO07c. SCA service component architecture: ACID transaction policy in
SCA. Technical Report SCA version 1.00, Open SOA Collaboration,
December 2007.

http://www.osoa.org/xmlns/sca/1.0/
http://www.osoa.org/xmlns/sca/1.0/
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 127 — #141 i
i

i
i

i
i

References 127

PBJ98. František Plášil, Dušan Bílek, and Radovan Janeček. SOFA/DCUP:
Architecture for component trading and dynamic updating. In 4th
International Conference on Configurable Distributed Systems, pages
43–51, Los Alamitos, CA, USA, May 1998. IEEE Computer Society.

PGG+06. Thomas Pfaeffle, Simeon M. Greene, Sumit Gupta, Bill Jones, Tim
Julien, Gigi Lee, Mike Lehmann, Jon Maron, Kevin Minder, Bob
Naugle, Eric Rajkovic, Ekkehard Rohwedder, Shih-Chang Chen, and
Quan Wang. Oracle Application Server Web Services Developer’s
Guide, 10g (10.1.3.1.0). Oracle, September 2006.

Ros98. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice
Hall, Upper Saddle River, NJ, USA, 1998.

RSS07. RSS 2.0 specification. Technical report, RSS Advisory Board, October
2007.

RW08. Marek Rychlý and Petr Weiss. Modeling of service oriented architec-
ture: From business process to service realisation. In ENASE 2008
Third International Conference on Evaluation of Novel Approaches to
Software Engineering Proceedings, pages 140–146. Institute for Sys-
tems and Technologies of Information, Control and Communication,
May 2008.

Ryc08. Marek Rychlý. Behavioural modeling of services: from service-oriented
architecture to component-based system. In Software Engineering
Techniques in Progress, pages 13–27. Wroclaw University of Technol-
ogy, October 2008.

Ryc09. Marek Rychlý. A component model with support of mobile archi-
tectures and formal description. e-Informatica Software Engineering
Journal, 3(1):9–25, October 2009.

Sch00. August-Wilhelm Scheer. Aris – Business Process Modeling. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2000.

SW01. Khodakaram Salimifard and Mike Wright. Petri net-based modelling
of workflow systems: An overview. European Journal of Operational
Research, 134(3):664–676, November 2001.

SW03. Davide Sangiorgi and David Walker. The π-Calculus: A Theory
of Mobile Processes. Cambridge University Press, New Ed edition,
October 2003.

Szy02. Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison Wesley Professional, second edition, Novem-
ber 2002.

Ves93. Steve Vestal. A cursory overview and comparison of four architec-
ture description languages. Technical report, Honeywell Technology
Center, February 1993.

Vic94. Björn Victor. A Verification Tool for the Polyadic π-Calculus. Licen-
tiate thesis, Department of Computer Systems, Uppsala University,
Sweden, May 1994. Available as report DoCS 94/50.

Vic95. Björn Victor. The Mobility Workbench User’s Guide, polyadic version
3.122 edition, October 1995.

Viš02. Stanislav Višňovský. Modeling software components using behavior
protocols. PhD thesis, Department of Software Engineering, Faculty
of Mathematics and Physics, Charles University, Prague, 2002.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 128 — #142 i
i

i
i

i
i

128 References

WDW07. Matthias Weidlich, Gero Decker, and Mathias Weske. Efficient
analysis of BPEL 2.0 processes using π-calculus. In APSCC ’07:
Proceedings of the The 2nd IEEE Asia-Pacific Service Computing
Conference, pages 266–274, Washington, DC, USA, 2007. IEEE
Computer Society.

Win99. Dave Winer. XML-RPC specification. Technical report, UserLand
Software, June 1999.

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 129 — #143 i
i

i
i

i
i

Acronyms

ABC Another/Advanced Bisimulation Checker
(a tool that checks open-equivalence in the π-calculus, see Sec-
tion 8.2.2)

ADL architecture description language
(a language for describing software systems’ architectures, see
Section 3.4)

ALTL linear temporal logic of actions
(an extension of linear temporal logic, see Section 3.3.2)

BP business process
BPD business process diagram

(a representation of a business process model, see Section 4.1.1)
BPEL Business Process Execution Language

(a language for business process models, see Section 4.1.1)
BPEL4WS Business Process Execution Language for Web Services

(a language for business process models of Web Services, see
Section 4.1.1)

BPM business process model
(a specification of business processes, see Section 4.1)

BPMN Business Process Modelling Notation
(a notation for describing business process models, see Sec-
tion 4.1.1)

BSM business services model
(a mediator between business requirements and an implementa-
tion, see Section 4.1.2)

CBCS computer based control system
CBD component-based development

(a software development methodology of component-based sys-
tems, see Section 3.2)

CBS component-based system
(a system that is composed of components, see Section 3.2)

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 130 — #144 i
i

i
i

i
i

130 References

CBSE component-based software engineering
(a software development methodology of component-based sys-
tems, see Section 3.2)

CCS Calculus of Communicating Systems
(a process calculus to model indivisible communications between
exactly two participants)

CDL Component Definition Language
(a specification language of software components in SOFA, see
Section 3.3.3)

CMOF Complete Meta Object Facility
(a part of Meta Object Facility that extends EMOF, see Sec-
tion 5.1.1)

COM Component Object Model
(an application interface for software components introduced by
Microsoft)

CORBA Common Object Requesting Broker Architecture
(a standard for software components defined by the Object Man-
agement Group)

CSP Communicating Sequential Processes
(a formal language for describing patterns of interaction in con-
current systems, see Section 2.2)

EMF Eclipse Modeling Framework
(an Eclipse framework for modelling and code generation of tools
based on metamodels)

EMOF Essential Meta Object Facility
(a part of Meta Object Facility with modelling elements for simple
metamodels, see Section 5.1.1)

FIFO first-in-first-out
(a data structure)

FSP Finite State Processes
(a language/algebra for behavioural specification of components
as finite LTSs, see Section 3.3.2)

GMF Eclipse Graphical Modeling Framework
(an Eclipse framework for developing graphical editors of models
based on metamodels in EMF)

HTTP Hypertext Transfer Protocol
(an application-level protocol for distributed, collaborative, hy-
permedia information systems)

IT information technology
JSON JavaScript Object Notation

(a language-independent computer data interchange format)
LTL linear temporal logic

(a modal temporal logic with modalities referring to time)

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 131 — #145 i
i

i
i

i
i

References 131

LTS Labelled Transition System
(a state transition system with labelled transitions, see Sec-
tion 2.1)

MIME Multipurpose Internet Mail Extensions
(an internet standard for description of content of e-mail mes-
sages)

MMI man machine interface
MOF Meta Object Facility

(a standard for model-driven engineering from the Object Man-
agement Group, see Section 5.1.1)

MWB The Mobility Workbench
(a model checker, bisimulation checker and verification tool for
the π-calculus, see Section 8.2.1)

PiET Pi-Calculus Equivalences Tester
(a tool for checking of various types of equivalences of the π-
calculus processes, see Section 8.2.3)

pLTS Parametrised Labelled Transition System
(a LTS with parametrised actions as labels and variables for states
and a system, see Section 3.3.5)

pNet Parametrised Synchronisation Network
(a composition of pLTSs by parametrised sorts, global actions,
and a transducer, see Section 3.3.5)

REST Representational State Transfer
(a style of software architecture for distributed hypermedia sys-
tems)

RPC Remote Procedure Call
(an inter-process communication technology)

RSS Really Simple Syndication
(a family of formats for syndication of web-content)

SCA Service Component Architecture
(an approach for design and implementation of SOA as CBSs,
see Section 4.3.1)

SCDL Service Component Definition Language
(a XML-based language for description of compositions of SCA
components, see Section 4.3.1)

SOA service-oriented architecture
(an architectural style for aligning business and IT architectures,
see Chapter 4)

SOAP Simple Object Access Protocol
(a protocol for exchanging structured information between Web
Services, see Section 4.2)

SOFA SOFtware Appliances
(a component model with support of dynamic architecture, see
Section 3.3.3)

SUT system under testing

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 132 — #146 i
i

i
i

i
i

132 References

SWA software alliances
(software as networks of cooperative units formed temporarily
during its runtime, see Chapter 1)

SWC software confederation
(systems as networks of quite cooperative, permanently available
services, see Chapter 1)

TS transition system
(an abstract machine with a set of states and transitions between
these states, see Section 2.1)

UDDI Universal Description, Discovery and Integration
(a registry for publishing and discovering Web Services listings,
see Section 4.2)

UML Unified Modeling Language
(a standardised modelling language for software systems, see Sec-
tion 3.4.2)

URI Uniform Resource Identifier
(an identification, a location or a name, of a resource on the
Internet)

WSDL Web Services Description Language
(an XML-based language for description of Web Services, see
Section 4.2)

XMI XML Metadata Interchange
(a standard for exchanging metadata information in XML from
the OMG, see Section 8.1.2)

XML Extensible Markup Language
(a language for specification of structured documents and their
processing)

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 133 — #147 i
i

i
i

i
i

Part V

Appendices

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 134 — #148 i
i

i
i

i
i

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 135 — #149 i
i

i
i

i
i

A

Process Descriptions from the Case-Study in
MWB/ABC

In this appendix, we describe the π-calculus process abstractions and con-
stants, which have been defined in Section 9.4 and Section 9.5 of the case
study from Chapter 9. The following process abstractions and constants are
adapted to The Mobility Workbench (MWB, see Section 8.2.1), but they
are compatible also with Another/Advanced Bisimulation Checker (ABC, see
Section 8.2.2). The agents are used in Section 9.6 for interactive simulation,
finding deadlocks, bisimulation equivalences and model checking.

A.1 Control Parts of Components

The following agents are adapted from the processes from Section 5.2 and
describe behaviour of control parts of components.

1 (*** Wire ***)
2 agent Wire = (\x,y,d) (x(m) . ’y<m> . Wire(x,y,d) +

d . 0)
3 (*** CtrlIfsR ***)
4 agent CtrlIfsR = (\r,ps) (^d) (d . 0 | SetIf(r,ps ,d)

)
5 agent SetIf = (\r,s,d) s(p) . (’d . Wire(r,p,d) |

t.SetIf(r,s,d))
6 (*** CtrlIfsP ***)
7 agent CtrlIfsP = (\p,pg) pg(r) . (’r<p> . 0 |

t.CtrlIfsP(p,pg))
8 (*** CtrlEIR ***)
9 agent CtrlEIR = (\re ,pi) (^d) Wire(re ,pi ,d)

10 (*** CtrlEIP ***)
11 agent CtrlEIP = (\pe ,ri) (^d) Wire(ri ,pe ,d)
12 (*** CtrlSS ***)
13 agent CtrlSS = (\s0 ,s1 ,a) (^p0,p1) (

Life(s1,s0,p1 ,p0) | Attach(a,p0 ,p1))

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 136 — #150 i
i

i
i

i
i

136 A Process Descriptions from the Case-Study in MWB/ABC

14 agent Life = (\sx ,sy ,px ,py) sx(m) . (^r) (
Dist(px,m,r) | r . Life(sy ,sx ,py ,px))

15 agent Dist = (\p,m,r) (’p<m> . Dist(p,m,r) + ’r . 0)
16 agent Attach = (\a,p0 ,p1) a(c0,c1,cd) . (^d) (cd(m)

. ’d<m> . ’d<m> . 0 | Wire(p0 ,c0 ,d) |
Wire(p1,c1,d) | t.Attach(a,p0 ,p1))

Agents CtrlIfsP and CtrlIfsR represent distinct parts of process ab-
straction CtrlIfs to describe a compoent’s behaviour related to its control
interfaces for referencing its provided and binding its required functional
interfaces, respectively. Agents CtrlEIP and CtrlEIR represent distinct parts
of process abstraction CtrlEI to describe a component’s behaviour related
to its control interfaces for binding external provided to internal required
functional interfaces and for binding external required to internal provided
functional interfaces, respectively. Both CtrlIfs and CtrlEI have been defined
in Section 5.2.2.

A.2 Core Behaviour of the Components

The following agents describe core behaviour1 of the primitive components, as
it has been defined in Section 9.5.

1 (*** OutCore ***)
2 agent OutCore = (\poResult ,roDone ,roReply)

Out2Core(poResult ,roDone ,roReply)
3 agent Out2Core = (\poResult ,roDone ,roReply)

poResult(res ,id) . ’roDone <id > . (
’roReply <res ,id > . 0 |
t.Out2Core(poResult ,roDone ,roReply))

4 (*** CtrCore ***)
5 agent CtrCore =

(\pcDone ,pteExecTest ,rteAttach ,rdetachTest ,rstopTest ,
rprovRefEInt ,rprovRefORes)
Ctr2Core(pcDone ,pteExecTest ,rteAttach ,rdetachTest ,
rstopTest ,rprovRefEInt ,rprovRefORes)

6 agent Ctr2Core =
(\pcDone ,pteExecTest ,rteAttach ,rdetachTest ,rstopTest ,
rprovRefEInt ,rprovRefORes) pteExecTest(ts,ret) .
ts(r2stopTest ,r2startTest ,c,r2,p2) . ’rstopTest .
’rdetachTest .
’rteAttach <r2stopTest ,r2startTest ,rdetachTest > .
r2(p2bindTInt ,p2bindTRes) .
p2(p2provRefExecuteWithID) . (^ret2)
’rprovRefEInt <ret2 > . ret2(eInteract) .
’p2bindTInt <eInteract > . ’rprovRefORes <ret2 > .

1 The core behaviour does not include behaviour of default control actions (see
Section 5.2.5).

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 137 — #151 i
i

i
i

i
i

A.3 Complete Behaviour of the Subcomponents 137

ret2(oResult) . ’p2bindTRes <oResult > .
’p2provRefExecuteWithID <ret2 > .
ret2(p2executeWithID) . ’r2startTest . ((^id)
’ret <id> . ’p2executeWithID <id > . ’id . 0 |
pcDone(id2) . id2 .
Ctr2Core(pcDone ,pteExecTest ,rteAttach ,rdetachTest ,
r2stopTest ,rprovRefEInt ,rprovRefORes))

7 (*** EnvCore ***)
8 agent EnvCore = (\ peInteract) Env2Core(peInteract)
9 agent Env2Core = (\ peInteract) peInteract(ret) . (

(^val) ’ret <val > . 0 | t.Env2Core(peInteract))
10 (*** TestCore ***)
11 agent TestCore =

(\ pexecuteWithID ,rtInteract ,rtResult)
pexecuteWithID(id) . (^ret) ’rtInteract <ret > .
ret(val) . ’rtResult <val ,id> . 0

12 (*** TestCoreEquiv ***)
13 agent TestCoreEquiv =

(\ pexecuteWithID ,rtInteract ,rtResult)
pexecuteWithID(id) . (^comm) ((^ret)
’rtInteract <ret > . ret(val) . ’comm <val > . 0 |
comm(res) . ’rtResult <res ,id> . 0)

14 (*** TestCoreNonequiv ***)
15 agent TestCoreNonequiv =

(\ pexecuteWithID ,rtInteract ,rtResult)
pexecuteWithID(id) . (^ret) ’rtInteract <ret > .
ret(val) . (^resid) ’rtResult <val ,resid > . 0

A.3 Complete Behaviour of the Subcomponents

Complete behaviour of the primitive subcomponents can be described by the
following agents.

1 agent Out = (\s0,s1 ,pgoResult ,psoDone ,psoReply)
(^poResult ,roDone ,roReply) (
CtrlIfsP(poResult ,pgoResult) |
CtrlIfsR(roDone ,psoDone) |
CtrlIfsR(roReply ,psoReply) |
OutCore(poResult ,roDone ,roReply))

2 agent Env = (\s0,s1 ,pgeInteract) (^ peInteract) (
CtrlIfsP(peInteract ,pgeInteract) |
EnvCore(peInteract))

3 agent Test =
(\s0,s1,pgexecuteWithID ,pstInteract ,pstResult)
(^ pexecuteWithID ,rtInteract ,rtResult) (
CtrlIfsP(pexecuteWithID ,pgexecuteWithID) |
CtrlIfsR(rtInteract ,pstInteract) |

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 138 — #152 i
i

i
i

i
i

138 A Process Descriptions from the Case-Study in MWB/ABC

CtrlIfsR(rtResult ,pstResult) |
TestCore(pexecuteWithID ,rtInteract ,rtResult))

4 agent Ctr =
(\s0,s1,pgcDone ,pgteExecTest ,rteAttach ,rdetachTest ,rstopTest ,
rprovRefEInt ,rprovRefORes) (^pcDone ,pteExecTest) (
CtrlIfsP(pcDone ,pgcDone) |
CtrlIfsP(pteExecTest ,pgteExecTest) |
CtrCore(pcDone ,pteExecTest ,rteAttach ,rdetachTest ,rstopTest ,
rprovRefEInt ,rprovRefORes))

For simplicity, we do not include agents describing the components’ be-
haviour that is related to their control interfaces for cloning the components
(see Section 5.2.4 and constant applications of Ctrlclone in Section 9.5). These
interfaces are not used.

A.4 Behaviour of the Composite Component

The following agents describe complete behaviour of the composite component,
as it has been defined in Section 9.5.

1 (*** TEcomp ***)
2 agent TEcomp = (\s0 ,s1 ,pgexecuteTest ,psasyncRepltET)

(^ pexecuteTest ,rteExecTest ,psteExecTest ,rasyncRepltET ,
pteReply ,pgteReply ,pteAttach) (
CtrlIfsP(pexecuteTest ,pgexecuteTest) |
CtrlIfsR(rasyncRepltET ,psasyncRepltET) |
CtrlEIP(pexecuteTest ,rteExecTest) |
CtrlEIP(pteReply ,rasyncRepltET) |
CtrlIfsR(rteExecTest ,psteExecTest) |
CtrlIfsP(pteReply ,pgteReply) |
CtrlSS(s0,s1,pteAttach) |
TE2comp(pteAttach ,psteExecTest ,pgteReply))

3 agent TE2comp = (\pteAttach ,psteExecTest ,pgteReply)
(^sctr0 ,sctr1 ,sout0 ,sout1 ,senv0 ,senv1 ,
pgcDone ,pgeInteract ,pgoResult ,pgteExecTest ,psoDone ,psoReply ,
rdetachTest ,rprovRefEInt ,rprovRefORes ,rstopTest ,rteAttach)
(
Ctr(sctr0 ,sctr1 ,pgcDone ,pgteExecTest ,rteAttach ,rdetachTest ,
rstopTest ,rprovRefEInt ,rprovRefORes) |
Out(sout0 ,sout1 ,pgoResult ,psoDone ,psoReply) |
Env(senv0 ,senv1 ,pgeInteract) | (^d)
’pteAttach <sctr0 ,sctr1 ,d> . 0 | (^d)
’pteAttach <sout0 ,sout1 ,d> . 0 | (^d)
’pteAttach <senv0 ,senv1 ,d> . 0 | (^d)
Wire(rprovRefEInt ,pgeInteract ,d) | (^d)
Wire(rprovRefORes ,pgoResult ,d) | (^d)
Wire(rteAttach ,pteAttach ,d) |
TestPlug(rdetachTest ,rstopTest) | (^ret)’

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 139 — #153 i
i

i
i

i
i

A.5 Services of SOA 139

pgteExecTest <ret > . ret(pteExecTest) .
’psteExecTest <pteExecTest > . 0 | (^ret)
’pgteReply <ret > . ret(pteReply) .
’psoReply <pteReply > . 0 | (^ret) ’pgcDone <ret > .
ret(pcDone) . ’psoDone <pcDone > . 0)

4 agent TestPlug = (\ rdetachTest ,rstopTest) (
rdetachTest . 0 | rstopTest . 0)

Analogously as in Section A.3, we do not include an agent describing the
component’s behaviour that is related to its control interface for cloning the
component. This interface is not used.

A.5 Services of SOA

Finally, the following agents describe behaviour of the services according to
Section 9.4. Process abstraction TEinit is included „in-line“ within agent TE.

1 (*** TM ***)
2 agent TM = (\st,fe ,lr) (^s) (TMst(st ,fe ,s) |

TMar(lr,s))
3 agent TMst = (\st ,fe ,s) st(test ,ret) . (^r1,r2)

’fe<r1> . r1(et2 ,ar2) . ’et2 <test ,r2> . (r2(id) .
’ret <id> . 0 | ’s<ar2 > . 0 | t.TMst(st ,fe ,s))

4 agent TMar = (\lr ,s) (s(ar2) . ar2(res ,id) .
’lr<res ,id> . 0 | t.TMar(lr ,s))

5 (*** TEB ***)
6 agent TEB = (\pe,fe) (^q) (TEBpub(q,pe) |

TEBfind(q,fe,pe))
7 agent TEBpub = (\t1 ,pe) pe(i,d) . (^t2) (’t1<t2 ,i,d>

. 0 | t.TEBpub(t2 ,pe))
8 agent TEBfind = (\h,fe ,pe) h(h2,i,d) . (

t.TEBfind(h2,fe,pe) | (’fe<i> . ’pe <i,d> . 0 + d
. 0))

9 (*** TE ***)
10 agent TE = (\et,ar ,pe) ’pe<et,ar> . TEimpl(et,ar)
11 agent TEimpl = (\et ,ar) (^s0,s1,ars ,etg) (’ars <ar >.0

| (^d,t1) ’etg <t1> . t1(p) . Wire(et ,p,d) |
TEcomp(s0,s1 ,etg ,ars))

12 (*** TL ***)
13 agent TL = (\lr,rl) (^s) (TLlr(lr ,s) | TLrl(rl,s))
14 agent TLlr = (\lr ,t1) lr(res ,id) . (^t2) (

’t1<t2,res ,id > . 0 | t.TLlr(lr ,t2))
15 agent TLrl = (\rl ,h) h(h2,res ,id) . rl(ret) .

’ret <res ,id> . TLrl(rl,h2)
16 (*** System ***)
17 agent System = (\st ,rl) (^et,ar,lr,pe ,fe) (

TM(st,fe,lr) | TE(et,ar,pe) | TL(lr,rl) |
TEB(pe ,fe))

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 140 — #154 i
i

i
i

i
i

i
i

“fitmono.modelling-of-cbs-with-mobarch” — 2011/2/17 — 13:57 — page 141 — #155 i
i

i
i

i
i

Název Modelling of Component-Based Systems
with Mobile Architecture

Autoři Mgr. Marek Rychlý, Ph.D.
doc. Ing. Jaroslav Zendulka, CSc.

Vydavatel Vysoké učení technické v Brně
Fakulta informačních technologií

Obálka Mgr. Dagmar Hejduková
Tisk MJ servis, spol. s r.o.
Vyšlo Brno, 2010
Vydání první

Tato publikace neprošla redakční ani jazykovou úpravou.

	1 Introduction
	1.1 Objectives of This Book
	1.1.1 Overview of the State of the Art
	1.1.2 Component Model for Mobile Architectures
	1.1.3 Application of the Component Model in SOA
	1.1.4 Software Development Process
	1.1.5 Case Study

	1.2 Structure of This Book

	Part I State of the Art
	2 Formal Bases
	2.1 Labelled Transition Systems
	2.2 Communicating Sequential Processes
	2.3 Calculus of Mobile Processes
	2.3.1 Operational Semantics
	2.3.2 Congruences of Processes

	3 Software Component Architecture
	3.1 Software Architecture
	3.2 Component-Based Development
	3.3 Component Models
	3.3.1 Wright
	3.3.2 Darwin and Tracta
	3.3.3 SOFA
	3.3.4 SOFA 2.0
	3.3.5 Fractal

	3.4 Architecture Description Languages
	3.4.1 ACME
	3.4.2 Unified Modelling Language
	3.4.3 ArchWare ADL

	4 Service Oriented Architecture
	4.1 Design of Services
	4.1.1 Business Process Modelling
	4.1.2 Business-to-Service Transformation
	4.1.3 Service Composition

	4.2 Implementation of Services
	4.3 Services and Components
	4.3.1 Service Component Architecture

	Part II Component Model for Mobile Architectures
	5 Component Model
	5.1 Logical View
	5.1.1 Metamodel
	5.1.2 System Model

	5.2 Process View
	5.2.1 Notation
	5.2.2 Interface's References and Binding
	5.2.3 Control of a Component's Life-cycle
	5.2.4 Cloning of Components and Updating of Subcomponents
	5.2.5 Primitive and Composite Components

	5.3 An Example of a Component-Based System and its Description
	5.3.1 Definition of the Components' Implementations
	5.3.2 Description of the Component Based System

	6 Behavioural Modelling of Services
	6.1 Service as a Part of Service Oriented Architecture
	6.1.1 Communication of Services and Service Broker

	6.2 Service as a Component Based System
	6.3 An Example of a Service-Oriented Architecture
	6.3.1 Service Identification
	6.3.2 Service Model
	6.3.3 Description of Services as Entities of SOA
	6.3.4 Description of Services as Component-Based Systems

	Part III Application
	7 Development Process
	7.1 Application of the Behavioural Modelling of Services
	7.2 Application of the Component Model
	7.3 Integration of a Formal Description

	8 Tools
	8.1 Component Modelling Tools
	8.1.1 Component Diagrams in UML
	8.1.2 A Tool for Modelling of Component-Based Systems

	8.2 Verification Tools
	8.2.1 The Mobility Workbench (MWB)
	8.2.2 Another/Advanced Bisimulation Checker (ABC)
	8.2.3 Pi-Calculus Equivalences Tester (PiET)

	9 Case Study
	9.1 System Description
	9.2 Service Identification
	9.3 Component-Based System
	9.4 Formal Description of the Service-Oriented Architecture
	9.5 Formal Description of the Component-Based System
	9.6 System Properties and Their Verification
	9.6.1 Simulation
	9.6.2 Deadlocks
	9.6.3 Bisimulation Checking
	9.6.4 Model Checking

	9.7 Evaluation and Conclusion
	9.7.1 Important Merits
	9.7.2 Possible Drawbacks

	Part IV Conclusion
	10 Summary
	11 Future Research Directions
	References
	Acronyms

	Part V Appendices
	Process Descriptions from the Case-Study in MWB/ABC
	A.1 Control Parts of Components
	A.2 Core Behaviour of the Components
	A.3 Complete Behaviour of the Subcomponents
	A.4 Behaviour of the Composite Component
	A.5 Services of SOA

