
Calculi with coercive subtyping

{libor,xkollar2}@fi.muni.cz,

{ipeterka,rysavy,kolar}@fit.vutbr.cz



Motivation

Current state:

▶ Subtyping was studied extensivelly for systems with dependent
types, most notably by Aspinall, Luo, Chen.

▶ Coercions are implemented in proof systems (LEGO, Coq,
Plastic).

Intended contribution:

▶ Find a substantial form of subtyping that can “live” in systems
of lambda cube and does not harm the desired properties.

▶ Make metatheoretical examination of these systems easier
(transitivity, coherence, dependence between rules).

▶ Allow for incremental development of calculi by extending the
basic subtyping systems in a “safe way”.

▶ Apply the method to design of a calculus with dependent
types and subtyping.



Subtyping

Subtyping judgement
Γ ` A ≤ B

“More intuitionistic” view: subtyping witnessed by coercion

Γ ` κ : A ≤ B



Coercions

Simple coercions are just insertive mappings

κen : EvenNats ↪→ Nats

Parametric coercions are lifted mappings

parameterized either by types (in λω≤)

κbt : BinTree ≤ Tree

κbt α : BinTree α ↪→ Tree α

or by values (in λP≤)

κvb : Vec ≤ Bag

κvb n : Vec n ↪→ Bag n



Approach

▶ Take coercive subtyping as a fundamental concept.

▶ Every new type comes with a subtyping rule.

▶ Subtyping rule of arrow type:

→-sub

Γ ` κ1 : A′ ↪→ A Γ ` κ2 : B ↪→ B′

Γ ` (λf :A→B.κ2 ◦ f ◦ κ1) : (A→ B) ↪→ (A′ → B′)

▶ What form should coercion terms have?

▶ We do not have general subsumption rule, rather subsumption
is done when it is really necessary.



Coercion inference problem

▶ Coercion involvement (subsumption) is limited to certain rules
only.

▶ Functional application is a suitable one:

Γ ` M : Πx :A.B Γ ` κ : A′ ≤ A Γ ` N : A′

Γ ` M N : [x := N]B

Coercion inference algorithm:

▶ Input: A,A′,Γ

▶ Output: κ

Use the output of the algorithm to make all coercions explicit.
The resulting term is typeable in the type system without
subtyping.



The context of λ-cube

�! �P �P!�!�2 �P2 �C�!
(�;�)(�;�)(�; �)

o oP oP!o!o2 oP2 oCo!(�; �)



Minimal System o≤

A λ-free fragment common to all λ-cube calculi with coercive
subtyping.

Γ-empty

〈〉 ` ?

Γ-term

Γ ` A : ?

Γ, x :A ` ?

Γ-type

Γ ` ?

Γ, α:? ` ?

Γ-sub

Γ ` A : ?

Γ, κ:α≤A ` ?

Γ-var-type

Γ ` ? α:? ∈ Γ

Γ ` α : ?

Γ-var-term

Γ ` ? x :A ∈ Γ

Γ ` x : A

Γ-var-sub

Γ ` ? κ:α≤A ∈ Γ

Γ ` κ : α ≤ A

s-tran

Γ ` κ2 : α2 ≤ A κ1:α1≤α2 ∈ Γ

Γ ` κ1 ◦ κ2 : α1 ≤ A

ι-sub

Γ ` A : ?

Γ ` ιA : A ≤ A



Calculi with subtyping

Π-form

Γ ` A : s1 Γ, x :A ` B : s2

Γ ` Πx :A.B : s2

s1, s2 ∈ {?,□}

Π-intro

Γ, x :A ` M : B Γ ` Πx :A.B : s

Γ ` λx :A.M : Πx :A.B
s ∈ {?,□}

Π-elim

Γ ` M : Πx :A′.B Γ ` N : A Γ ` κ : A ≤ A′

Γ ` M N : [x := N]B

Π-sub

Γ ` κ1 : A ≤ A′ Γ, x :A ` κ2 : B ≤ B′

Γ ` λ(f : Πx :A.B).κ2 ◦ f ◦ κ1 : Πx :A′.B ≤ Πx :A.B′



λI-sub

Γ ` A : s

Γ, x :A ` K : □ Γ, x :A ` B,B′ : K Γ, x :A ` κ : B ≤ B′

Γ ` λx :A.κ : (λx :A.B) ≤ (λx :A.B′)

where s ∈



















∅ in λ→, λ2
{?} in λP, λP2
{□} in λω, λω

{?,□} in λPω, λC

λE-sub

Γ ` C : Πx :A.K Γ ` C ′ : Πx :A.K
Γ ` κ : C ≤ C ′ Γ ` M : A

Γ ` κM : C M ≤ C ′M



Example 1 (λω≤)

If every α-valued list can be viewed as an α-valued bag (multiset),
then the type constructor List is a subtype of type constructor Bag.

κ : List ≤ Bag ∈ Γ

Γ, α:? ` κ : List ≤ Bag Γ, α:? ` α : ?

Γ, α:? ` κ α : List α ≤ Bag α
λE-sub

Γ ` λα: ? .κ α : λα: ? .List α ≤ λα: ? .Bag α
λI-sub



Example 2 (λP≤)

▶ Primitive coercions are introduced in the context in the form
of κ : α ≤ A : (Πx1:A1 . . . xn:An.?).

▶ Coercion is a parametrized mapping:
κ : πx1:A1 . . . xn:An.α x1 . . . xn → A x1 . . . xn.

If every vector of positive values can be viewed as a vector of the
same length, then the type family of vectors of positive values is a
subtype of type family of vectors of arbitrary values.

κ : PVec ≤ Vec ∈ Γ

Γ, n:nat ` κ : PVec ≤ Vec Γ, n:nat ` n : nat

Γ, n:Nat ` κ n : PVec n ≤ Vec n
λE-sub

Γ ` λn:Nat.κ n : λn:Nat.PVec n ≤ λn:Nat.Vec n
λI-sub



Special Case:

Dependent-type calculus with simple coercions

Take λP≤ and constrain subtyping to simple types.
We get a calculus called λP↪→ with simple coercions.

Properties of this calculus:

▶ subject reduction

▶ strong normalization

▶ decidability of typechecking

Subtyping properties:

▶ transitivity elimination

▶ anti-symmetry

▶ coherence



Conclusion

▶ Development of a particular calculus can benefit from the
regularity of its context.

▶ Careful choice of inference rules makes the calculus simpler.

▶ Substantional parts of proofs can be reused.



Future work

▶ More general introduction of primitive coercions (modelling
multiple inheritance).

▶ Thorough inspection of all vertices of subtype-extended
λ-cube.

▶ Step towards programming languages: including Σ-types,
records, objects.





Coercion Terms for Subkinding

λω≤ (□,□) :
Γ, α:? ` κ : K ≤ K ′ Γ ` K ,K ′ : □

Γ ` Λα: ? .κ : (Πα: ? .K ) ≤ (Πα: ? .K ′)

λP
≤ (?,□) :

Γ ` κ1 : A ≤ A′ Γ, x : A ` κ2 : K ≤ K ′

Γ ` Λf :(Πx :A.K ).κ2 ◦ f ◦ κ1 : Πx :A′.K ≤ Πx :A.K ′



Coercive Subtyping

Simple Coercions – type ≤ type

▶

▶ even ≤ nat, πx : nat.(A x) ≤ πx : even.(A x)

Parametrised Coercions – family of types ≤ family of types

▶

▶ ∀n: ? .List n ≤ Bag n

Dependent Coercions – type ≤ family of types

▶ Luo & Soloviev (1999)

▶ l :List A ≤c Vec A (len l)


