
Fault Management Driven Design with Safety and Security Requirements

Miroslav Sveda
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

sveda@fit.vutbr.cz

Abstract— This paper exemplifies principles of embedded
system design that props safety and security using
operational errors management in frame of a dedicated
Computer-Based System architecture. After reviewing
basic principles of Cyber-Physical Systems as a novel
slant (or marker?) to modeling and design in this domain,
attention is focused on a real-world solution of a safety
and security critical embedded system application
offering genuine demonstration of that approach. The
contribution stresses those features that distinguish the
real project from a demonstration case study.

Keywords- safety; security; operational error; fault
management; embedded system design

I. INTRODUCTION
The integration of physical systems and processes

with networked computing has led to the emergence of
a new generation of engineered systems: Cyber-
Physical Systems (CPSs) [1]. Such systems use
computations and communication deeply embedded in
and interacting with physical processes to add new
capabilities to physical systems. Because computer-
augmented devices are everywhere, they are a huge
source of economic leverage. Embedded computers
allow designers to add capabilities to physical systems
that they could not feasibly add in any other way. By
merging computing and communication with physical
processes and mediating the way we interact with the
physical world, CPS bring many benefits: they make
systems safer and more efficient; they reduce the cost of
building and operating these systems; and they allow
individual machines to work together to form complex
systems that provide new capabilities. By merging
computing and communication with physical processes
and mediating the way we interact with the physical
world, CPS bring many benefits: they make systems
safer and more efficient, they reduce the cost of
building and operating these systems, and they allow
individual machines to work together to form complex
systems that provide new capabilities [1].

CPS domain paradigms [2] suggest considering
both application requirements, namely time constraints
defined by physical processes of the system
environment, and implementation aspects, namely

computation and communication capacity constraints,
from the beginning of system design. The design of a
CPS application should consider namely functionality
and dependability measures [3].

This paper deals with design of a petrol dispenser
control system as a CPS fitting special requirements not
only on functionality, but also on safety and security.
The key issue appears fault management in this case.
Many current design methods focus on elimination of
design errors, see e.g. [4], [5]. On the other hand,
operational errors caused by hardware faults, varied
environment, or by intentional security attacks are
treated by fault tolerance and fault avoidance safety
techniques or by security techniques usually during
implementation [5]. This paper presents principles
addressing operational errors management from the
beginning through all phases of design cycle.

While the next two sections briefly introduce the
Asynchronous Specification Language (ASL) [6],
which is deployed for simple behavioral descriptions of
the application, and dependability concepts applied, the
rest of paper presents the approach to operational errors
management with the design of a fuel dispenser control
device.

II. SPECIFICATION LANGUAGE
A formal specification asserts that a description has

precise and unambiguous semantics. The language of
specification should fit purposes of specification and be
appropriate for a description of the system. For
structured behavioral specifications of reactive systems,
process algebra CSP, temporal logic LTL and related
transition systems in frame of the model checker SPIN
[7] and the prover PVS [8] appear as most common
tools in the domain of small embedded applications.
For real-time systems, e.g. model checker UPPAAL [9]
and related timed automata can be used. Unfortunately,
none of these or similar generally available tools is
equipped, according to our knowledge, with a simple-
enough specification language that fits requirements on
modeling distributed, asynchronous, multi-clocked
systems implemented e.g. by multiple loosely
interconnected and communicating microcontrollers in
frame of a real-time application. That was the reason
why we developed ASL.

The specification language ASL employs
distributed sequential processes with message passing.
The real-time operational semantics of the language
stems from the event-count model of local time, which
represents a concept of physical timing stemming from
some periodic physical oscillation whose frequency fits
measurements of the duration of local process actions.
Timing semantics can be derived from logical time,
which is a partial ordering of events in the system, and
from a physical generator of periodic events, which
implements a real-time clock. An event-count, E,
counts the number of a specific type of events that have
occurred during execution. Each event occurrence
invokes the implicit operation ADVANCE(E): E:=E+1.
The explicitly callable operation AWAIT(E, s)
suspends the calling process until the value of E is at
least s. The call AWAIT(E, s) can reset the current
value of E, enabling relative counting. An event-count
monitors either a prescribed type of asynchronous
external events or periodic internal events that an
internal timer circuit implements as local-time clock
ticks. The following primitives relate to process
specification, timing, communication, and control.

process_name(is: list_of_s_inputs; os: list_of_s_outputs;
 ic: list_of_m_inputs; oc:list_of_m_outputs):
... endprocess;

wait(_, timeout); wait(event, _); wait(event, timeout, test);
send(message, destination);
loop ... [... when <cond> action ... exit;]* ... endloop;

Each of asynchronous processes can be equipped by
its individually timed local clock, can receive messages
through input buffer, and can send messages to other,
directly or indirectly addressable processes. Process
header contains in parentheses lists labeled by is, os, ic,
that act as the interface with the process' environment.
The language distinguishes between signal inputs or
outputs, which denote communication events signaling
their occurrence, and message inputs or outputs as
typed asynchronous channels between processes. Those
signals and messages provide inter-process
synchronization and communication, whose operations
are driven by the statements wait(_, timeout), wait(event, _),
wait(event, timeout, test), and send(message, destination).

The primitive wait(_, timeout) suspends a process for
the interval defined by the value timeout. Operational
semantics can be obtained through the event-count
abstraction introduced above: in this case, an event is
every tick of the local clock, so the related operation is
AWAIT(local_ticks, timeout_value). For the primitive
wait(event, _), which suspends a process until the
specified event (external signal or message) appears,
the model operation is AWAIT(event_type, 1). The
semantics of the combined statement wait(event, timeout,
test) requires two event-counts: the first anticipates the
specified event and the second, with a lower priority,
monitors the local clock. The reason of process

activation can be checked through the value of the
logical variable test: when the value is true, the event
occurred within the interval timeout.

The primitive send(message, destination) implements
asynchronous communication with non-blocking
semantics. To respect different local clocks, a special
clocking that is common for the source and the
destination controls the information transfer. However,
the nodes communicate asynchronously by message
passing through an input buffer at the destination. The
input of a message induces the event for the related
operation AWAIT(message, 1). If any synchronization
is required, it must be described explicitly using wait
statements.

The control structure primitives loop ... endloop
delimit an indefinite cycle, which is exited upon a true
result of testing the condition following the primitive
when. Consequently, the statements, which occur
between the action and exit primitives and which follow
the endloop primitive, are executed. This structured
statement enables to extend the language with
additional control structures by simple macro-like text
replacements such as

if <cond> then <s1> else <s2> fi;
 ~ loop when <cond> action <s1> exit;
 <s2> when true exit; endloop;

timeloop(timeinterval) ... endloop;
 ~ loop ... wait(_, interval); endloop;

Actually, the control structure timeloop(timeinterval) ...

endloop specifies an isochronous loop, which is
periodically initiated whenever the timeinterval expires
and which can be exited like the indefinite cycle. The
operation AWAIT(local_ticks, timeinterval_value)
defines the exact semantics of timing these initiations.

The associated rapid prototyping, which makes ASL
specifications executable, arises from attribute grammar
and Prolog deployment. Any Prolog interpreter can
drive expansion of an ASL specification into the related
executable code. This expansion is based on an attribute
grammar specifying both syntax and static semantics by
a definite clause grammar and Prolog rules. It provides
a simple language translator prototype, which tackles
the ASL as the input language, and a target executable
language as the output language. The resulted
prototyping technique uses interconnected node
prototype boards with microprocessors equipped with a
simple real-time operating system kernel. While the
timing and communication primitives are mapped onto
relevant real-time executive services and
communication services of the operating system kernel,
the rest of ASL specification is prototyped by the
executable code generated with the help of the Prolog
translator prototype presented in more detail by [6].

III. DEPENDABILITY
Dependability [10] is that property of a system that

allows reliance to be justifiably placed on the service it
delivers. A failure occurs when the delivered service
deviates from the specified service. Dependability
measures consist namely of reliability, availability,
security, safety and survivability. Availability is the
ability to deliver shared service under given conditions
for a given time, which means namely elimination of
denial-of-service vulnerabilities. Security is the ability
to deliver service under given conditions without
unauthorized disclosure or alteration of sensitive
information. It includes privacy as assurances about
disclosure and authenticity of senders and recipients.
Security attributes add requirements to detect and avoid
intentional faults. Safety is the ability to deliver service
under given conditions with no catastrophic affects.
Safety attributes add requirements to detect and avoid
catastrophic failures.

A failure occurs when the delivered service deviates
from the specified service. The failure occurred because
the system was erroneous: an error is that part of the
system state which is liable to lead to failure. The cause
of an error is a fault. Failures can be classified
according to consequences upon the environment of the
system. While for benign failures the consequences are
of the same order of magnitude (e.g. cost) as those of
the service delivered in the absence of failure, for
malign or catastrophic failures the consequences are not
comparable.

A fail-safe system attempts to limit the amount of
damage caused by a failure. No attempt is made to
satisfy the functional specifications except where
necessary to ensure safety. A mishap is an unplanned
event (e.g. failure or deliberate violation of maintenance
procedures) or series of events that results in damage to
or loss of property or equipment. A hazard is a set of
conditions within a state from which there is a path to a
mishap.

A fail-stop system never performs an erroneous
state transformation due to a fault. Instead, the system
halts and its state is irretrievably lost. The fail stop
model, originally developed for theoretical purposes,
appears as a simple and useful conception supporting
the implementation of some kinds of fail-safe systems.
Since any real solution can only approximate the fail-
stop behavior and, moreover, the halted system offers
no services for its environment, some fault-avoidance
techniques must support all such implementations.

Obviously, design of any safe system requires
deploying security to avoid intentional catastrophic
failures. And vice versa, system’s security can be
attacked using a safety flaw. The greater the assurance,
the greater the confidence that a security system will
protect against threads, with an acceptable level of risk.

IV. APPLICATION
The application concerns petrol dispenser with an

electronic counter/controller. The application appears as
(1) safety critical from the point of view of danger of
explosion in case of uncontrolled petrol issue and (2)
security critical from the point of view of danger of loss
of money in case of unregistered issue, see also [11],
[12], [13].

A. State-based System Description
A dispenser control system communicates with its

environment through two classes of I/O variables. The
first class describes an interface with volume meter (I),
pump motor (O), and main and by-pass valves (O) that
enable full or throttled issue. The timing for this class is
defined by flow velocity and measurement precision
requirements. Second class of I/O-variables models
human interface that must respect timing constants of
human-physiology. This class contains release signal,
unhooked nozzle detection, and product's unit prices as
inputs; as for outputs, volume and price displays belong
to this class.

The behavior of the higher level component can be
described by the following state sequences of a finite-
state automaton with states blocked-idle, ready, full
fuel, throttled and closed, and with inputs release,
(nozzle) hung on/off, close (the preset or maximal
displayable volume achieved), throttled (to slow down
the flow to enable exact dosage) and error:

blocked-idle release→ ready hung off→ full_fuel hung on→ blocked-idle
blocked-idle release→ ready hung off→ full_fuel throttle→ throttled hung on→
 hung on→ blocked-idle
blocked-idle release→ ready hung off→ full_fuel throttle→ throttled close →
 close → closed hung on→ blocked-idle
blocked-idle error → blocked-error
blocked-idle release→ ready error → blocked-error
blocked-idle release→ ready hung off→ full_fuel error → blocked-error
blocked-idle release→ ready hung off→ full_fuel throttle → throttled error →
 error → blocked-error

The states full_fuel and throttled appear to be
hazardous from the viewpoint of unchecked flow
because the motor is on and the liquid is under pressure
-- the only nozzle valve controls an issue in this case.
Also, the state ready tends to be hazardous: when the
nozzle is unhooked, the system transfers to the state
full_fuel with flow enabled. Hence, the accepted fail-
stop conception necessitates the detected error
management in the form of transition to the state
blocked-error. To initiate such a transition for flow
blocking, the error detection in the hazardous states is
necessary. On the other hand, the state blocked-idle is
safe because the input signal release can be masked out
by the system that, when some failure is detected,
performs the internal transition from blocked-idle to
blocked-error.

Of course, an equivalent of the above state
sequences can be derived more rigorously as the
Kripke-style semantics of Linear Temporal Logic
(LTL) formulae specifying a related transition system,
see e.g. [7], [8]. But such a formal approach was
refused by cooperating development engineers from
industry.

B. Incremental Measurement for Flow Control
The volume measurement and flow control

represent the main functions of the hazardous states.
The next applied application pattern, incremental
measurement, means the recognition and counting of
elementary volumes represented by rectangular
impulses, which are generated by a photoelectric pulse
generator. The maximal frequency of impulses and a
pattern for their recognition depend on electro-magnetic
interference characteristics. The lower-level application
patterns are in this case a noise-tolerant impulse
detector and a checking reversible counter. The first one
represents a clock-timed impulse-recognition
automaton that implements the periodic sampling of its
input with values 0 and 1. This automaton with b states
recognizes an impulse after b/2 (b>=4) samples with the
value 1 followed by b/2 samples with the value 0,
possibly interleaved by induced error values, see an
example timed-state sequence:

(0, q1) inp=0 → ... inp=0 → (i, q1) inp=1 → (i+1, q2) inp=0 → ... inp=0 → (j, q2) ...
 ... inp=1 → (k, qb/2+1) inp=1 → ...
... inp=1 → (m, qb-1) inp=0 → (m+1, qb) inp=1 → ... inp=1 → (n, qb) inp=0/IMP → (n+1, q1)
i, j, k, m, n are integers representing discrete time instances in
increasing order.

For the sake of fault-detection requirements, the

incremental detector and transfer path are doubled.
Consequently, the second, identical noise-tolerant
impulse detector appears necessary.

The subsequent lower-level application pattern
used provides a checking reversible counter, which
starts with the value (h + l)/2 and increments or
decrements that value according to the impulse detected
outputs from the first or the second recognition
automaton. Overflow or underflow of the pre-set
values of h or l indicates an error. Another counter that
counts the recognized impulses from one of the
recognition automata maintains the whole measured
volume. The output of the letter automaton refines to
two displays with local memories not only for the
reason of robustness (they can be compared) but also
for functional requirements (double-face stand). To
guarantee the overall fault detection capability of the
device, it is necessary also to consider checking the
counter. This task can be maintained by an I/O
watchdog application pattern that can compare input
impulses from the photoelectric pulse generator and the

changes of the total value; evidently, the appropriate
automaton provides again reversible counting.

Similarly like in the previous subsection, the more
formal approach can be based on some real-time
temporal logic, e.g. TLTL, or a more simple temporal
logic equivalent to counting automata, [9]. But again,
such a formal approach was rejected by cooperating
development engineers from industry.

C. Behavioral Specification
The demonstration of logical structure description

employs a fast process simulating both of the two
impulse-recognition automata together with the
reversible counter. The detection process sends a
message about a detected impulse to the slower meter
process, which sends a fuel-volume message to the
display process.

A high-level process simulates the previously
discussed behavior of the dispenser. For that reason, a
communication between the dispenser-control process
and the above-described lower-level processes must
proceed. Usually, the design progresses top-down.
Hence, the primarily designed fuel-stand process reads
the input variable fuel-volume. A next refinement
replaces the simple reading by the communication with
the meter process from the lower level. Similarly, the
write commands to block output expand to a
communications with the blocking process.
process detection (s: hang_off, hang_on; o: meter):
loop q0 := 1; q1 := 1; count := (h+l)/2; wait(hang_off, _);
 timeloop(sample_interval)
 read(in0,input0); read(in1,input1);
 if q0 <= n/2 then begin if in0 = 1 then q0 := q0 + 1 end
 else if in0 = 0 then q0 := q0 + 1;
 if q1 <= n/2 then begin if in1 = 1 then q1 := q1 + 1 end
 else if in1 = 0 then q1 := q1 + 1;
 if q0 >= n then begin q0 := 1; count := count - 1;
 send(impulse,meter) end;
 if q1 >= n then begin q1 := 1; count := count + 1 end;
 when l > count or count > h action write(true,block) exit;
 endloop;
 wait(hang_on, _);
endloop;
endprocess;

process meter (s: hang_off; i: impulse; o: display):
loop vol := 0;
 loop read(position,nozzle);
 if position = hang_on then begin vol:=0; wait(hang_off, _);
 send(vol,display) end;
 wait(impulse, _); vol := vol + 1;
 when vol > maxvol action write(true,block) exit;
 send(vol,display);
 endloop;
endloop; endprocess;
process display (i: vol):
loop write(vol, display1); write(vol, display2);
 wait(vol, update_interval, test); endloop;
endprocess;

D. System Structure Refinement
The reviewed design example complies with such

decisions as incremental measuring, periodic sampling
of impulses, doubling the incremental detector and
transfer path, and choosing the nozzle position for
synchronization. Evidently, these design patterns
support the considered fail-stop model.

Next patterns have to bring suitable solution of the
dispenser control system for achieving broader
applicability. Dispenser is a ranged product, so the
minimal production costs are required. This requirement
leads to a multi-purpose device for petrol, octane
mixture, petrol and additive mixture, or high-speed
diesel-oil issue, for the attendant station or for the self-
service station with cashier or with debit or credit
automaton or slot machine. One of the functions enables
to preset the fuel (centrally by the cashier or locally on
the stand) in volume or cash with the automatic
termination of the dose.

The physical design of the system is based on a
distributed architecture with optionally two or three
simple microcontrollers (if the preset unit has been
installed) as depicted on Figure 1. and Figure 2., see also
the following page. While the management system, if
present, participates in the data communication
architecture, the debit or credit automaton or slot
machine observes only volume impulses and rules
release, throttle, and close signals, completing product
issue independently.

The microcontrollers interact so the auxiliary (A)
and main (M) processors are configured front-end/back-
end with regard to impulse pipelining while the main
processor, M, preset unit processor, P, and/or
management system processor form a master/slave
configuration for the transfer of the preset or completed
fuel volume. The main microcontroller, M, implements
the volume meter, dose/cash counter, main display
service, and stand driver, including fuel control. The
auxiliary microcontroller, A, pre-processes the volume
impulses of both the possible liquids and implements
testing and checking functions. The preset unit
processor, P, serves both keyboard and local display and
calculates a volume equivalent if the pre-setting is in
cash. In between processors A and M there is a watch-
dog, designed for guarding the equivalent main display
increments with respect to the primary impulses. All
three processors share access to the actual unit prices
and mix-ratio through a multiplex driven by the main
processor.

Figure 1. Configuration

Remaining input is nozzle position. Outputs control

pump motor, main/throttle valves and signal lights
drivers. In the state blocked-idle with both valves closed
and the motor off, the red light only is on; in the state
ready with both valves closed and the motor off, the
green light only is on; in the states full fuel (both valves
opened, the motor on), throttled (the main valve closed,
the throttle valve opened, the motor on), and closed (both
valves closed, motor off) both lights are off; at last, the
state blocked-error (both valves closed, motor off) is
signaled by both lights on.

The detailed system logical design respects hard-
real-time limits for impulse inputs and a response-time
limit related to the preset fuel-dose completion.
Processes located to the main and auxiliary processors
are implemented in foreground/ background format so
that the time-critical sequences are triggered by
interrupts generated by local timers. The software of the
preset unit processor includes an isochronous loop for
keyboard debounce. The presence of the preset unit
and/or central cashier system has to be transparent for
the rest of the control system software. The framework
includes a corresponding data-communication protocol
that provides also optional installation of the preset unit,
and/or a management system, see the following
algorithmic specifications of the processes M and P.

Figure 2. Communication structure

process M (i: preset, confirmation; o: request, total):
transaction_m(peer, request, response, result)
 result := false; send(request, peer);
 wait(response, m_timeout, test); if test then result := true;
end;
loop
 dispenser_status := blocked-idle;
;dispenser_status = blocked-idle
 write(false, unblock);
 timeloop(repeat_interval)
 read(connected, C_ready)
 if connected then begin read(position, nozzle);
 if position = hang_on
 then begin
 transaction(C,request,preset,success);
 when success action exit; end;
 end
 else begin read(liberate, release);
 when liberate action preset:=(max_vol, mix_free) exit; end;
endloop;
 dispenser_status := ready;
;dispenser_status = ready
 if mix_ratio = mix_free
 then timeloop(repeat_interval)
 read(position, nozzle); when position=hang_off action exit;
 transaction_m(P, request, preset, success);
 when success action exit;
endloop;
 dispenser_status := full_fuel;
;dispenser_status = full_fuel
 write(true, unblock);
 .
 .
 dispenser_status := blocked-idle;
;dispenser_status = blocked-idle
 write(false,unblock);
 timeloop(repeat_interval)
 read(connected, C_ready); when not connected action exit;
 transaction_m(C, total, confirmation, success);

 when success action exit;
 endloop;
endloop
endprocess;

process P (i: request; o: preset):
transaction_s(peer, request, response, result)
 result := false; wait(request, s_timeout, test);
 if test then begin result := true; send(response, peer); end;
end;

loop .
;dispenser_status = ready
 write(connect_PM, switch);
 loop read(position, P_nozzle);
 when position = hang_off action exit;
 transaction_s(M,request, preset, success);
 when success action exit;
 endloop;
 write(hang_off,nozzle); write(connect_CM, switch);
;dispenser_status = full_fuel
 write(true, unblock);
endloop;
endprocess;

V. RESULTING FAULT MAINTENANCE CONCEPTS
After the text edit has been completed, the paper is

ready for the template. Duplicate the template file by
using the Save As command, and use the naming
convention prescribed by your conference for the name
of your paper. In this newly created file, highlight all of
the contents and import your prepared text file. You are
now ready to style your paper.

The application discussed appears as safety critical
because of (1) danger of explosion in the case of
uncontrolled petrol issue and (2) loss of money in the
case of unregistered issue. The first item, excepting
security management with debit or credit automaton and
slot machine, is resolved without any support of the
electronic counter/controller (nozzle with hydraulic
shut-off, hooked nozzle mechanical blocking, and
cashier administration). To prevent unregistered issue,
the fail-stop conception used appraises as more
acceptable the forced blocking of the dispenser with
preserved actual data on displays instead of an
untrustworthy issue. On the other hand, because
permanent blocking or too frequently repeated blocking
is inappropriate, the final implementation must employ
also fault avoidance techniques. The next reason for the
fault avoidance application stems from the fact that only
approximated fail-stop implementation is possible.

The configurations, so far introduced stepwise,
accomplish the fault management in the form of (a)
hazardous state reachability control and (b) hazardous
state maintenance. In all safe states (blocked-idle, closed,
and blocked-error), any fuel issue is disabled by power
hardware construction; in the same time, the contents of

all displays are protected against any change required by
possibly erroneous control system. The system is
allowed to reach hazardous states (ready, full fuel, and
throttled) when the processors successfully passed the
following tests: start-up checks, unit prices comparison,
inter-processor communication, and all-or-nothing
voting. The hazardous state maintenance includes
doubled input path check for a main product, mixture
ratio check for secondary product, watchdog check, and
passive display test.

After power reset, all microcontrollers installed
perform start-up checks, which encompass internal
RAM test, ROM checksum test, and timer functional
test. The dispenser can be released either by the cashier
at the petrol station management system through the
above depicted data communication protocol or by a
release signal from attendant/cashier, debit automaton,
credit automaton, or from slot machine. In the first case,
a communication transaction must proceed between the
dispenser's main processor and the management
system's processor; similarly, a local preset leads to a
communication transaction between the dispenser's main
and preset processors. When the nozzle is being
unhooked, all microcontrollers installed check the
multiplex function together with unit price settings,
which form two doubled independent inputs on dual
faced calculator for both possible products. After that,
all processors vote if the motor can be started and both
valves opened. All processors must agree to enable the
issue. If one of them votes against because one or more
of the previously mentioned tests have not passed, the
dispenser transfers to the state blocked-error and the issue
is blocked until next reset after repair.

When the dispenser issues a product mixture with a
ratio setup before the nozzle is unhooked, the above-
mentioned reversible counter performs the check of
main product impulses, which are doubled by doubling
the impulses source and the transfer path. Also, the
possible secondary product impulses are checked with
the adequate main product impulses and the ratio setup,
using similar reversible counter. The output information
changes, represented by low-order bit position sent to
volume displays, are checked by the watchdog--in this
case an independent hardware reversible counter--
against the main product impulses. As a result,
differences bigger than a tolerated value can also result
in issue blocking. The last test deals with the possibility
to check all 7 segments in all positions whenever a
button is pressed. An attendant can check if all display
positions exhibit the figures "8". When the button is
loosening, the actual output information, saved in
display buffers, appears on displays. In the case of a
detected error, the attendant must decide about proper
maintenance.

Of cause, the above-described patterns create only
skeleton carrying common fault-tolerant configurations.
In short, while auxiliary hardware components maintain
supply-voltage level and reset, nozzle position, and
release signals filtering and timing, the software
techniques, namely time redundancy or skip-frame
strategy; deal with non-critical inputs and outputs.

VI. CONCLUSIONS
This paper describes a fault management example in

frame of a safe and secure embedded system using
dedicated architecture. After reviewing the simple
specification language and dependability concepts
deployed, main attention is focused on hardware
architecture, software, and communication services
fitting the application requirements. The petrol dispenser
controller exemplifies in this case a real-world solution
of a safety and security critical embedded system
application. The presented paper updates and refines the
approach originally introduced in [14] for another
application.

The full behavioral specification discussed above
was prototyped using the technique mentioned at the
end of the section 2 that resulted in executable model
heavily utilized for experiments during not only early
design phases, but also later on when investigating
variants for reuse and re-design of the application. The
formal semantics of the ASL enabled also to develop a
related model-checking technique, which was used,
due to exponential complexity, to verify only selected
parts of the specification.

The reason of developing a new specification
language deals with its asynchronous, multi-clocking
nature together with overall simplicity, which was
required by measurement and pumping application
domain developers.

ACKNOWLEDGMENT
The research has been supported by the Czech

Ministry of Education in the frame of Research
Intentions MSM 0021630528: Security-Oriented
Research in Information Technology and MSM
0021630503: MIKROSYN: New Trends in
Microelectronic Systems and Nanotechnologies; and by
the Grant Agency of the Czech Republic through grant
GACR 102/08/1429: Safety and Security of Networked
Embedded System Applications.

REFERENCES
[1] Krogh, B.H., E. Lee, I. Lee, A. Mok, R. Rajkumar, L.R. Sha,

A.S. Vincentelli, K. Shin, J. Stankovic, J. Sztipanovits, W.
Wolf, and W. Zhao, Cyber-Physical Systems, Executive
Summary, CPS Steering Group, Washington D.C., 16pp.,
March 6, 2008.
[http://www.nsf.gov/pubs/2008/nsf08611/nsf08611.htm]

[2] Stankovic, J.A., I. Lee, A. Mok, and R. Rajkumar,
“Opportunities and obligations for physical computing
systems,” IEEE Computer, November 2005, pp.23-31.

[3] Jackson, E.K. and J. Sztipanovits, “Correct-ed through
Construction: A Model-based Approach to Embedded Systems
Reality,” Proceedings 13th Engineering of Computer-Based
Systems, IEEE Computer Society, Los Alamitos, CA, 2006,
pp.164-173.

[4] Bowen, J. P., and M. G. Hinchey, High-Integrity System
Specification and Design, Springer, New York, 1999.

[5] Henzinger, T.A. and J. Sifakis, “The discipline of embedded
systems design,” IEEE Computer, Vol.40, No.10, 2007,
pp.36-44.

[6] Sveda, M., and R. Vrba, “Executable Specifications for
Distributed Embedded Systems,” IEEE Computer, Vol.34,
No.1, 2001, pp.138-140.

[7] Holzmann, G.J., “The Model Checker Spin,” IEEE
Transactions on Software Engineering, Vol.23, No.5, 1997,
pp.279-295.

[8] Owre, S., J. Rushby and N. Shankar, “PVS: A Prototype
Verification System, Automated Deduction,” (D. Kapur, Ed.),
Lecture Notes in Artificial Intelligence, Springer, New York,
USA, Vol.607, 1992, pp.748-752.

[9] Larsen K.G., L. Pettersson, Wang Yi, “Uppaal in a Nutshell,”
Int. Journal on Software Tools for Technology Transfer, Vol.1,
No.1-2, 1997, pp.134-152.

[10] Melhart, B. and S. White, “Issues in Defining, Analyzing,
Refining, and Specifying System Dependability
Requirements,” Proceedings ECBS'2000, IEEE CS, Edinburgh,
Scotland, 2000, pp.334-340.

[11] Sveda, M., “Formal Specs Reuse with Embedded Systems
Design -- Behavioral and Architectural Specifications in Real-
Time Application Domains,” Proceedings ICONS 2007, IEEE
CS, New York, USA, 2007, pp.11-16.

[12] Sveda, M., "Application Patterns for CBS Design Reuse."
Proceedings of the IEEE Conference and Workshop ECBS'99,
Nashville, TN, USA, IEEE Computer Society Press 1999,
pp.92-98.

[13] Sveda, M., "Embedded System Design: A Case Study."
Proceedings IEEE Symposium and Workshop ECBS'96,
Friedrichshafen, Germany, IEEE Computer Society Press, Los
Alamitos, California, 1996, pp. 260-267.

[14] Sveda, M., “Fault Management for Secure Embedded
Systems,” Proceedings ICONS 2009, IEEE Computer Society,
New York, USA, 2009, pp.23-28.

	I. Introduction
	II. Specification language
	III. Dependability
	IV. Application
	A. State-based System Description
	B. Incremental Measurement for Flow Control
	C. Behavioral Specification
	D. System Structure Refinement

	V. Resulting fault maintenance concepts
	VI. Conclusions
	Acknowledgment
	References

