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Abstract. Since chip multiprocessors are quickly penetrating new application 
areas in network and media processing, their interconnection architectures be-
come a subject of sophisticated optimization. One-to-All Broadcast (OAB) and 
All-to-All Broadcast (AAB) [2] group communications are frequently used in 
many parallel algorithms and if their overhead cost is excessive, performance
degrades rapidly with a processor count. This paper deals with the design of a 
new application-specific standard genetic algorithm (SGA) and the use of Hy-
brid parallel Genetic Simulated Annealing (HGSA) to design optimal commu-
nication algorithms for an arbitrary topology of the interconnection network. 
Each of these algorithms is targeted for a different switching technique. The 
OAB and AAB communication schedules were designed mainly for an asym-
metrical AMP [15] network and for the benchmark hypercube network [16] us-
ing Store-and-Forward (SF) and Wormhole (WH) switching.

1   Introduction

With parallel and distributed computing coming of age, multiprocessor systems are 
more frequently found not only in high-end servers and workstations, but also in 
small-scale parallel systems for high performance control, data acquisition and analy-
sis, image processing, networking processors, wireless communication, and game 
computers. The design and optimization of hardware and software architectures for 
these parallel embedded applications have been an active research area in recent 
years. For many cases it is better to use several small processing nodes rather than a 
single big and complex CPU. Nowadays, it is feasible to place large CPU clusters on a 
single chip (multiprocessor SoCs, MSoCs), allowing both large local memories and 
the high bandwidth of on-chip interconnect.

One of the greatest challenges faced by designers of digital systems is optimizing 
the communication and interconnection between system components. As more and 
more processor cores and other large reusable components have been integrated on 
single silicon die, a need for a systematic approach to the design of communication 
part has become acute. One reason is that buses, the former main means to connect the 
components, could not scale to higher numbers of communication partners. Recently 



the research opened up in Network on Chip (NoC) area, encompassing the intercon-
nection/communication problem at all levels, from physical to the architectural to the 
OS and application level [1]. 

Presently, there are many different interconnection network topologies for general 
purpose multiprocessors, but new networks for specific parallel applications can still 
be created. Whereas the lower bounds on the time complexity of various group com-
munications (in terms of required number of communication steps) can be mathemati-
cally derived for any network topology and the given communication pattern, finding 
a corresponding schedule of communication is more difficult and in some cases it is 
not known as yet. The rest of the paper addresses the quest for an optimal communica-
tion schedule based on evolutionary algorithms, provided that network topology and a 
communication pattern are given.

2   Models of Communications

Communications between two partners (p2p) or among all (or a subset) of partners 
engaged in parallel processing have a dramatic impact on the speedup of parallel ap-
plications. Performance modelling of p2p and group communications is therefore 
important in design of application-specific systems. A p2p communication may be 
random (input data dependent) as far as source-destination pair or a message length is 
concerned. However, in many parallel algorithms we often find certain communication 
patterns, which are regular in time, in space, or in both time and space; by space we 
understand spatial distribution of processes on processors. Communications taking 
place among a subset or among all processors are called group or collective communi-
cations. Examples of these may serve One-to-All Broadcast (OAB), All-to-All Broad-
cast (AAB), One-to-All Scatter (OAS, a private message to each partner), All-to-One 
Gather (AOG), All-to-All Scatter (AAS), permutation, scan, reduction and others [2]. 
Provided that the amount of computation is known, as is usually true in case of appli-
cation-specific systems, the only thing that matters in obtaining the highest perform-
ance are group communication times. 

The simplest time model of communication uses a number of communication steps 
(rounds): point-to-point communication takes one step between adjacent nodes and 
a number of steps if the nodes are not directly connected. 

Two types of switching are used in this article. The first one is distance-sensitive 
Store-and-Forward (SF). Each intermediate node on the path firstly receives the whole 
message and then sends it to adjacent node in the next possible communication step. 
The second type of switching is called wormhole (WH) switching. Here several p2p 
messages between source-destination pairs, not necessarily neighbours can proceed 
concurrently and can be combined into a single step if their paths are disjoint. Of 
course, for simplicity, we assume no contention for channels and no resulting delays. 
An example of these switching techniques is shown in Fig. 1.

Further, we have to distinguish between unidirectional (simplex) channels and bi-
directional (half-duplex, full-duplex) channels. The number of ports that can be en-
gaged in communication simultaneously (1-port or all-port models of routers) has also 



an impact on number of communication steps and communication time, as well as if 
nodes can combine/extract partial messages with negligible overhead (combining 
model) or can only retransmit/consume original messages (non-combining model). 

We used all-port non-combining model in our experiments. The goal was to find 
communication algorithms whose time complexity is as close as possible to mathe-
matically derived lower bounds on number of communication steps.

Fig. 1. Basic type of switching techniques

In our experimental runs mostly the well known hypercube [16] and AMP network 
[15] topologies were tested. Optimal schedules for the former topology are known and 
can therefore be used to evaluate quality of used algorithms; the feature of the latter 
topology (for which optimal schedules are unknown) is, that the number of nodes with 
degree d that can be connected in a network is maximum. 

Fig. 2. 32 processors AMP topology and 16 processors hypercube topology
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3   Discrete Optimization Algorithms

Combinatorial search and optimization techniques in general are characterized by 
quest for a solution to a problem from among many potential solutions. For many 
search and optimization problems, exhaustive search is infeasible and some form of 
guided search is undertaken instead. In addition, rather than only the best (optimal) 
solution, a good non-optimal solution is often sought.

3.1   Standard Genetic Algorithm (SGA)

Genetic algorithm [3] is a powerful, domain-independent search technique. SGA is a 
population-based computational model that uses selection and recombination opera-
tors to generate new samples in the search space. A chromosome, consisting of genes, 
represents one encoded solution from the search space. The values of genes are re-
ferred to as alleles. The chromosomes form population, which changes through the 
evolution process. The reproduction process is performed in such a way that chromo-
somes, which represent better solutions, are given more chances to reproduce than 
those chromosomes, which represent poorer solutions. The fitness function (a measure 
of quality) of chromosomes is defined in the frame of the population. The fitness func-
tion is applied to genotype (chromosomes) for evaluating phenotype (decoded form of 
the chromosome). 

One point crossover and integer bound mutation were used as recombination opera-
tors and tournament selection as selection operator.

3.2 Hybrid Parallel Genetic Simulated Annealing (HGSA)

HGSA [7] is a hybrid method that uses parallel Simulated Annealing (SA) [10] with 
the operations used in standard genetic algorithms [8]. In the proposed algorithm, 
several SA processes run in parallel. After a number of steps (after every ten iterations 
of Metropolis algorithm), the crossover is used to produce new solutions.

During communication, which is activated each 10th iteration of Metropolis algo-
rithm, all processes sends their solution to a master. The master keeps one solution for 
himself and sends one randomly chosen solution to each slave. The selection is based 
on the roulette wheel, where the individual with the best value of the fitness function 
has the highest probability of selection.

After communication phase, all processes have two individuals. Now the phase of 
genetic crossover starts. Two additional children solutions are generated from two 
parent solutions using double-point crossover. The solution with the best value of the 
fitness function is selected and mutation is performed: always in case of the parent
solution, otherwise with a predefined probability. Mutation is performed by randomly 
selecting genes and by randomly changing their values. A new solution of each proc-
ess is selected from the actual solution provided by SA process and from the solution, 
which was obtained after genetic mutation. The selection is controlled by well-known 
Metropolis criterion.



4   OAB and AAB Communication Patterns

OAB (One-to-All Broadcast) [4, 5] is a collective communication pattern. In this case, 
one node (initiator) distributes the same message to all other nodes in the interconnec-
tion network. If only node subset takes part in communication, we talk about multicast 
communication pattern (MC). This communication (as well as OAS [11, 12] with 
distinct messages to receiving nodes) can be performed by sequentially sending the 
message to particular nodes. This way is very inefficient because only one node sends 
the message in each communication step. However we can use a better technique 
using a broadcast tree when every node that received the message in previous commu-
nication step becomes an initiator of new multicast communication. Consequently, the 
number of informed nodes increases by dk instead by d, where d is the node degree 
and k is number of communication step. 

The goal of the proposed evolutionary algorithm is to find such a broadcast tree 
(communication schedule) that it will be possible to inform all nodes in the minimal 
number of communication steps. A resulting communication schedule has to be con-
flict-free, i.e. only one message can be transmitted via the same link in the same step 
and the same direction.

Optimal communication schedules for OAB communication pattern using store and 
forward and wormhole switching technique on eight nodes ring topology are shown on
the left side of Fig. 3. Broadcast trees are shown on the right side.

Fig. 3. The optimal OAB schedules for 8 nodes ring topology and the relevant broadcast trees.

The lower bounds on the number of communication steps for the all-port hypercube 
and AMP topology are shown in Tab. 1. Parameters of the interconnection network in 
Tab. 1 are: processors count P, network diameter D, node degree d, bisection width 
BC, and average distance da.
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Table 1. Lower bounds on number of communication steps (all-port models) [13]

SF hypercube  WH hypercube SF AMP WH AMP

OAB D (= d) d/log ( d+1) D log d+1 P 
AAB (P – 1)/d (P – 1)/d (P – 1)/d (P – 1)/d

5   Design of Algorithms

The goal of proposed algorithms is to find a schedule of a group communication with 
the number of steps as close as possible to the above lower bounds. The solution of 
this optimization problem by means of evolutionary algorithms may be decomposed 
into several phases. In the first phase, it is necessary to choose a suitable encoding of 
the problem into a chromosome. The second step is a definition of the fitness function, 
which determines quality of a chromosome. The next phase is design of the input data 
structure for the evolutionary algorithm. The last phase includes experimental runs of 
the evolutionary algorithm and search for the best set of its parameters. The choice of 
parameters should speed-up the convergence of the algorithm and simultaneously 
minimizes a probability of getting stuck in local minima.

5.1   Solution encoding

Different encodings were used for each optimization algorithm according to the 
switching technique. We used an indirect encoding for OAB with wormhole switching 
optimized by SGA algorithm. Thus a chromosome does not include a decision tree, 
but only instructions how to create it from chromosome. Any chromosome consists of 
P genes. Every gene corresponds to one destination node. Individual genes include 
three integer values. The first one is a source node index. The second one determines 
the shortest path along which the message will by transmitted. The last one is a com-
munication step number when the communication will be performed.

The main disadvantage of this encoding is formation of inadmissible solutions dur-
ing process of genetic manipulation. We say that a solution is inadmissible if it is not 
possible to construct correct broadcast tree from it. An example of inadmissible solu-
tion can be a case when some node receives a message in a given step from a node 
that has not received the message yet. That is why admissibility verification has to be 
carried out for every solution before every fitness function evaluation and if the need 
be, the restoration will be accomplished. In Fig. 4, a chromosome for wormhole OAB 
communication patter for the 8-node ring topology is presented.



Fig. 4. Encoding of broadcast tree in chromosome for SGA case

Very simply encoding of SF OAB communication pattern has been chosen for 
HGSA. Every chromosome consists of P genes, where P is a number of processors in 
a given topology. The gene’s index represents the destination processor for a message. 
The gene consists of two integer components. The first component is an index of one 
of the shortest path from source to destination. The second component is a sequence 
of communication links on the path. Fig. 5 illustrates an example of this encoding. The 
source processor has index 0. For completeness the chromosome includes also com-
munication from source to source processor, but this communication is not realized. 
This gene is included only for the easier evaluation of the fitness function.

The main advantage of this encoding is a short chromosome and the absence of in-
admissible solutions (every message is transmitted from the source to a destination). 
The main disadvantage is a large number of possible values of the first gene compo-
nent. The number of the values rapidly increases with the distance from source to 
destination as there are more shortest paths between them. 

Fig. 5. The structure of chromosome of HGSA in case of OAB

The AAB chromosome is an extension of a vector to matrix for both optimization 
algorithms SGA and HGSA. An AAB chromosome is composed of P OAB chromo-
somes as every processor performs OAB.
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5.2   The fitness function

The fitness function evaluation is the same for both proposed algorithms. It is based 
on testing of conflict-freedom. We say that two communication paths are in conflict if 
and only if they use the same communication link in the same time and in the same 
direction (see Fig. 6). The fitness function is based on conflict counting. The optimal 
communication schedule for the given number of communication steps must be con-
flict-free. If the conflict occurs, the schedule can not be used in real application.

Conflict Conflict-free

Fig. 6. Conflict in a communication schedule

5.3   The shortest paths algorithm

This algorithm generates all shortest paths and saves them in the operating memory 
into a specific data structure. The generating algorithm [6] is inspired by the breadth-
first search algorithms BFS. BFS is based on the searching a graph, where the source 
processor is chosen as a root. The edges create a tree used in searching process. A tree 
is gradually constructed, one level at a time, from the root that is assigned an index of 
a source node. When a new level of the tree is generated, every node at the lowest 
level (leaf) is expanded. When a node is expanded, its successors are determined as all 
its direct neighbours except those, which are already located at higher levels of the 
tree (it is necessary to avoid cycles). Construction of the tree is finished when a value 
of at least one leaf is equal to the index of a destination node. Destination leaves’ 
indices confirm the existence of searched paths, which are then stored as sequences of 
incident node indices.

5.4 Heuristics

In SGA a new heuristic for chromosome restoration was used. The restoration (correc-
tion of the broadcast tree) proceeds subsequently in particular communication steps. 
For every node we check if it receives the message from the node that has already 
received it in some previous communication step. As far as this condition is not satis-
fied, the source node of this communication is randomly replaced by a node that al-



ready has the message. Further, it is necessary to check already used shortest paths. 
There is a finite number of the shortest paths from every source to every destination 
node. If the second gene component (the index path) exceeds this value, the modulo 
operation will be applied to this gene component.

In HGSA two heuristics are used to speed up the convergence to a sub-optimal so-
lution. They decrease the probability of being trapped in local optima during the exe-
cution. The idea is a simple reduction of the path length. The first heuristics is used 
after the initialization of HGSA and then after each application of Metropolis algo-
rithm. The length of the path from the source to the destination node has some value. 
If the end node occurs in another gene with a smaller length, than the length and the 
path in the original gene are changed accordingly. 
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Fig. 6. : Reduction shorter path according to longer path

The second heuristics is used in all surveyed collective communications. It removes 
using proper setting of the communication step for several nodes incident with the 
examined path. It means really to endeavour after suspending message in the node 
during the usage of the same link by another message. However, this changing must 
not increase the number of the communication steps of the optimal schedule.

In the case that above presented way doesn’t lead to improvement, it tries other 
way and it is endeavor after the fastest sending message from source to destination.

6. Experimental Results

Both sequential SGA and parallel HGSA have been implemented in C/C++. They use 
only standard C and C++ libraries to ensure good portability. HGSA implementation 
uses MPI [9] routines for message passing and can therefore be compiled and run on 
any architecture (clusters of workstations, MPPs, SMPs, etc.) for which an implemen-
tation of MPI standard is available.

The proposed algorithms were verified on some multiprocessor topologies (e.g. 
Midimew, K-Ring...). Two topologies were examined most intensively, namely five 
cases of hypercubes and five cases of AMP network topologies were used. Other to-
pologies were tested only in 8-node configuration. 



The theoretical time complexity in terms of a minimal number of communication 
steps can be derived for all examined topologies. Theoretical lower bounds of tested 
topologies are shown in Tab. 2. 

Table 2. Theoretical lower bounds of tested topologies

Lower bounds Hyper-8 Hyper-16 Hyper-32 Hyper-64 Hyper-128
OAB 2 2 2 3 3
AAB 3 4 5 6 7

AMP-8 AMP-23 AMP-32 AMP-42 AMP-53
OAB 2 2 3 3 3
AAB 2 6 8 11 13

K-ring Midimew Moore Octagon Ladder
OAB 2 2 2 2 4
AAB 2 2 3 3 4

Parameters of SGA were set to the same values for all runs, i.e. probability of 
crossover 70%, probability of mutation 5%. 10 runs of SGA were performed for each 
topology, whereas the size of population was set on the value, in which success rate 
was better than 50%.

Parameters of HGSA were set to the same values for all runs too, i.e. 10 computers 
in the master slave architecture, the length of communication interval between master 
and slave was each 10’s iterations of Metropolis algorithm 10/10 (OAB/AAB), start 
temperature 100, number of iterations in each temperature phases was 10, gradient of 
cooling 0.9/0.99 (OAB/AAB). 15 runs of HGSA were performed for each topology.

We counted only the successful completions, i.e. those reaching the global opti-
mum. The success rate of both algorithms (SGA and HSGA) was measured and com-
pared. If we compare success rate (Tab. 3) of AMP-23 and AMP-32 topology, we see 
that the success rate is better for more complex topology. While for AMP-23 not 
rounded time complexity is 1.94 steps, for AMP-32 it is 2.15 steps. The time com-
plexity of optimal communication schedule can not exceed two communication steps 
in the first case whereas it can be split into three steps in the second case. By compar-
ing not rounded and rounded time complexities we can make a conclusion, that in the 
case of AMP-32 topology, much more interconnection links remain unused and the 
evolutionary algorithm has more space to find the optimal schedule. The same abnor-
mality can be seen in some other topologies (hyper-32 and hyper-64). The success rate 
100% was achieved for all other examined topologies.

The presented data of HGSA deserves some comments. Firstly, OAB (SF) is quite 
a simple operation and therefore the algorithm is likely to find an optimal solution 
even for larger architectures. Optimal solutions have already been found for topolo-
gies with up to 32 processors and acceptable results have been attained for AAB. 
A further improvement of these results can be expected in the future, because number 
of experiments, which could be carried out so far, was limited by the overall run time 
required for optimization (many hours if optimal solutions are sought). On the other 
hand, if we need an acceptable solution quickly, the proposed algorithms allow to 



accept a larger number of communication steps and the solution is found in much 
shorter time.

Table. 3. Success rate in achieving the optimum schedule

Hyper-8 Hyper-16 Hyper-32 Hyper-64 Hyper-128
SGA – OAB 100% 100% 50% 60% 50%
HGSA - OAB 100% 100% 100% 100% 100%
SGA – AAB 70% 20% - - -
HGSA - AAB 100% 80% - - -

AMP-8 AMP-23 AMP-32 AMP-42 AMP-53
SGA – OAB 100% 50% 100% 60% 50%
HGSA - OAB 100% 100% 100% 100% 100%
SGA – AAB 70% 30% 10% - -
HGSA - AAB 100% 80% 10% - -

7   Conclusions

Optimization of communication schedules by means of the proposed evolutionary 
algorithms has been successful. Optimal communication schedules achieve the lower 
bounds of communication steps derived from graph-theoretical properties of intercon-
nection networks. It is evident that optimum schedules can speed-up execution of 
many parallel programs that use collective communication as a part of their algorithm. 

We have tested two types of evolutionary algorithms. The first one is standard ge-
netic algorithm SGA and the second one HGSA is a composition of parallel simulated 
annealing and the standard genetic algorithm. Both presented algorithms are able to 
find an optimal schedule of the given communication pattern for arbitrary network 
topology, each one with sufficient efficiency. 

The future work will be focused on the communication patterns OAS and AAS in 
case of HGSA and OAB, AAB in case of Estimation of Distribution Algorithms 
(EDA) [14]. We will implement the multicriterial optimization in EDA algorithms 
(without the need not to enter the number of communication steps) and to design and 
implement more efficient heuristics for HGSA. 

Importance and novelty of above goals should be emphasized. Algorithms, which 
would be able to find all types of collective communication on any regular or irregular 
topology, were not published so far in spite of a growing importance especially for 
multiprocessors on chips.
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