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 A B S T R A C T

Speaker-attributed automatic speech recognition (ASR) in multi-speaker environments remains 
a significant challenge, particularly when systems conditioned on speaker embeddings fail 
to generalize to unseen speakers. In this work, we propose Diarization-Conditioned Whisper 
(DiCoW), a novel approach to target-speaker ASR that leverages speaker diarization outputs 
as conditioning information. DiCoW extends the pre-trained Whisper model by integrating 
diarization labels directly, eliminating reliance on speaker embeddings and reducing the need 
for extensive speaker-specific training data. Our method introduces frame-level diarization-
dependent transformations (FDDT) and query-key biasing (QKb) techniques to refine the model’s 
focus on target speakers while effectively handling overlapping speech. By leveraging diarization 
outputs as conditioning signals, DiCoW simplifies the workflow for multi-speaker ASR, improves 
generalization to unseen speakers and enables more reliable transcription in real-world multi-
speaker recordings. Additionally, we explore the integration of a connectionist temporal 
classification (CTC) head to Whisper and demonstrate its ability to improve transcription 
efficiency through hybrid decoding. Notably, we show that our approach is not limited to 
Whisper; it also provides similar benefits when applied to the Branchformer model. We validate 
DiCoW on real-world datasets, including AMI and NOTSOFAR-1 from CHiME-8 challenge, as 
well as synthetic benchmarks such as Libri2Mix and LibriCSS, enabling direct comparisons with 
previous methods. Results demonstrate that DiCoW enhances the model’s target-speaker ASR 
capabilities while maintaining Whisper’s accuracy and robustness on single-speaker data.

. Introduction

The rapid development of deep learning techniques and vast increases in available training data and computing resources have 
ade low-error-rate ASR systems on single speaker recordings viable at reasonable latencies (Li et al., 2022). Consequently, the 
esearch community has focused (Watanabe et al., 2020; Yu et al., 2022; Cornell et al., 2023, 2024b) on the more challenging task 
f multi-speaker ASR, whose goal is the accurate transcription of multiple speakers in a recording, including speaker-attributed ASR, 
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whose goal is also to assign a speaker label to each spoken word. In this work, we focus on speaker-attributed ASR by adapting a 
single-speaker ASR system using speaker diarization information to produce transcripts for all speakers.

Speaker-attributed ASR-systems that combine diarization and speech recognition usually operate in one of three ways: (a) 
running ASR and diarization independently, capturing the respective word and timing information from each, and using this timing 
information to assign words to speakers throughout a long conversation (Bhandari et al., 2024); (b) using a fully cascaded pipeline 
where various orderings of diarization, speaker extraction or source separation are combined with ASR (Yoshioka et al., 2019; Raj 
et al., 2021); and (c) using target speaker ASR (TS-ASR), where, in lieu of any source extraction or separation, the original audio is 
directly input along with speaker conditioning, so that the system transcribes the speech belonging to the conditioned speaker (Kanda 
et al., 2019).

The conventional approach to TS-ASR is to extract speaker embeddings corresponding to the target speaker and to have these 
embeddings as an auxiliary input to the ASR system (Karafiát et al., 2011; Huang et al., 2023). Although the use of speaker 
embeddings from a pre-trained speaker embedding extractor (Dehak et al., 2010; Snyder et al., 2018; Wang et al., 2023) can give 
clues to the ASR about what information in its input to utilize and what information to ignore, it implicitly requires learning to map 
speaker embeddings to ASR speech embeddings. Learning a robust mapping generalizing to new speaker sets at test time, especially 
when the speaker embedding extractor is trained independently, requires having a large number of speakers in the multi-speaker 
ASR training set. While this is manageable for simulated multi-speaker data (for which a large number of speakers can be obtained), 
data scarcity is arguably the most significant challenge for ‘‘in-the-wild’’ multi-speaker ASR; it is therefore, imperative to develop 
systems that can be efficiently trained on the order of tens of hours of real conversational data.

In this paper, we propose Diarization-Conditioned Whisper (DiCoW), a semi-end-to-end approach to speaker-attributed ASR 
where we condition Whisper (Radford et al., 2023) on diarization outputs, unlike prior approaches relying on speaker embeddings 
or specific modules to model speaker information. We use Whisper as the base ASR system in order to take advantage of its large-
scale pretraining, multi-domain robustness, and long-form capabilities. However, we also present results with another ‘‘generic’’ 
single-speaker system, showcasing that our proposed method can attain strong results in combination with different ASR models. 
By directly using diarization labels, there is no need for the model to learn to map speaker and ASR embedding subspaces. This is 
accomplished by means of speaker conditioning in the form of time-speaker activity probabilities.

To this end, we propose a pair of methods for incorporating speaker activity information into Whisper.
The first, termed Query-Key Biasing, produces a mask for each target speaker from the diarization outputs. This mask is then 

used to modify the attention scores: the scores for frames that do not correspond to the desired speaker are attenuated, while those 
belonging to the target speaker are kept intact. This allows Whisper to focus on the target speaker’s ASR in the presence of large 
regions of silence and non-target speaker speech. We note that the attention scores are modified with trainable parameters so that 
the attenuation of non-target-speaker positions is only enforced at the beginning of training, and the model is still afforded the 
flexibility to learn how much non-target information to keep.

In the second method, named Frame-Level Diarization Dependent Transformations (FDDT), the model is provided with more 
fine-grained access to the diarization output. Specifically, for each target speaker, an external diarizer categorizes speech frames 
into silence, target speaker, non-target speaker and overlapped speech. For each of the four categories and each Whisper encoder 
layer, a trainable affine transformation is introduced to transform the input frames belonging to the given category before they are 
fed into the next encoder layer. Thus, the model is equipped to learn how to handle the different regions of speech.

We experimentally validate our methods by fine-tuning Whisper on various datasets: NOTSOFAR-1 (Vinnikov et al., 2024), 
AMI (Mccowan et al., 2005), and Libri2Mix (Cosentino et al., 2020) using ground-truth speaker segmentation information. At 
inference time, we utilize speaker diarization labels generated by an end-to-end speaker diarization system with vector cluster-
ing (Kinoshita et al., 2021b; Bredin, 2023). We also evaluate our system on LibriCSS (Chen et al., 2020) without fine-tuning it on 
this dataset.

Our experiments on both real and synthetic datasets show that, without considerably degrading its single-speaker recognition 
performance, our proposed methods imbue Whisper with strong speaker-attributed ASR capabilities across datasets, even when 
automatic diarization is used for conditioning.

The rest of the paper is organized as follows: Section 2 provides coverage of related works. Section 3 presents background 
information on Whisper and our modifications to reduce its hallucination tendencies. Section 4 describes the methods we propose 
to enable diarization-conditioned Whisper to perform target-speaker ASR. Section 5 outlines the setup of our experiments, including 
datasets, metrics, and training details. Section 6 reports the results of our experiments. Section 7 discusses the strengths and 
weaknesses of the proposed systems. Finally, Section 8 concludes the paper with a summary of our findings.

2. Related works

Diarization-based ASR: The integration of ASR and diarization has been explored using different techniques. These include 
adding speaker role tokens during ASR decoding (Shafey et al., 2019), clustering speaker embeddings, and mapping them to ASR 
tokens (Kanda et al., 2022) — which requires deriving word timings for the tokens after decoding — and jointly producing ASR 
tokens, speaker tags, and timings (Cornell et al., 2024a). While training a single model from scratch to perform both tasks at once 
can exploit the synergies between ‘‘what is said’’ and ‘‘who said it’’, large training corpora are necessary, which are either only 
available to large companies or of synthetic nature in academic settings. In contrast, we focus in this work on leveraging existing 
pre-trained models to reduce the training burden.
2 
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Multi-speaker extensions of Whisper: Recent works extended Whisper for multi-speaker ASR. In Ma et al. (2024), the model is 
prompt-tuned with a target speaker embedding so that the model recognizes only the speech of that speaker. Alternatively, in Meng 
et al. (2024), Whisper is activated using speech from the target speaker instead of an embedding so that smaller modifications to 
the original architecture are required compared to Ma et al. (2024). In Guo et al. (2024), a ‘‘speaker-querying’’ module is added 
to produce speaker prompts that are used as inputs to the decoder. While similar in motivation, our work differs from Ma et al. 
(2024), Meng et al. (2024) and Guo et al. (2024) in that instead of using speaker embeddings or enrollment speech, we directly 
utilize speaker activities. This simplifies the interaction with external modules and elides any need for selecting and processing 
enrollment speech.

Lastly, this work extends our previous systems presented in the BUT/JHU CHiME-8 NOTSOFAR-1 Challenge (Polok et al., 2024) 
and Target Speaker ASR with Whisper (Polok et al., 2025). Specifically, we adhere to the NOTSOFAR-1 challenge conditions 
and build upon the experimental setup of those works. In this paper, we provide a more comprehensive analysis of various 
approaches for conditioning Whisper on diarization outputs—namely, input masking, Query-Key biasing (QKb), and Frame-Level 
Diarization Dependent Transformations (FDDT) methods. We perform new ablations to evaluate the behavior of these techniques 
immediately after initialization. Furthermore, we introduce a novel Co-Attention mechanism that enables interaction between 
previously independent TS-ASR branches, enhancing performance in overlapping speech scenarios. We also propose a vectorized 
joint CTC/attention decoding strategy for Whisper, demonstrating its effectiveness across conditions. In addition, we analyze how 
different diarization models impact the final system performance and show that our method generalizes well to other ASR backbones. 
Finally, we confirm that our system maintains strong performance even in single-speaker settings, ensuring its versatility beyond 
multi-speaker use cases.

3. Long-form modeling with whisper

OpenAI’s Whisper (Radford et al., 2023) is an attention-based encoder–decoder model for automatic speech recognition and 
speech translation. The widely used model is trained on an order of magnitude more data than other open-source models, which 
was found to be the key to achieving state-of-the-art performance on a wide range of ASR benchmarks and popularized a number 
of useful features for ASR. Several speech processing tasks usually need to be performed in the real scenarios, and it might be 
relevant to perform them jointly, so Whisper is designed to be prompted with token-based control sequences in order to perform 
ASR and additionally return voice activity detection (VAD) or language identification (LID) decisions, among other complementary 
information.

Whisper incorporates previous text conditioning, where prior transcriptions are fed as context to the decoder. This feature 
enables effective processing of long-form audio, such as meetings, lectures, or podcasts, by maintaining context across extended 
recordings. Long-form audio processing is particularly relevant for multi-speaker ASR, which requires handling continuous dialogues 
rather than isolated utterances. However, extending Whisper to support multi-speaker scenarios introduces new challenges, such as 
managing overlapping speech and multi-speaker outputs. Leveraging Whisper as a foundation benefits from its extensive pre-training 
on large-scale data, reducing the need for additional task-specific training data.

In this work, we propose several extensions to Whisper that address these challenges and enable its application to multi-speaker 
ASR. The Whisper model is described in the rest of this section, and our proposed methods are detailed in Section 4.

3.1. Whisper

Whisper is available in variants ranging from 38M to 1.54B parameters and has been trained on up to 5 million hours of weakly 
(pseudo) labeled data. It employs an encoder–decoder Transformer (Vaswani et al., 2017) architecture, processing the log-Mel 
spectrogram as input 𝐗 ∈ R𝐹×𝑇 , where 𝑇 = 3000 corresponds to 30 s of audio. Shorter audio segments are padded with zero 
signal, while longer ones are processed sequentially. The number of Mel frequency bins, 𝐹 , is 80 in earlier versions and 128 in later 
versions.

The spectrogram is passed through two 1-dimensional convolutional layers that increase the feature dimension to 𝑑𝑚 and 
downsample the sequence by a factor of two. The encoder layers transform these features into hidden representations 𝐇 ∈ R𝑑𝑚×𝑇 ∕2, 
which the decoder uses autoregressively to generate text tokens 𝑦̂, conditioned on task-specific special tokens 𝑔. The process is 
formally defined as: 

𝐇 = AudioEncoder𝜙𝑒 (𝐗), 𝑦̂𝑡 = TextDecoder𝜙𝑑 (𝑔, 𝑦̂1∶𝑡−1,𝐇), (1)

where 𝜙𝑒 and 𝜙𝑑 denote the encoder and decoder parameters, respectively.
Whisper incorporates two primary task-specific tokens: ⟨|transcribe|⟩ for transcription and ⟨|translate|⟩ for translation tasks. Ad-

ditionally, the token ⟨|notimestamps|⟩ can be used to suppress the decoding of timestamps. The inclusion of language-specific tokens, 
such as ⟨|en|⟩ for English, enables Whisper to condition decoding for specific languages and tasks. Furthermore, Whisper supports 
previous text conditioning by allowing an optional sequence of tokens from prior decoding as input, facilitating context-aware 
transcription or translation.

In this study, we utilize the large-v3-turbo variant of Whisper in all our Whisper experiments. This version builds on prior 
work on distilling Whisper models (Gandhi et al., 2023) and reduces the number of decoder layers from 32 (large-v3) to 4 without 
significantly harming the model’s performance. This architectural modification significantly reduces autoregressive decoding time, 
making it more practical for real-world applications. The large-v3-turbo model was trained on a mixture of 1 million hours of weakly 
3 
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labeled audio and 4 million hours of pseudo-labeled audio derived from the large-v3 model. In this work, we turn Whisper into a 
TS-ASR system by extending and adapting it to condition on diarization information in order to decode speakers of interest.

Note that the following two sections slightly deviate from the main idea of conditioning Whisper on diarization information for TS-ASR. 
However, they present orthogonal extensions of Whisper that we propose to enhance its capabilities. Specifically, the introduction of the CTC 
head serves as a general-purpose enhancement to Whisper.

3.2. CTC head for whisper

Building on the idea of a hybrid CTC/attention architecture (Hori et al., 2017; Watanabe et al., 2017), we propose to incorporate 
a connectionist temporal classification (CTC) (Graves et al., 2006) head into Whisper. To the best of our knowledge, we are the first 
to add a CTC head to an already pretrained and well-performing attention-based encoder–decoder (AED) model such as Whisper. 
Unlike prior work that trains CTC and AED jointly from scratch, our approach introduces the CTC objective only during fine-
tuning. This encourages monotonic alignment between the input audio and predicted tokens and allows us to leverage intermediate 
encoder representations for efficient single-pass decoding or more accurate transcription when combined with the autoregressive 
decoder (Hori et al., 2017). Additionally, this setup naturally supports self-speculative decoding (Leviathan et al., 2023).

The proposed CTC head first applies a Transformer layer, followed by two 1-dimensional convolutional layers with a stride 
of 2, reducing the sequence length from 1500 to 375 (approximately matching the maximum sequence length in the decoder). 
This subsampling helps to reduce the computational overhead caused by the final linear projection, which maps the hidden 
representations from dimensionality 𝑑𝑚 to vocabulary size 𝑉 ≈ 50𝑘.

Formally, given the encoder’s hidden representations 𝐇 ∈ R𝑑𝑚×𝑇 ∕2, the CTC head computes: 
𝐙 = Linear(Conv(SelfAttention(𝐇))), (2)

where 𝐙 ∈ R𝑉 ×𝑇 ∕8 represents the output logits.

3.3. Joint CTC/attention decoding with whisper

We observed improved convergence when the CTC head does not generate timestamp tokens, which led us to modify the 
ESPNet (Watanabe et al., 2018) CTC prefix scoring implementation.2 Specifically, we adjusted the scoring procedure to retain current 
states without restoring the next tokens when the autoregressive decoder prefers timestamp tokens. This modification facilitates 
joint CTC/Attention decoding, wherein the CTC head operates over a distinct subset of labels, diverging from those used by the 
autoregressive attention-based decoder.

The decoding objective in this setup is defined as a combination of the sequence probabilities from the CTC and attention-based 
models. Let 𝐶 be a sequence, 𝑝ctc(𝐶|𝐗) be the sequence probability given by the CTC model, and 𝑝att(𝐶|𝐗) be the sequence probability 
given by the attention-based model. The decoding objective is then formulated as: 

𝐶̂ = arg max
𝐶∈ ∗

(

𝜆 log 𝑝ctc(𝐶|𝐗) + (1 − 𝜆) log 𝑝att(𝐶|𝐗)
)

, (3)

where 𝜆 is a weight parameter controlling the balance between the CTC and attention model outputs (Hori et al., 2017) and  ∗ is 
the set of sequences, given by a beam of the top-𝑘 most likely hypotheses. Additionally, we streamlined the implementation by vec-
torizing key operations, improving computational efficiency, and enabling support for batched beam decoding. Our implementation 
is made publicly available.3

4. Diarization-conditioned whisper

In this section, we introduce the proposed approaches for conditioning on speaker activity. While Whisper serves as the base 
single-speaker ASR model for our explanations, these methods are generalizable and can be applied to other models, as shown in 
Section 6.6.

We begin by defining conditioning masks derived from the speech activity of each speaker, which serves as the foundation for 
all our proposed systems. We then describe three distinct mechanisms for utilizing these masks:

1. Input masking: directly masks the input audio based on speaker activity.
2. Query-Key biasing (QKb): selectively biases the attention weights using information from the masks.
3. Frame-Level Diarization Dependent Transformations (FDDT): incorporate the full masks to condition encoder represen-
tations in a more comprehensive manner.

It is important to highlight the growing parameter footprint associated with each diarization-conditioning method. Input masking 
introduces no additional parameters, making it the most lightweight approach. QKb increases the model size only slightly, adding 
2𝑁(2𝑑model−1) parameters, where 𝑁 is the number of layers to which it is applied. In contrast, FDDT is the most expressive but also 
the most parameter-intensive approach, potentially introducing up to 4𝑁(𝑑2model+𝑑model) new parameters. This progressive increase 
highlights a trade-off between model complexity and potential performance gains.

2 https://github.com/espnet/espnet/blob/master/espnet/nets/ctc_prefix_score.py.
3 https://github.com/BUTSpeechFIT/TS-ASR-Whisper.
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4.1. Silence, target, non-target, and overlap masks

Let 𝐃 ∈ [0,1]𝑆×𝑇 , where 𝑆 is the number of speakers in the recording, and 𝑇  is the number of frames, represent the diarization 
output, with 𝑑(𝑠, 𝑡) denoting the probability that speaker 𝑠 is active in time frame 𝑡. The dependency on the number of speakers in 
𝐃 can be a limiting factor for easily incorporating this mask into the model. To address this, we treat each speaker independently. 
Let 𝑠𝑘 represent the target speaker. We define a distribution over the following mutually exclusive events for a frame at time 𝑡:

• : Time frame 𝑡 represents silence.
•  : The target speaker, 𝑠𝑘, is the only active speaker in time frame 𝑡.
•  : One or more non-target speakers, 𝑠 ≠ 𝑠𝑘 are active and the target speaker, 𝑠𝑘, is not active at time frame 𝑡.
• : The target speaker 𝑠𝑘 is active while at least one non-target speaker 𝑠 ≠ 𝑠𝑘 is also active at time frame 𝑡, denoting an 
overlap.

The probabilities of these events occurring at time frame 𝑡 can be calculated as:

𝑝𝑡 =
𝑆
∏

𝑠=1
(1 − 𝑑(𝑠, 𝑡)) (4)

𝑝𝑡 = 𝑑(𝑠𝑘, 𝑡)
𝑆
∏

𝑠=1
𝑠≠𝑠𝑘

(1 − 𝑑(𝑠, 𝑡)) (5)

𝑝𝑡 =
(

1 − 𝑝𝑡
)

− 𝑑
(

𝑠𝑘, 𝑡
)

(6)

𝑝𝑡 = 𝑑(𝑠𝑘, 𝑡) − 𝑝𝑡 (7)

This definition allows us to use a fixed-sized STNO (Silence, Target, Non-target, Overlap) mask 𝐌𝑡 =
[

𝑝𝑡 𝑝𝑡 𝑝𝑡 𝑝𝑡
]⊤
. 

Note that the mask is speaker-dependent, so decoding each target speaker involves using a different STNO mask, which results in a 
different transcript.

4.2. Input masking

Having the STNO mask, a straightforward way to perform target speaker ASR is to mask the signal by multiplying each frame by 
the probability that it is target speech or that it involves overlap with the target speaker. Hence, if the target speaker is not active, 
the audio signal is set to 0 (i.e., silence). We add 𝑝𝑡  and 𝑝𝑡 to ensure that both target speech and overlapping speech are preserved 
in the masked signal. Similar to source separation approaches, this method has limitations. It can introduce artifacts because we are 
creating a modified version of the input signal, and errors in diarization can propagate through the system, potentially affecting the 
model’s performance.

4.3. Query-key biasing conditioning

An alternative approach to steer the model’s attention away from non-target segments is to integrate target-speaker masks with 
the model’s internal representations by incorporating them into encoder/decoder attention masks. Compared to the input masking 
method, attention masking does not introduce artificial silence in the audio signal, reducing the chance of artifacts and potentially 
leading to better performance.

For simplicity, let us assume a single attention head. Let 𝐖𝑞 ,𝐖𝑘 ∈ R𝑑𝑚×𝑑𝑚 denote the query and key projection matrices and 
𝐪𝑖,𝐤𝑗 ∈ R𝑑𝑚  the query and key, respectively. The unnormalized attention score between 𝐪𝑖,𝐤𝑗 is defined as: 

𝑎𝑖𝑗 =
(𝐖𝑞𝐪𝑖)𝑇 (𝐖𝑘𝐤𝑗 )

√

𝑑𝑚
. (8)

To obtain normalized attention weights, the softmax function is applied across the 𝑗-dimension of 𝑎𝑖𝑗
If we assume that acoustic information is aligned across time, masking out non-target speaker frames forces the model to ignore 

information irrelevant to the target speaker transcript (i.e., other speakers, silence, etc.). However, ‘‘hard’’ attention masking leaves 
the model no chance for unmasking and possibly attending to non-target frames, which makes adaptation and speaker-tracking 
learning impossible.

As a solution, we decided to bias the encoder self-attention and the decoder cross-attention by extending queries and keys, and 
initializing corresponding projections in the following way: 

𝐪̂𝑖 =
[

𝐪𝑖
1

]

, 𝐤̂𝑗 =
[

𝐤𝐣
−𝑐

]

, 𝐖̂𝑞 =
[

𝐖𝑞 𝟎
𝟎 1

]

, 𝐖̂𝑘 =
[

𝐖𝑘 𝟎
𝟎 1

]

, (9)

where 𝑐 ∈ R+
0  is a bias factor set to 0 if 𝑘𝑗 corresponds to a target speaker frame, and to a predefined constant otherwise. We name 

this approach query-key biasing conditioning (QKb).
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It is easy to observe that, after initialization, if 𝑘𝑗 represents a target speaker frame, 𝑎𝑖𝑗 remains intact. On the other hand, if 𝑘𝑗
represents a non-target speaker frame, the calculation of 𝑎𝑖𝑗 changes as: 

𝐖̂𝑞 𝐪̂𝑖 =
[

𝐖𝑞𝐪𝑖
1

]

, 𝐖̂𝑘𝐤̂𝑗 =
[

𝐖𝑘𝐤𝑗
−𝑐

]

, (10)

[

(𝐖𝑞𝐪𝑖)𝑇 1
]

[

𝐖𝑘𝐤𝑗
−𝑐

]

= (𝐖𝑞𝐪𝑖)𝑇 (𝐖𝑘𝐤𝑗 ) − 𝑐. (11)

It is important to note that fine-tuning the Whisper model with extended queries and keys changes the extended attention projection 
matrices 𝐖̂𝑞 and 𝐖̂𝑘, which controls the level of attention biasing.

4.3.1. Shifted positional embeddings
Masking parts of the input using the proposed QK biasing technique within an utterance prevents the Whisper decoder from 

cross-attending to the entire sequence of encoder embeddings. Hence, the decoder does not have a chance to see all the positional 
embeddings, creating discontinuities in the attended sequence. Such breaks in the continuity of positional embeddings can disrupt 
the model immediately after initialization and cause instabilities during training, particularly in its early stages. To mitigate this, an 
ad-hoc solution that seems to help is to shift the positional embeddings on target speaker frames and repeat the previous positional 
embedding on non-target frames (e.g., for a sequence like TTTNNTT, the positional embeddings represent frames 1233345) instead 
of applying the original sequence of positional embeddings. This ensures continuity in positional embeddings for the frames the 
decoder attends to, aligning with how Whisper was originally trained. Since the decoder is not expected to attend to non-target 
frames, their positional embeddings should not influence the transcription. Repeating the last positional embedding on non-target 
frames is therefore expected to perform comparably to alternative strategies such as interpolation of positional embeddings or fixed 
non-target embeddings.

4.4. Frame-level diarization dependent transformations

The third and most sophisticated approach to diarization conditioning is frame-level diarization dependent transformations 
(FDDT) depicted in Fig.  1. It modifies the frame-by-frame model inputs based on the diarization outputs and unlike the previous 
methods, it uses all four STNO masks.

Let 𝐙𝑙 ∈ R𝑑𝑚×𝑇  represent the frame-by-frame inputs to the 𝑙th (Transformer) layer. We transform these hidden representa-
tions by applying four affine STNO layer- and class-specific transformations: 𝐖𝑙

 ,𝐖
𝑙
 ,𝐖

𝑙
 ,𝐖𝑙

 ∈ R𝑑𝑚×𝑑𝑚  together with biases 
𝐛𝑙 ,𝐛

𝑙
 ,𝐛

𝑙
 ,𝐛𝑙 ∈ R𝑑𝑚  to obtain new speaker-specific hidden representations 𝐙̂𝑙 = [𝐳̂𝑙1,… , 𝐳̂𝑙𝑇 ] as:

𝐳̂𝑙𝑡 =
(

𝐖𝑙
𝐳

𝑙
𝑡 + 𝐛𝑙

)

𝑝𝑡 +
(

𝐖𝑙
 𝐳

𝑙
𝑡 + 𝐛𝑙

)

𝑝𝑡
+

(

𝐖𝑙
 𝐳𝑙𝑡 + 𝐛𝑙

)

𝑝𝑡 +
(

𝐖𝑙
𝐳

𝑙
𝑡 + 𝐛𝑙

)

𝑝𝑡. (12)

In other words, the hidden representations 𝐳𝑙𝑡 are transformed using a convex combination of the four STNO class-specific affine 
transformations, weighted by the corresponding STNO class probabilities (4)–(7). When using a hard STNO mask (i.e., one-hot 
encoding), Eq. (12) simplifies to selecting and applying one of the four class-specific transformations for each frame. Note that the 
same transformation is applied to all frames with identical STNO masks.

The matrices 𝐖𝑙
 ,𝐖

𝑙
 ,𝐖

𝑙
 ,𝐖𝑙

 are designed to transform the hidden representations into a space where speaker distinction is 
more effective, or where certain components of the signal can be suppressed. These transformations are essential for the model to 
correctly identify and isolate the target speaker while handling other sources of noise.

In prior work, we have shown that random initialization could disrupt the model’s already learned internal representations (Polok 
et al., 2025), leading to a significant drop in performance. To mitigate this risk, we employ a suppressive initialization strategy. In 
this strategy, we initialize 𝐖0

 and 𝐖0
  as zero matrices, which effectively suppresses the influence of other speakers; while the other 

parameters 𝐛𝑙 ,𝐛𝑙 ,𝐛𝑙 ,𝐛𝑙 (set to zero vectors), and 𝐖𝑙
 ,𝐖

𝑙
 (set to identity matrices)—are initialized to maintain the original flow 

of information. This initialization strategy was motivated by our earlier study, where we analyzed various initialization schemes. 
As shown in Table  4 of this paper, suppressive initialization (FDDT init.) yields better performance immediately after initialization 
compared to identity initialization (Whisper), further confirming its effectiveness.

4.5. Co-attention module for speaker interaction in TS-ASR

So far, we have discussed diarization conditioning approaches for TS-ASR, where each speaker is processed independently by 
a separate TS-ASR instance. While this parallel setup is efficient and works well for clearly separated speech, it can struggle in 
complex conversational scenarios. The key limitation is the lack of interaction or information sharing between speaker streams, 
which becomes especially problematic when speaker turns are ambiguous or overlapped. To address this, we introduce a Co-
Attention module designed to explicitly model inter-speaker dependencies and promote interaction between the speaker-specific 
representations. Originally introduced for speaker diarization (Horiguchi et al., 2022) and later extended to speaker identifica-
tion (Mošner et al., 2024), Co-Attention enables the model to compare, contextualize, and coordinate information across multiple 
speaker channels.
6 
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Fig. 1. Proposed diarization-conditioned whisper model with STNO mask example.

Fig. 2. Scheme of Co-Attention module. Dotted lines depict affine transformation followed by layer normalization. The gray rectangle represents the multi-headed 
attention derived in (13). Inputs to scaled-dot product 𝑓AT attention are queries, keys and values from top to bottom.

Fig.  2 illustrates the architecture of the Co-Attention module, which is structured into three stages: summarization, temporal align-
ment, and contextualization. The core idea is to first compute a global summary of the speech context by averaging representations 
across all speaker streams. This is followed by a shared temporal attention mechanism that aligns speaker representations in time. 
Finally, each speaker stream is enriched with information from both the global summary and its own channel. This design allows 
7 
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the model to encode salient or dominant features from one speaker into the shared representation, effectively signaling to other 
streams that this information has already been captured. In addition, shared temporal attention promotes alignment across speaker 
streams.

We follow the Co-Attention formulation introduced by Mošner et al. (2024), adapted for TS-ASR. We denote multi-head attention 
(MHA) as: 

𝑓MA(𝐗,𝐘; 𝜃MA) ∶= 𝐖𝑂

[ 𝐻
∥

ℎ=1
𝑓AT

(

𝐖(ℎ)
𝑄 𝐗,𝐖(ℎ)

𝐾 𝐗,𝐖(ℎ)
𝑉 𝐘

)

]

, (13)

where 𝑓AT(𝐐,𝐊,𝐕) denotes scaled dot-product attention (Vaswani et al., 2017), and 
𝐻
∥

ℎ=1
 represents concatenation along the head 

dimension. The parameter set 𝜃MA includes all learnable weights: {𝐖(ℎ)
𝑄 ,𝐖(ℎ)

𝐾 ,𝐖(ℎ)
𝑉 }𝐻ℎ=1 ∪ {𝐖𝑂}.

Summarization. Given encoder outputs {𝐇𝑠}𝑆𝑠=1, with 𝐇𝑠 ∈ R𝑑𝑚×𝑇  for each speaker 𝑠, we compute the global summary as: 

𝐀 = LN

(

𝐖𝐴

[

1
𝑆

𝑆
∑

𝑠=1
𝐇𝑠

])

, 𝐖𝐴 ∈ R𝑑×𝑑𝑚 , (14)

where LN(⋅) denotes layer normalization. Each speaker’s embedding is also projected individually: 
𝐌𝑠 = LN

(

𝐖𝑀𝐇𝑠
)

∈ R𝑑′×𝑇 , (15)

and all speaker embeddings are stacked together: 

𝐌 =
𝑆
∥
𝑠=1

𝐌𝑠 ∈ R𝑆𝑑′×𝑇 . (16)

Temporal alignment. We apply shared temporal attention over all speaker channels using block-diagonal shared projection matrices. 
The speaker-specific and global summaries are enriched as:

𝐌′
𝑠 = LN

(

𝑓MA(𝐌,𝐌𝑠; 𝜃) +𝐌𝑠
)

, (17)

𝐀′ = LN
(

𝑓MA(𝐌,𝐀; 𝜉) + 𝐀
)

, (18)

where 𝜃 and 𝜉 share 𝐖(ℎ)
𝑄  and 𝐖(ℎ)

𝐾 , enforcing identical attention weights for temporal alignment across speaker streams.4

Contextualization. To refine the global summary, we apply self-attention: 
𝐀̄ = LN

(

𝑓MA(𝐀′,𝐀′;𝜔) + 𝐀′) . (19)

Then, for each speaker, we fuse the co-attended embedding with the contextualized global summary: 
𝐌̄𝑠 = 𝐖𝐹

(

𝐌′
𝑠 ∥ 𝐀̄

)

, 𝐖𝐹 ∈ R𝑑𝑚×(𝑑′+𝑑). (20)

Finally, the output of the Co-Attention module is added residually: 
𝐇̂𝑠 = 𝐇𝑠 + 𝐌̄𝑠. (21)

5. Experimental setup

This section details our experimental setup, including datasets, evaluation metrics, training procedure, hyperparameters, and 
lastly, the diarization system. All our models were implemented in HuggingFace Transformers library (Wolf et al., 2020). We used 
Whisper-large-v3-turbo5 as it is a faster version of large-v3, and we observed almost no performance degradation.

5.1. Evaluation datasets

To validate the proposed method, we utilized two publicly available multi-speaker datasets: AMI (Mccowan et al., 2005) and 
NOTSOFAR-1 (Vinnikov et al., 2024). Both have realistic interactions in a far-field setting, presenting English-spoken meetings in a 
challenging scenario. Statistics about the sets can be found in Tables  1 and 2. To be able to compare with other existing methods, 
we also utilized Libri2Mix (Cosentino et al., 2020) and LibriCSS (Chen et al., 2020).

Given the current state of technology and the availability of public datasets, we believe results should be reported on real and 
not synthetic datasets.

4 In both (17) and (18), 𝐌 is used as both query and key source. The shared key/query projections are block-diagonal matrices built from per-speaker 
components in R𝑑′∕𝐻×𝑑′ .

5 https://huggingface.co/openai/whisper-large-v3-turbo.
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Table 1
Numbers of files, minimum and maximum numbers of speakers per recording, and numbers of hours per partition.
 Dataset Train Development Test

 #files #spk # h #files #spk # h #files #spk # h  
 AMI 136 3–5 80.67 18 4 9.67 16 3–4 9.06  
 NOTSOFAR-1 526 4–8 54.27 117 4–6 12.17 160 3–7 16.67 
 Libri2Mix 13900 2 56.37 3000 2 7.6 3000 2 7.01  
 LibriCSS – – – 7 8 1.0 55 8 9.09  

Table 2
Percentage of silence, speech with a single speaker, and overlap for each set.
 Dataset Train Development Test

 %sil %1-spk %ov %sil %1-spk %ov %sil %1-spk %ov 
 AMI 16.5 72.3 11.2 22.0 61.1 16.9 14.7 67.9 17.4 
 NOTSOFAR-1 8.1 65.4 26.5 17.7 68.8 13.7 8.0 66.6 25.2 
 Libri2Mix 5.5 33.9 60.6 8.4 42.6 49.0 8.1 42.8 49.1 
 LibriCSS – – – 6.2 84.2 9.6 6.7 83.7 9.6  

5.2. Evaluation metrics

Word error rate (WER) is normally used to evaluate single-speaker ASR. It calculates the error of a hypothesis with respect to 
the reference as the sum of substitutions, insertions, and deletions over the number of words in the reference annotation. However, 
with recordings having more than one speaker, different recognizers are usually evaluated with different metrics depending on how 
the hypotheses and references are mapped. In order to be able to compare with relevant previous works, we considered:

• Concatenated minimum-permutation WER (cpWER), where for each speaker, all their utterances are concatenated, and the 
best permutation between hypothesis and reference is used to calculate the standard WER. This metric takes into account 
speaker-attributed ASR errors.

• Time-constrained minimum-permutation WER (tcpWER), where the evaluation is like cp-WER but also considering the 
temporal alignments of the words.

• Optimal reference combination WER (ORC-WER), which does not consider the speaker labels and can be used to evaluate 
speaker-agnostic systems.

• Time-constrained optimal reference combination WER (tcORC-WER), where the evaluation optimally matches hypotheses and 
references without considering speaker labels but ensures that temporal alignments are respected.

To avoid cluttering tables with notation, we do not write ‘WER’ in the headers below. For a more thorough analysis and 
comparison of the metrics, we refer the reader to Neumann et al. (2023). For time-constrained metrics, we use a collar of 5 s. 
The diarization error rate (DER), used to evaluate the diarization system, is calculated using collar 0 s.

5.3. Training details

The training is divided into three consecutive phases:

1. CTC preheat - pre-train only the CTC-related parameters on LibriSpeech 960 h (Panayotov et al., 2015) with the rest of 
the model being frozen. CTC is trained without timestamps as we believe that timestamp prediction should not occur in the 
encoder and can rather be heuristically derived from the CTC frame-by-frame predictions.

2. FDDT preheat - pre-train CTC and FDDT-related parameters on the target multi-speaker dataset. We train FDDT parameters 
with 100× higher learning rate than the rest (i.e., 2 × 10−5) to improve the model convergence.

3. Full fine-tuning - fine-tune all the parameters on the target multi-speaker dataset until convergence.

We train all the models with an overall batch size of 64 samples using AdamW (Loshchilov and Hutter, 2019) optimizer with 
weight decay 1 × 10−6. We warm up the learning rate for 5k steps (i.e., 5k per batch model updates) and then use a linear decay 
scheduler for the rest of the training. The peak learning rate is set to 2×10−7. The CTC loss weight is set to 𝜆 = 0.3 (Watanabe et al., 
2017). We evaluate the model on the development set at intervals of min(1 epoch,500 steps), monitor the development tcpWER, 
and use early stopping with a patience of 5 evaluation steps. The maximum number of training steps is set to 50k, and we select the 
final model based on the best development tcpWER. Please note that CTC Preheat training is independent of FDDT preheat and full 
fine-tuning. For CTC Preheat, we use only 1k warm-up steps with a peak learning rate of 2× 10−4, monitoring WER on Librispeech 
dev-clean and dev-other sets. Other hyperparameters, including the batch size and optimizer settings, remain unchanged.

We do not enforce true casing or lower casing. Instead, we compute the cross-entropy loss with both lowercase and uppercase 
labels and select the smaller loss value. We empirically chose the initial value of the QK biasing constant 𝑐 (9)–(11) to be 50 as we 
9 
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observed that higher values result in fewer hallucinations at the beginning of training, while also making it easier for the model to 
approximate a hard attention mask by producing very low attention scores without having to scale up the query and key projection 
weights.

5.4. Diarization system

We utilized DiariZen (Han et al., 2025)6 — a framework with local end-to-end neural diarization (EEND) followed by speaker 
embedding clustering (Kinoshita et al., 2021b,a) using pyannote (Bredin, 2023; Plaquet and Bredin, 2023). The EEND module 
combines WavLM (Chen et al., 2022) with Conformer (Gulati et al., 2020) layers and is trained using the powerset loss (Plaquet and 
Bredin, 2023). The EEND operates on 8-second-long overlapping segments, and for each speaker found in the segment, a speaker 
embedding is extracted using a ResNet34-based embedding extractor (Wang et al., 2023). These are, in turn, clustered by spectral 
clustering (Park et al., 2019) to obtain the inter-segment mapping between speakers and produce a single output for each recording. 
The hard decisions made by the diarization system are used to provide the corresponding inputs for the following ASR system. Note 
that we use the same model on all evaluation sets. This model is compliant with the CHiME-8 challenge rules (Vinnikov et al., 2024) 
for the NOTSOFAR-1 track. Fine-tuning the model on each specific dataset could lead to further improvements.

6. Experiments

This section presents a comparison of the proposed methods. We first evaluate our best configuration against prior work using 
both ground-truth and system diarization. To remain consistent with previous literature, Table  3 reports results using non-time-
constrained metrics (cpWER and ORC-WER) for AMI, Libri2Mix, and LibriCSS—datasets where these metrics are commonly used. 
Here, cpWER measures speaker-attributed transcription quality, while ORC-WER assesses overall transcription accuracy, independent 
of speaker attribution.

However, these metrics overlook errors in utterance timing, which we consider a critical aspect of TS-ASR performance. To 
address this, Table  4 and those that follow additionally report time-constrained metrics (tcpWER and tcORC-WER), aligned with the 
NOTSOFAR-1 challenge setup.

As evaluation protocols vary across datasets and prior work, we report both metric types for completeness. For future 
comparisons, we encourage the use of time-constrained metrics, which better reflect the practical demands of TS-ASR. In cases 
where ORC-WER could not be directly computed, we approximate it by increasing the time collar in tcORC-WER until convergence, 
providing a conservative upper bound.

First, we focus on comparing the proposed variants of diarization conditioning, presenting results across all datasets using ground-
truth diarization, followed by an analysis of the impact of real diarization on the results. Next, we analyze the effect of joint CTC 
training and decoding on the NOTSOFAR-1 dataset. We also report the impact of target-speaker training on single-speaker evaluation 
datasets. Finally, we show the proposed diarization conditioning when using a different architecture to showcase that the method 
can be applied to other ASR models.

6.1. Comparison to baselines

In this section, we begin by analyzing the performance of our best-performing models (Table  3), and comparing them to state-
of-the-art results reported in the literature. Specifically, we use the best-performing variants of our approach: the multi-domain 
(MD) FDDT model for AMI-sdm, NOTSOFAR-1, and LibriCSS, and the single-domain (SD) fine-tuned version with Co-Attention 
for Libri2Mix. These configurations were selected to highlight our most effective methods on each dataset. For a more detailed 
comparison of all proposed methods, refer to Table  4.

Even though comparisons across datasets are inherently challenging, as different studies report results on different datasets, 
our models demonstrate consistently strong performance. On AMI-sdm, to the best of our knowledge, we achieve state-of-the-art 
results with ground-truth diarization. Notably, the degradation when switching to real diarization is relatively small for ORC-WER. 
However, for cpWER, the impact is significantly larger, indicating that errors related to speaker label assignment (linked to the 
confusion errors in DER) have a more substantial effect than inaccuracies in segment boundaries.

Our proposed method also achieves the best results to date on the Libri2Mix and LibriCSS datasets for both real- and ground-truth 
diarization. However, while these results are noteworthy, we consider evaluations on artificial datasets like Libri2Mix to be of limited 
practical relevance.

6 https://github.com/BUTSpeechFIT/DiariZen.
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Table 3
Comparison of the proposed system alongside various multi-speaker ASR systems. The top section includes systems where no additional information about speaker 
identity or segmentation is provided. Our results are obtained using a diarization system. The bottom section features models that directly or indirectly utilize 
ground-truth (oracle) diarization information. Proposed ORC WER results marked with ⋆ were approximated by increasing the collar for tcORC WER. Results 
marked with † are evaluated on utterance groups, where the model is not penalized for speaker confusions outside the window of the utterance group, which 
significantly reduces cpWER.
 AMI-sdm NOTSOFAR-1 Libri2Mix LibriCSS

 Test Eval-small Test-clean Test-both Test

 cp ORC tcp tcORC cp ORC cp ORC cp ORC 
 Kanda et al. (2021) 21.2†  
 Raj et al. (2023) 44.6† 16.9 
 Fazel-Zarandi and Hsu (2023) 7.8  
 Vinnikov et al. (2024) 41.4 35.5  
 Cornell et al. (2024a) 24.5  
 Niu et al. (2024) 22.2 17.7  
 Ours (real diar.) 23.6 18.0⋆ 33.5 22.6 6.0 6.0 15.0 14.9 8.5 6.5⋆ 
 Cornell et al. (2024a) 21.1  
 Ma et al. (2024) 12.0 26.4  
 Zhang and Qian (2023) 23.5  
 Meng et al. (2024) 4.7  
 Guo et al. (2024) 22.0 14.6  
 Ours (oracle diar.) 17.2 16.5⋆ 19.7 19.1 4.4 4.4 10.9 10.9 5.6 5.5⋆ 

6.2. Input masking vs. QK biasing vs. FDDT

Table  4 presents the performance of the methods proposed in Section 4. It can be seen that the out-of-the-box Whisper model 
does not perform well, as it lacks a mechanism to prevent transcribing all present speech, irrespective of who is considered the 
target speaker. By masking the non-target speaker audio (Input masking), we improve on all datasets substantially.

Furthermore, we can see that QK biasing after initialization (and before fine-tuning) does not perform well, reaching WER metrics 
above 100%, suggesting strong levels of hallucination. After fine-tuning, we can see that not shifting positional embeddings results in 
better performance with regard to both tcpWER and tcORC WER. We further analyze the difference between these two modifications 
in Table  5.

Lastly, the third section of Table  4 presents FDDT. First, it can be observed that the method performs comparably to input 
masking right after suppressive initialization, suggesting that the initialization does not break the original Whisper model compared 
to QK biasing. Furthermore, after single-domain (SD) fine-tuning (i.e., fine-tuning the model only on the corresponding training 
set), we can observe a massive improvement on all the datasets.

Our model faces a challenge with fully overlapped speech, such as in Libri2Mix, where two speakers talk concurrently most of the 
time. This limitation arises from the model design, where each target speaker is decoded by an independent instance of the TS-ASR 
model. With fully overlapped speech, it might be difficult for an independent TS-ASR instance to determine which speaker’s speech 
is responsible for decoding. As a consequence, multiple TS-ASR instances can decide to decode speech from the same speaker. To 
mitigate this, we incorporate a Co-Attention mechanism that allows the model to compare information across target speaker channels 
(i.e., TS-ASR instances). This mechanism allows the channels to collaboratively decide which instance is responsible for decoding 
each speaker in the input utterance. By resolving this ambiguity, Co-Attention reduces errors on Libri2Mix by 2%–3% absolute. 
However, the improvement is not as significant on AMI or NOTSOFAR-1, as these datasets have a significantly lower percentage of 
overlapped speech, and also, more speakers are present, which makes the scenario more challenging.

FDDT MD refers to a multi-domain model, which utilizes training data from AMI-sdm, NOTSOFAR-1, and Libri2Mix weighted 
with a ratio of 4:4:1. We selected the best-performing checkpoint based on the NOTSOFAR-1 development set. It can be seen that 
the model outperforms the other approaches on both real datasets. However, it performs worse on Libri2Mix, suggesting the domain 
mismatch between real-world and synthetic mixtures. It also demonstrates that the increased amount of data is not solving the full 
overlap issue and that a speaker interaction module is indeed necessary.

The addition of Co-Attention to the MD FDDT model slightly improves performance on Libri2Mix compared to MD FDDT 
alone, indicating its potential to better handle fully overlapped speech in synthetic mixtures. However, it remains inferior to the 
performance demonstrated by SD + Co-Attention on Libri2Mix, where the smaller, more targeted domain training likely aligns 
better with the dataset’s specific characteristics. On the other hand, MD FDDT + Co-Attention does not offer improvements on AMI 
or NOTSOFAR-1, which may be attributed to the variability in the number of speakers and the dynamic interaction patterns in these 
real-world datasets. This variability affects the normalization of attention scores within the Co-Attention module. This suggests that 
while Co-Attention provides some benefits in specific scenarios, its integration with MD FDDT may require further design changes 
to handle diverse speaker configurations more effectively.

Furthermore, Fig.  3 shows the evolution of tcpWER of QK biasing and FDDT. It can be seen that FDDT converges much quicker 
than QK biasing, which is mainly caused by the non-disturbing initialization. After 1000 steps, the FDDT approach reaches tcpWER 
below 30%, suggesting that FDDT is an effective module that quickly turns Whisper into a target-speaker model.
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Table 4
Comparison of different diarization-conditioning methods. The table is divided into three sections: the first section presents the performance of vanilla Whisper 
and Input Masking methods, which do not require additional training; the second and third sections show the results for QK biasing and FDDT with different 
configurations. All methods are evaluated using ground-truth diarization to isolate the effect of diarization conditioning from diarization errors. An asterisk (*) 
indicates values that could not be computed due to scalability issues, while a dash (–) denotes single-domain setups (LibriCSS) where training data is unavailable.
 AMI-sdm NOTSOFAR-1 Libri2Mix LibriCSS

 Test Eval-small Test-clean Test-both Test

 tcp tcORC tcp tcORC tcp tcORC tcp tcORC tcp tcORC 
 Whisper 220.0 212.0 260.1 * 66.1 66.1 69.4 69.4 588.2 *  
 Input masking 52.8 47.9 61.6 54.0 42.2 42.1 47.9 47.9 56.2 55.0  
 QKb init. 276.3 * 260.0 * 323.6 * 339.4 * 990.9 *  
 QKb w shift 55.8 54.1 65.3 * 9.9 9.9 16.5 16.5 – –  
 QKb w/o shift 47.8 46.6 28.2 * 7.9 7.9 16.4 16.4 – –  
 FDDT init. 78.3 68.7 89.7 77.5 100.6 96.1 105.9 100.4 102.0 101.9  
 FDDT SD 17.8 17.5 20.9 20.3 6.3 6.3 13.8 13.8 – –  
 + CoAttention 17.5 17.2 20.8 20.3 4.4 4.4 11.0 11.0 – –  
 FDDT MD 17.6 16.7 19.7 19.1 6.9 6.9 15.9 15.9 8.8 8.8  
 + CoAttention 18.1 17.7 20.0 19.4 5.8 5.8 14.4 14.4 11.0 11.0  

Table 5
Comparison of cpWER between QK biasing with and without shifted positional embeddings with ground-truth 
diarization. 
 AMI-sdm NOTSOFAR-1 Libri2Mix

 Test Eval-small Test-clean Test-both

 cp tcp cp tcp cp tcp cp tcp  
 QKb w shift 21.3 55.8 25.2 65.4 9.9 9.9 16.5 16.5 
 QKb w/o shift 45.9 47.8 27.3 28.5 7.9 7.9 16.4 16.4 

Fig. 3. Test TCP-WER as a function of training steps for the NOTSOFAR-1 model evaluated on the eval-small dataset.

6.2.1. QK biasing shift
Table  5 compares cpWER and tcpWER for QK biasing with and without shifted positional embeddings across three datasets: AMI-

sdm, NOTSOFAR, and Libri2Mix. Notably, while the absolute values of the metrics change between the two settings, the relative 
difference between cpWER and tcpWER is effectively zero for Libri2Mix. This is primarily because Libri2Mix contains short audio 
segments (under 30 s), which are transcribed in a single pass. As a result, most words fall within the tcpWER collar boundaries, 
and incorrectly predicted timestamps do not influence the transcription of subsequent segments. Moreover, while QK biasing with 
shifted positional embeddings yields lower cpWER on real datasets, its performance degrades on Libri2Mix—likely because all 
speakers start speaking at the very beginning of the recording, creating no position ‘‘holes’’ during in decoder cross-attention. This 
observation underscores the potential pitfalls of drawing conclusions solely based on synthetic evaluation data. Consequently, our 
further analyses and hypotheses are based on results obtained from the real-world datasets AMI-sdm and NOTSOFAR-1.

Notably, shifting positional embeddings leads to improved transcription quality on both AMI-sdm (a 24.6% absolute reduction 
in cpWER) and NOTSOFAR-1 (a 2.1% absolute reduction in cpWER). We hypothesize that encoder attention masking may introduce 
discontinuities (i.e. ‘‘holes’’) in the positional information within the encoder output. Since the decoder cross-attends to this 
representation, such discontinuities may hinder its ability to accurately track input positions, potentially resulting in hallucinations.

Conversely, the observed gap between cpWER and tcpWER indicates that the positional information becomes less reliable after 
shifting positional embeddings. This suggests that Whisper’s timestamp prediction mechanism is highly dependent on the original 
positional encodings applied to the encoder input. Interestingly, when positional embeddings are not shifted, the cpWER–tcpWER 
gap narrows to just a few percentage points on both AMI-sdm and NOTSOFAR-1, further supporting this interpretation.
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Fig. 4. Recognition examples on the NOTSOFAR-1 dataset. In 4(a), the baseline model leaks words from speaker ‘‘Jenny’’ into the utterance of speaker ‘‘Donald’’ 
during an overlapping segment. In contrast, 4(b) shows that the Co-Attention mechanism nearly resolves this specific overlap correctly, but introduces errors in 
other overlapping regions.

Fig. 5. Recognition examples on the Libri2Mix dataset. In 5(a), the baseline model leaks content from the other speaker and omits parts of the original utterance. 
In contrast, 5(b) shows that Co-Attention resolves the overlap nearly perfectly.

6.2.2. Examples of the effects of Co-Attention mechanism
We compared the decoding results of the FDDT-MD system, with and without the Co-Attention module (cf. Table  4), on examples 

from the NOTSOFAR-1 and Libri2Mix datasets. Figs.  4 and 5 illustrate that, while the Co-Attention mechanism effectively resolves 
overlapping speech, it may also introduce recognition errors, such as insertions or substitutions, in regions where the baseline model 
was already correct. This suggests that Co-Attention is particularly useful in resolving severe overlap but may inadvertently disturb 
simpler contexts.

Fig.  4 shows an example from the NOTSOFAR-1 dataset. In 4(a), the baseline model leaks words from speaker ‘‘Jenny’’ into 
speaker ‘‘Donald’’ during their overlapped segment. In contrast, 4(b) shows that Co-Attention nearly correctly resolves this specific 
overlap, although it introduces additional errors in other overlapped regions.

Fig.  5 presents a similar analysis on Libri2Mix. In 5(a), the baseline model leaks content from the interfering speaker and 
omits parts of the original utterance. In 5(b), the Co-Attention mechanism handles the overlap nearly perfectly, eliminating most 
recognition errors.

6.3. Performance with real diarization

We have demonstrated that our proposed DiCoW model achieves strong performance when ground-truth speaker and segmen-
tation information is provided. We also evaluated our proposed system with real diarization (cf. Section 5.4). In this section, we 
focus on a more detailed analysis of the impact of diarization errors on DiCoW. We use the FDDT model fine-tuned on all datasets 
(AMI-sdm, NOTSOFAR-1, Libri2Mix).

As shown in Table  6, the performance deteriorates significantly with respect to the system with ground-truth diarization. This 
decline is primarily attributed to errors introduced by the diarization process (cf. Table  7). On the NOTSOFAR-1 eval-small dataset, 
we achieved a tcpWER of 33.5% (22.6% tcORC-WER), with 14.5% (8.3%) deletions, 10% (3.6%) insertions, and 9% (10.7%) 
substitutions, indicating that the system struggles with omissions in this scenario. This is expected, given that this dataset features 
recordings with a higher number of speakers on average and significantly more overlapping speech, both of which increase the 
13 
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Table 6
Comparison of overall performance with ground-truth and a real diarization system. Both ground-truth and real diarization system 
results were obtained with a model trained on multiple datasets (cf. FDDT MD in Table  4).
 Diarization AMI-sdm NOTSOFAR-1 Libri2Mix LibriCSS

 Test Eval-small Test-clean Test-both Test

 tcp tcORC tcp tcORC tcp tcORC tcp tcORC tcp tcORC 
 Ground-truth 17.6 16.7 19.7 19.1 6.9 6.9 15.9 15.9 8.8 8.8  
 Real system 25.0 18.2 33.5 22.6 8.4 8.3 20.6 20.5 11.0 8.9  

Table 7
Diarization performance on the test set of each corpus.
 Dataset DER Miss FA Conf.

 AMI-sdm 17.3 8.7 3.8 4.8  
 NOTSOFAR-1 23.9 11.0 4.3 8.6  
 Libri2Mix (mix clean) 4.8 0.3 4.1 0.4  
 Libri2Mix (mix both) 10.0 1.2 8.4 0.4  
 LibriCSS 5.5 3.6 0.4 1.5  

Table 8
Comparison of the proposed DiCoW model with various single-channel diarization systems on the NOTSOFAR-1 
evaluation set. The single-channel diarization results for USTC-sys1 were extracted from USTC-NERCSLIP system 
submission (Niu et al., 2024; Abramovski et al., 2025).
 Diarization Sys. DER Miss FA Conf. tcpWER

 DiariZen (Han et al., 2025) 35.3 11.6 7.8 15.9 50.2  
 Pyannote3.1 (Bredin, 2023) 33.5 19.4 1.7 12.4 47.0  
 USTC-sys1 (Niu et al., 2024) 21.2 8.2 7.0 6.1 28.9  
 Ours 23.9 11.0 4.3 8.6 33.5  
 Ground-truth 19.7  

probability of confusion errors during diarization. In contrast, LibriCSS has fewer overlapping segments and fewer speakers per 
recording. However, most of the diarization errors in LibriCSS (cf. Table  7) are caused by missed speech, resulting in 4% deletions, 
4% substitutions and 3% insertions. In addition, we have also compared the performance of the proposed DiCoW model using 
different diarization systems. The results are given in Table  8.

The errors are partly due to the model being trained with ground-truth diarization, which provides accurate speaker boundaries 
and correctly labeled silence. In contrast, real diarization can miss portions of a speaker’s speech, particularly in scenarios with more 
than two overlapping speakers. The system struggles to recover from missed speech segments because it has not encountered such 
cases during training. This can also be verified in Table  8, where the USTC-NERCSLIP diarization system produces fewer omissions 
and confusions of speakers, having a direct impact on tcpWER. Note that speaker confusion errors count twice in tcpWER, as both 
deletions and insertions. Moreover, we initialize the FDDT parameters in such a way that the model ignores frames marked as silence 
from the very beginning (cf.  Section 4.4). This further limits the system’s ability to recover from diarization errors.

The proposed DiCoW model is designed to handle soft diarization decisions in the form of frame-by-frame speaker activity 
probabilities 𝑑(𝑠, 𝑡). However, in this work, we use only hard diarization decisions for both training and inference. As the result, the 
probabilities 𝑑(𝑠, 𝑡) and, consequently, the STNO class probabilities (4)–(7) are restricted to binary values 0 or 1.

For training, we rely solely on hard ground-truth diarization decisions. Using real diarization outputs introduces the additional 
challenge of aligning the speakers identified by the diarization system with the ground-truth speakers labeled in the ASR annotations. 
This alignment becomes especially problematic when the diarization system predicts an incorrect number of speakers.

In our system submitted to the CHiME-8 challenge (Polok et al., 2024) (closely following the method described in this paper), we 
demonstrated that soft diarization decisions can improve ASR decoding performance. However, subsequent analysis revealed that 
these improvements were largely due to the overly aggressive post-processing used to derive hard decisions in our earlier diarization 
system. Therefore, in this work, we always use hard diarization decisions – whether from the ground-truth or the real diarization 
outputs – during decoding, as this approach matches the setup used during training. Note that in such a case, Eq. (12) defining the 
FDDT transform reduces to a straightforward selection of one of the affine transformations corresponding to the respective STNO 
classes.

Incorporating soft activations into the current framework remains an open problem for future work.

6.4. Extending whisper with joint CTC/attention training and decoding

Table  9 shows the effect of the CTC head on speaker-attributed ASR performance. First, we observe a significant improvement in 
tcpWER simply by adding joint training with the CTC head, even without using it during decoding (see 𝜆 = 0). This highlights the 
importance of guiding the training by enforcing a monotonic alignment between input frames and the output token sequence, as 
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Table 9
Performance of the method with and without the CTC head on the NOTSFOAR-1 eval set, evaluated using tcpWER 
with a 5 s collar and ground-truth diarization. The table compares the effects of varying 𝜆 values in (3). When 
𝜆 = 1.0, decoding is still primarily guided by the autoregressive model, and only the top 1000 tokens are rescored 
by CTC. The ‘CTC only’ column shows performance when the model uses only CTC for decoding.
 w/o CTC head 𝜆 = 0 𝜆 = 0.2 𝜆 = 1.0 CTC only 
 Greedy 22.9 22.1 21.7 27.9 46.5  
 Beam 5 22.2 21.7 20.9 32.0 52.8  

Table 10
WER comparison of the proposed method and original Whisper on single-speaker speech with both greedy (beam 
size 1) and beam-search (beam size 5) decoding. 𝜆 = 0.0 indicates no use of auxiliary CTC logits during decoding 
despite training with auxiliary CTC loss. 
 Beam 𝜆 LibriSpeech TED-LIUM VoxPopuli 
 size Test-clean Test-other Test Test  
 Whisper 1 – 2.5 4.5 4.3 10.9  
 CTC head 1 – 3.9 7.3 8.4 16.1  
 Proposed 1 0.0 2.1 4.3 5.3 11.2  
 Proposed 1 0.2 1.9 4.1 8.5 11.7  
 Whisper 5 – 2.2 4.3 4.3 10.0  
 Proposed 5 0.0 2.1 4.2 5.0 11.0  
 Proposed 5 0.2 1.9 4.0 7.8 11.2  

Table 11
Comparison of ORC-WER of fine-tuned Branchformer inference methods on AMI-sdm using 
ground-truth diarization.
 Inference style Baseline With FDDT 
 Utterance-level 34.5 34.5  
 Segment-group 141.2 26.8  

the Whisper decoder (or AED ASR) does not assume such alignment by default. Furthermore, using the CTC head for joint decoding 
further improves the performance (see 𝜆 = 0.2), although we note that using only the CTC head for decoding is significantly worse 
than the Whisper decoder. Overall, we surmise that the CTC head mitigates some of Whisper’s hallucinatory tendencies despite 
being considerably worse as a standalone decoder.

6.5. Does target-speaker training affect single-speaker performance?

Next, we examine the performance of the proposed TS-ASR system on single-speaker datasets to assess its impact on Whisper’s 
original capabilities in non-overlapping speech scenarios. This experiment was conducted using the LibriSpeech (Panayotov et al., 
2015), TED-LIUM (Rousseau et al., 2012), and VoxPopuli (Wang et al., 2021) evaluation sets, with results shown in Table  10.

For this evaluation, we used the FDDT-MD model without Co-Attention. To simulate a single-speaker scenario, we construct the 
diarization labels by setting the entire input as belonging to the target speaker, effectively using a static STNO mask with a target 
speaker probability of 1 across all frames.

We observe that the model slightly outperforms the baseline on LibriSpeech — likely due to overlap with training data — but 
underperforms on TED-LIUM and VoxPopuli, especially when using the CTC head. This degradation is expected, as the CTC head 
is trained on a more limited dataset. Overall, the results suggest that our training method preserves Whisper’s single-speaker ASR 
capability while enabling effective multi-speaker handling. This follows the hypothesis that target speaker speech may not need 
augmentation by FDDTs.

To further analyze this behavior, we measured the mean square change in the FDDT parameters relative to their suppressive 
initialization across different speaker classes. The mean square changes for silence and non-target parameters were 1.1×10−4, while 
those for target and overlap parameters were 6 × 10−5. This indicates that the FDDT layers make minimal adjustments to target 
speech, supporting the idea that target speech does not need significant transformation. As a result, the original flow of information 
in the model is preserved, maintaining the performance of the original model on single-speaker speech.

6.6. Non-whisper models

To verify that our method is not Whisper-specific, we used the ESPNet (Watanabe et al., 2018) LibriSpeech recipe7 and trained 
attention-based encoder decoder (AED) model, namely Branchformer CTC-AED (Peng et al., 2022) on LibriSpeech 960h (Panayotov 

7 https://github.com/espnet/espnet/tree/master/egs2/librispeech/asr1.
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et al., 2015). Then, we added additional FDDT parameters to the pre-trained model and6 fine-tuned it on the AMI-sdm dataset 
segmented the same way as for Whisper fine-tuning. To evaluate whether FDDT improves TS-ASR performance, we performed 
inference in two regimes commonly used in the literature, following the evaluation protocol from Kanda et al. (2021):

• Utterance-level: single-talker segments (usually a single sentence) were extracted according to the provided ground-truth 
segmentation, and the model was run separately on each segment.

• Segment-group: multi-talker chunks consisting of consecutive utterances not separated by silence were extracted, and the 
model was run separately on each group.

Table  11 presents the ORC-WER results for the two inference styles. As a baseline, we used a fine-tuned model with FDDT 
parameters but modified the STNO masks to always indicate the target speaker as active, effectively simulating a model not 
conditioned on diarization. The second column shows results for a model conditioned on diarization (in the case of utterance-style, 
only target and overlap information is provided, as there is no silence or other active speaker who is not overlapped with the target).

We observe that in the utterance-level inference setting, diarization information does not yield improvements over the baseline, 
likely because these segments are mostly single-speaker with occasional overlaps and may not provide sufficient context for accurate 
transcription of overlaps. Additionally, some segments contain nearly complete overlaps, where the model struggles to correctly 
transcribe the target speech.

In contrast, the segment-group inference setting shows a significant performance gap between the two models (an absolute 
improvement of 114.4%). This is primarily because the baseline model transcribes all speakers present in the segment group, 
resulting in many insertion errors. This result demonstrates that incorporating FDDT parameters and fine-tuning them effectively 
converts a single-speaker model into a TS-ASR model.

Moreover, the 7.7% absolute difference between utterance-level and segment-group performance for the FDDT model suggests 
that TS-ASR systems may benefit from longer contextual input.

7. Discussion

Despite its promising results, the proposed approach has several limitations:
Dependency on accurate diarization: DiCoW’s performance is strongly influenced by the quality of the diarization system. Poor 

diarization, such as in high-overlap or noisy environments, can degrade the overall effectiveness of the model.
Performance on synthetic versus real data: While the approach shows strong results on both synthetic and real-world datasets, it 

faces challenges adapting from synthetic benchmarks like Libri2Mix to real-world scenarios due to domain mismatches.
Scalability with increasing speaker count: DiCoW’s computational complexity and performance are affected in scenarios with a large 

number of speakers, as the model processes each speaker independently. However, to address this, we ensure that all computations 
are fully batched across speakers. This allows us to share computation and maximize GPU efficiency. In practice, we can parallelly 
transcribe up to 12 speakers on a single 24 GB GPU with a Whisper-large-v3-turbo backbone. We believe this level of parallelism 
effectively addresses concerns about the method’s practicality in multi-speaker scenarios.

Handling of overlapping speech: Although the Co-Attention mechanism addresses overlapping speech to some extent, fully 
overlapped segments involving multiple dominant speakers remain challenging.

Limited validation on unseen conditions: While we validated DiCoW across several datasets, further testing under diverse acoustic 
environments, speaker characteristics, and languages is necessary to better understand its generalization capabilities.

Addressing these limitations in future work will help refine the approach and broaden its applicability to a wider range of 
real-world scenarios.

8. Conclusion

In this study, we presented DiCoW, an approach to extend a single-speaker ASR system to perform target/multi-speaker ASR 
using a diarization conditioning scheme. The main contributions are:

1. Integration of diarization for target-speaker ASR: DiCoW directly conditions Whisper’s ASR capabilities on speaker diarization 
outputs, bypassing traditional speaker embeddings. This simplifies the workflow, reduces dependency on synthetic data, and 
improves generalization to unseen speakers.

2. Extension of long-form ASR to multi-speaker scenarios: By building on Whisper’s long-form transcription abilities, DiCoW 
effectively handles overlapping speech and real-world multi-speaker recordings, enabling more reliable transcription for 
conversations, meetings, and other challenging audio environments.

3. Efficient fine-tuning of pre-trained ASR models: DiCoW leverages large-scale pre-trained models like Whisper, fine-tuning 
them with diarization conditioning to deliver strong performance across diverse datasets. This approach minimizes training 
costs while achieving notable accuracy gains on real-world benchmarks such as AMI and NOTSOFAR-1.

Additionally, we extended Whisper with a ‘‘CTC head’’ to mitigate hallucinations and compared different conditioning approaches 
in terms of ASR performance and speed of convergence, highlighting the advantages of Frame-Level Diarization-Dependent Trans-
formations (FDDT). We demonstrated that adapting Whisper for multi-speaker ASR does not substantially degrade its performance 
on single-speaker recordings, although some loss of generalization capabilities was observed.
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Moreover, while most analyses were based on Whisper, we showed that the proposed method can also be successful with other 
models, such as AED-based ASR, demonstrating the general effectiveness of the approach.

We have successfully demonstrated that our DiCoW model achieves strong performance across various datasets when provided 
with ground-truth diarization. In future work, we aim to extend the framework incorporating real speaker diarization information 
into training in order to reduce the performance drop that comes from training exclusively on ground-truth diarization and only 
using real diarization during inference.

To facilitate future comparisons and analysis, we release our code and recipes at https://github.com/BUTSpeechFIT/TS-ASR-
Whisper.
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