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ABSTRACT

This paper presents the ABC team’s submission to the NIST
SRE 2024 evaluation, a collaboration among BUT, Polito, Phonexia,
Omilia, UAM, and CRIM. Our team participated in all evaluation
tracks (audio-only, visual-only, and audio-visual) under both fixed
and open conditions. We developed a variety of frontends, back-
ends, and strategies for calibration and fusion to optimize system
performance.

The fixed and open conditions share some solutions. In the
audio-only systems, we employed ResNet variants and the newly
introduced ReDimNet model as frontends for embedding extraction.
Then, we explored various backends including cosine scoring, Prob-
abilistic Linear Discriminant Analysis, and Pairwise Support Vec-
tor Machine. For the visual-only systems, we adopted the Insight-
face framework, utilized ResNet100 and MagFace pre-trained on the
MS1MV2 dataset. Cosine scoring under various strategies were ap-
plied, with logistic regression used for both calibration and fusion.
Finally, scores from audio-only and visual-only systems were fused
using logistic regression for submission to the audio-visual track.
Building on the fixed condition, the open condition included en-
hancements such as larger ResNet models, additional training data
from the VoxBlink2 dataset, and the pre-trained XLS-R foundation
model.

1. INTRODUCTION

This submission to NIST SRE 2024 is a collaborative effort of BUT,
Polito, Phonexia, Omilia, UAM, and CRIM. We participated in all
tracks (audio-only, audio-visual, and visual-only) under both fixed
and open conditions. This document describes the submitted sys-
tems. First, we provide a detailed description of the fixed track sub-
mission. Then, for the open track, we primarily highlight the addi-
tions and modifications done to the fixed systems.

2. FIXED CONDITION

2.1. Audio-only systems

2.1.1. Training data and augmentations

For training the system, we used these databases:

• NIST CTS Superset [1] - used for training the embedding ex-
tractors and scoring backends

• NIST SRE 2021 evaluation set [2] - used for training scoring
backends

We used Kaldi-style [3] augmentation with MUSAN [4] and RIR [5]
database, where we excluded Babble noise and Music from MUSAN
since these did not abide by the rules of the fixed track. A Kaldi-
style energy-based VAD was used to remove silent parts from the
waveform.

When training fixed track models, we downsampled all 16kHz
data to 8kHz (both for training and evaluation sets).

2.1.2. Development dataset

For monitoring our performance and for both calibration and fusion,
we used the official SRE 2024 [6] development dataset provided by
NIST and LDC.

2.1.3. Frontend

XI-ResNet-34: To train all of our embedding extractors, we utilized
WeSpeaker toolkit [7, 8]. As a first extractor, we used ResNet34
architecture [9], but in place of the common statistical pooling, we
utilized xi-vector approach [10]. The training followed the Vox-
Celeb recipe of WeSpeaker for ResNets utilizing all of the suggested
hyperparameters. The training minimizes AAM objective [11] with
the margin set to 0.2 and scale to 32. For the first 20 epochs of the
training the margin is set to 0 and then gradually increased from 0
to 0.2 in a course of 20 epochs. Finally, it is fixed for the rest of the
training until epoch 150 is reached. The learning rate scheduler is set
as in the original recipe - warming up the learning rate from 0 to its
highest value (0.1) for 6 epochs and then exponentially decreasing it
to 5e-5 for the rest of the training. The training was performed using
segments of 2 seconds duration. After 150 epochs, we increased the
length of the training segments to 10 seconds and continued training
for 10 more epochs with the fixed margin and learning rate.

XI-ResNet-152: As a second embedding extractor we used a bigger
version of XI-ResNet-34. The encoder this time was replaced with
ResNet152. When training this extractor, we followed the same
WeSpeaker recipe that was used for the smaller version with a few



modifications: we trained the model on longer training segments of
3 seconds, speed perturbation was turned off for this experiment,
and instead of running the training for 150 epochs followed by 10
additional epochs with 10s training examples, the first stage this
time lasted 130 epochs and the second one 5 epochs.

ReDimNet-B3: We also employed Reshape Dimensions Network
(ReDimNet) [12] as a speaker embedding extractor. Specifically,
we selected the B3 version based on our empirical experience. The
final model was trained in two stages, with short and long segments.
The hyperparameters for the first one follow those described for
XI-ResNet-34. In the second stage (so-called large-margin fine-
tuning), the model was further trained for five epochs on six-second
segments, optimizing AAM with a margin increased to 0.5. The
learning rate decreased exponentially from 1e-4 to 2.5e-5.

2.1.4. Backend

Different backends were employed for embedding classification.
We considered cosine (COS) scoring, Probabilistic Linear Discrim-
inant Analysis (PLDA) [13, 14] with its heavy-tailed variant [15],
and Pairwise Support Vector Machine (PSVM) [16, 17]. For all
backends, we included pre-processing strategies aimed at mitigating
mismatch due to language, gender, and channel differences in the
recordings. For our primary submission, we adopted the following
steps:

• embeddings are centered and length-normalized
• language labels are employed to estimate a language subspace

through Linear Discriminant Analysis (LDA). Embeddings
are projected in the complement space found by LDA

• a two-components, tied covariance Gaussian mixture model
with uniform weights is estimated using gender labels. For
each utterance, centered first order statistics are extracted and
used in place of the original embedding for further process-
ing (i.e., we compute a soft-re-centering of the embeddings).
The same approach is then repeated to compensate for source
mismatch, using the source labels of the training data

• embeddings are projected in a speaker LDA subspace. The
dimension of the LDA subspace has been optimized for each
backend based on the results on the SRE 2024 development
set

• projected embeddings are length-normalized. For the xi-
vector frontends, the length-normalization step is preceded
and followed1 by Within-Class Covariance Normalization
(WCCN). This step was not included for other frontends.

The pre-processing pipeline was trained using long segments ob-
tained by concatenating the CTS superset audio segments coming
from the same session, together with enrollment segments of the
SRE 2021 evaluation set.

Cosine backend: The cosine backend consists of a simple dot-
product of length-normalized embeddings.

PLDA backend: The PLDA backends were trained using the orig-
inal short segments of the CTS Superset, with the addition of the
SRE 2021 evaluation dataset enrollment utterances. We performed

1The second WCCN is not strictly required for the PLDA backend, but it
allows for faster convergence. For PSVM it affects regularization, allowing
us to further improve performance for the xi-vector frontends.

(limited) tuning of the PLDA subspace dimension. The models were
trained using a standard expectation maximization (EM) algorithm
with minimum divergence iterations.

PSVM backend: The PSVM models were trained using the strategy
outlined in [17]. The training set consists of long segments obtained
by concatenating the CTS Superset audio segments coming from
the same session, together with the enrollment segments of the SRE
2021 evaluation set. The PSVM regularizer and the PSVM costs
for target and non-target trials were tuned to optimize the perfor-
mance on the SRE 2024 development data. In addition to [17], we
also incorporated side-information at training time. In particular,
the PSVM model was trained with embeddings augmented with
duration-dependent side-information, encoded as the natural loga-
rithm of the duration of the corresponding utterance. It is worth
noting that the resulting scoring function shows strong similar-
ity with the Quality-Measure-aware scoring functional employed
in [18] for score calibration. In particular, our approach can be seen
as an extension of both the QM4 method [18] and [19], as that is
able to directly estimate and optimize the duration contribution at
PSVM training stage, rather than at scoring time.

Despite our efforts in compensating channel mismatches at the
embedding level, the verification scores of the different backends
show significant intra-condition mismatch that generates a signifi-
cant intra-condition miscalibration. To address this issue we con-
sidered two possible approaches: channel-dependent score normal-
ization and condition-dependent calibration. The former aims at
normalizing impostor scores through an adaptive cohort selection
that employs source-dependent cohort sets. The latter, on the other
hand, employs re-calibration methods to independently re-calibrate
the scores of the different conditions with the aim of reducing intra-
condition calibration mismatch. For our primary submission, we
employed the second strategy (we refer to [20] for an analysis of
the limitations of score normalization). Prior-weighted Logistic-
Regression (LR) [21] models were trained to estimate an affine trans-
formation for each of the four possible source combinations (“afv-
afv”, “cts-afv”, “afv-cts” and “cts-cts”, where afv stands for audio
from video and cts stands for conversational telephone speech). To
reduce the risk of over-fitting, these models were trained using the
SRE 2021 evaluation dataset, allowing us to obtain a significant re-
duction of minimum primary cost, despite the resulting score not
being necessarily globally calibrated for the SRE 2024 development
set.

For the contrastive submission, we utilized the same frontends
as the primary one but used different embedding pre-processing
and scoring. In all cases, we used Nuisance attribute projection
(NAP) [22, 23] to remove the direction corresponding to speaker
gender, followed by another NAP to project out the direction the
source variability (cts vs. afv, where the mean of cts was estimated
on CTS Superset and mean of the afv was estimated on afv part of
NIST SRE 2021). NAP was followed by centering the embeddings,
reducing the dimensionality by LDA and length normalization. The
scoring in all cases was a simple cosine similarity. Finally, the
channel normalization [24] for the scores was applied to remove
intra-condition mismatch as discussed above.

2.1.5. Calibration and fusion

We addressed global miscalibration using generative calibration
based on the Variance-Gamma approach [25], which models the
distribution of the verification scores in terms of Variance-Gamma



densities whose parameters represent “effective” variances of the
training and evaluation population. To train the parameters, we
employed a Quasi-Newton (QN)-accelerated EM algorithm [26].
The parameters were initialized from a linear Variance-Gamma [26]
model, also trained using the QN-EM approach. In order to better
capture the score dynamics, duration side-information was included
in the model [25]. Due to time constraints, the calibration models
were only trained on a set of approximately 10,000 target and 10,000
nontarget trials extracted from the SRE 2024 development set.

The final primary system consists of a combination of different
frontends and backends. To reduce the number of combinations and
the risk of over-fitting, we performed a pre-fusion step that com-
bines the scores of different backends for the same frontend. For
each frontend, we selected the optimal backend combination based
on the results on the SRE 2024 development set. The fusion is based
on prior-weighted logistic regression (LR) [21], with a scalar per
system and a single bias term. Our primary submission consists of
the score-level fusion of the resulting scores of each frontend, again
obtained by means of prior-weighted LR. Fusion weights were es-
timated on a subset of the SRE 2024 development trials. The LR
prior was set to 0.01.

For the contrastive submission, all three systems were precali-
brated on SRE 2024 dev using LR and then fused on the same set.

2.1.6. Audio systems results

The results on the SRE 2024 development set for the selected fron-
tend/backend combinations, as well as for the partial backend fu-
sions and the primary submission, are shown in Table 1. Among
frontends, two XI-ResNet frontends provide similar results, while
the ReDimNet model is slightly less effective. Concerning back-
ends, different approaches tend to provide similar results in terms of
primary metric, with PLDA being on average slightly less effective,
and PSVM providing significantly lower EER. When focusing on in-
dividual frontends, we typically also observe notable improvement
from backend fusions, despite the backend models sharing the same
input embeddings. Further combination of the scores provided by
each frontend provides an additional improvement for all considered
metrics. In general, although the results may be biased since the cal-
ibration models were trained using the same speakers and a subset of
the evaluated scores, we observe that the models demonstrate good
calibration.

2.2. Visual-only systems

To develop a visual-only speaker verification system, we lever-
aged face recognition models pre-trained on the MS1MV2 [11] and
Glint360k [27] datasets. The MS1MV2 dataset, widely used for
face recognition research, contains approximately 5.8 million facial
images from around 87,000 unique identities.

2.2.1. MS1MV2 dataset-based Visual Systems (S1-S5)

In this case, a ResNet100 configuration-based face recognition
model, which was pre-trained on the MS1MV2 facial image dataset,
was employed for the extraction of visual features (i.e., embeddings)
from the SRE 2024 enrollment images and test video recordings.
Before the extraction of embeddings, as pre-processing steps, face
detection and alignment were performed. For the detection of faces
from videos, a pretrained RetinaFace [28] face detection system
was used. After detecting faces, we aligned them using the land-
marks provided by the Multi-task Cascaded Convolutional Network

(MT-CNN) [29]. The face alignment step is crucial to standardize
the input faces before they are passed through the pre-trained face
recognition model (e.g., ResNet100) for feature extraction. Based
on the Insightface framework and adopting different scoring mech-
anisms we built five visual-only systems denoted as S1, S2, S3, S4,
and S5.

• S1: Cosine similarity is performed between median enroll-
ment embeddings and all the test embeddings. The maximum
of the scores is taken as the final verification score.

• S2: At first, agglomerative hierarchical clustering is applied
on the test embeddings with a stopping threshold of 0.7. The
cosine similarity is then performed between median enroll-
ment embeddings and all the cluster centers of the test em-
beddings. Finally, the maximum of the scores is taken as the
final verification score.

• S3: Same as S2 but with a stopping threshold of 0.65.
• S4: Cosine scoring is performed between median enrollment

embeddings and the self-attention-based refined embeddings
[30]. The maximum of the scores is considered as the final
verification score.

• S5: Cosine scoring is performed between average enrollment
embeddings and the self-attention-based refined embeddings
[30]. The maximum of the scores is considered as the final
verification score.

2.2.2. MagFace Visual Systems (S8) pretrained on MS1MV2 dataset

The first step toward building the MagFace-based visual system (S8)
involves the detection and alignment of faces from SRE 2024 en-
rollment images and test videos. Following this, embeddings from
the detected faces are extracted. More specifically, for all our experi-
ments, a residual network architecture (ResNet101) [31] was consid-
ered for face detection. Then, all the aligned face images underwent
spatial and color jittering as a data augmentation step. For frames
where no faces were detected, a second pass was performed as a re-
detection phase after applying sophisticated image enhancing tech-
niques on such images. Afterwards, the embeddings were extracted
using a residual neural network architecture based on the MagFace
paradigm [32], pretrained on the MS1MV2 dataset.

Each image to be recognized (from the gallery) is represented
by a group of centroids obtained by clustering the embeddings of
the corresponding augmented images. Each frame of the video un-
dergoes the same pre-processing techniques, resulting in a set of cen-
troids. The cardinality of the frame and image centroids is not neces-
sarily the same. Finally, a cross-group cosine similarity is calculated
between the pairs of centroids to determine the similarity between
the face in the image and the face present in the frame. For a broader
view of the face recognition system, refer to Figure 1. It is worth
mentioning that there is no restriction on the number of faces that
should be present both in the image and in the video frames.

2.2.3. Calibration and fusion

When submitting individual systems, we calibrated using LR on the
video parts of NIST SRE 2024 development set and NIST SRE 2021
evaluation set - the trials from the two sets were pooled together.
For fusion, we have opted to use two strategies: for the primary vi-
sual submission we used LR fusion of the pre-calibrated scores. For
the contrastive submission, we used exactly the same pre-calibrated
scores as the primary one, but instead of the trained fusion, we ap-
plied a simple average of the scores coming from the two fused sys-
tems. The motivation for the latter is our belief that such a fusion



Table 1: Comparison of selected frontends, backends and primary submission on the SRE 2024 development and evaluation sets (fixed
condition). The results are given in terms of Equal Error Rate (EER), and NIST-defined primary costs, as detailed in the NIST SRE 2024
evaluation plan [6].

SRE24 dev SRE24 eval

frontend backend
Cprimary EER (%) Cprimary EER (%) Cllr

min. act. min. act. min. act.

XI-ResNet-152
PLDA (U 100) 0.523 0.525 8.45 0.602 0.639 8.08 0.291 0.297
PSVM 0.524 0.532 7.73 0.572 0.574 7.69 0.279 0.287

Fusion 0.496 0.499 7.52 0.557 0.574 7.29 0.268 0.274

COS 0.507 0.527 8.18 0.616 0.626 8.77 0.313 0.321

XI-ResNet-34

COS 0.534 0.539 8.26 0.619 0.640 8.97 0.319 0.326
PLDA (U 100) 0.564 0.568 8.77 0.638 0.662 8.76 0.311 0.313
PSVM 0.539 0.543 7.47 0.579 0.580 7.56 0.276 0.283

Fusion 0.503 0.506 7.40 0.562 0.574 7.49 0.274 0.278

ReDimNet-B3
COS 0.524 0.602 9.11 0.637 0.643 9.06 0.326 0.337
PSVM 0.536 0.539 8.28 0.609 0.640 8.28 0.301 0.311

Fusion 0.523 0.528 8.36 0.607 0.629 8.37 0.304 0.313

Primary system 0.440 0.446 6.92 0.514 0.530 6.71 0.250 0.256

PSVM sub-systems fusion 0.457 0.464 6.89 0.515 0.521 6.73 0.250 0.257

XI-ResNet-221
PLDA (U 100) 0.536 0.542 8.41 0.628 0.660 8.46 0.305 0.311
PSVM 0.582 0.604 7.99 0.607 0.619 8.35 0.300 0.308

Fusion 0.509 0.519 7.77 0.598 0.614 7.80 0.285 0.292

COS 0.592 0.592 8.89 0.625 0.629 9.22 0.328 0.330

Primary system + XI-ResNet-221 0.426 0.432 6.87 0.512 0.532 6.70 0.249 0.255

strategy is less prone to overfitting and can be safer in a situation of
extremely low amount of errors made by the visual systems.

2.3. Audio-visual systems

The audio-visual primary system is based on the LR fusion of the
same audio sub-systems and visual sub-systems that were employed
for the primary audio-only and visual-only fusions. The fusion
weights were estimated using a subset of the SRE 2024 develop-
ment set audio-visual trials. For the two single systems, we used
pre-calibrated scores fused through LR. In this case, calibration was
trained on the respective part of SRE 2024 dev (i.e., these are exactly
the systems used in audio-only and visual-only tasks). The fusion is
trained on the audio-visual part of the development set.

2.4. Results

Table 2 summarizes the results of the systems submitted for the fixed
condition. The first part of the table corresponds to the performance
of individual systems used in the submitted fusion. The systems
are evaluated on NIST SRE 2024 development set using the official
performance metrics of the evaluation.

3. OPEN CONDITION

3.1. Audio systems

3.1.1. Training data

In addition to databases used in the fixed condition, for the open
condition, we utilize:

• VoxBlink2 dataset [33]
• VoxCeleb2 development set [34]
• NIST SRE 2018 development and evaluation sets [35]

All data were downsampled to 8kHz (both for training and evalua-
tion sets).

3.1.2. Frontend

ResNet-152-VB: We explored training with the recently released
VoxBlink2 [33] dataset, which consists of audios from YouTube
videos belonging to 111,284 speakers. The original 16kHz data is
downsampled to 8kHz, and each recording has a probability of 0.5
of being subjected to GSM codec using Sox2. The training proce-
dure follows the VoxCeleb recipe implemented in the WeSpeaker
toolkit. For feature extraction, we computed 80-dimensional log
Mel-filterbank energy features. The embedding extractor consists

2https://sourceforge.net/projects/sox/

https://sourceforge.net/projects/sox/


Fig. 1: An overview of the MagFace-based visual-only speaker verification framework.

of a ResNet152 with statistical pooling. It was trained on 2-second
segments for 150 epochs using AAM-Softmax loss with a scale
factor of 32. The margin parameter is gradually increased from 0 to
0.2 between epochs 20 and 40. We applied an exponential decay to
the learning rate after a 6-epoch warm-up, with a maximum rate of
0.1 and a final rate of 5e-5.

Following training on VoxBlink2, we performed Large-Margin
Fine-Tuning on the CTS Superset. Specifically, the model was fur-
ther trained for 10 epochs employing lower learning rates than in the
previous phase, starting from 1e-4 and exponentially decreasing it
to 2.5e-5. During this phase, we experimented with longer segment
durations (6 and 10 seconds) and increase the AAM-Softmax margin
to 0.5.

XI-ResNet-221: This embedding extractor is a scaled-up version of
the XI-ResNets used in the fixed condition submission. It is trained
on the same CTS superset (i.e., this extractor could be used in the
fixed track). In this case, the training optimizes AAM-Softmax
loss with the same hyperparameters as before, training segments
are 3 seconds long, no speed perturbation was used, and, unlike the
models used in the fixed condition, there was no fine-tuning of the
network on the longer segments.

XLS-R: In the open condition, we also made use of a foundation
model pre-trained in a self-supervised way. Considering the multi-
linguality of pre-training data3, we opted for XLS-R [36]. A notable
advantage of this model is that a subset of pre-training examples is
sampled at 8 kHz and contains telephone speech. In the fine-tuning
stage, we appended a multi-head factorized attention (MHFA) back-
end [37] to the pre-trained XLS-R 300M and fine-tuned both compo-
nents on upsampled CTS Superset recordings, optimizing an AAM-
Softmax loss (with a scale of 32 and a margin of 0.2). MHFA com-
prised 64 heads and produced 256-dimensional embeddings. The

3Pre-training data comprised VoxPopuli, Multilingual Librispeech, Com-
monVoice, VoxLingua107, BABEL.

learning rate decreased exponentially from 1e-2 to 4.4e-3 over the
course of 30 epochs. The pre-trained weights of XLS-R were up-
dated using a learning rate scaled down by a factor of 0.08 compared
to MHFA.

3.1.3. Backend

As a backend for the XLS-R based system, we followed the same
embedding preprocessing steps used in the contrastive submission
for the fixed condition: NAP to remove gender and source variability,
centering, LDA and length normalization. We trained two PLDA
models on the preprocessed embeddings: one on the CTS Superset
and another one on the SRE 2018 evaluation set. The final scoring
was performed with the PLDA which was the interpolation of the
two. No score normalization was applied in this case.

For the other frontends, we employed the same strategies as de-
tailed in the previous section. In this case, however, we also em-
ployed additional VoxCeleb data for training the backend classifiers
and the last stage of our embeddings preprocessing (Section 2.1.4).

3.1.4. Calibration and fusion

We follow the same strategy as in the fixed condition. Details are
given in Section 2.2.3. Results for individual systems and frontend-
level fusion are given in Table 3.

3.2. Visual and audio-visual systems

For the open condition, we have used an additional visual system that
was not ready before the fixed track deadline, system S8 described
in Section 2.2.2 - which we now used as “Single Best” submission.
The fusion follows the same strategy as for the fixed condition.



Table 2: Results of the systems for the NIST SRE 2024 Fixed Condition. AUDIO, VISUAL, and AV systems were evaluated on the respective
trial lists. Audio systems 1-3 each are the fusion of multiple backends with a single frontend. The details on the individual frontend-backend
combinations are given in Table 1. Systems 4-6 are the same frontend models, with different pre-processing and a single cosine scoring
backend. Numbers in the brackets correspond to the post-evaluation analysis when a bug in scoring eval trials was fixed.

System
SRE24 dev SRE24 eval

Cprimary EER (%) Cprimary EER (%)min. act. min. act.

AUDIO
1 XI-ResNet-34 fusion 0.503 0.506 7.40 0.562 0.574 7.49
2 XI-ResNet-152 fusion 0.496 0.499 7.52 0.557 0.574 7.29
3 ReDimNet-B3 fusion 0.523 0.528 8.36 0.607 0.629 8.37
4 XI-ResNet-34 cos 0.558 0.577 10.14 0.705 (0.685) 1.0 (0.721) 11.12 (10.48)
5 XI-ResNet-152 cos 0.540 0.558 9.30 0.679 (0.652) 1.0 (0.679) 10.08 (9.43)
6 ReDimNet-B3 cos 0.587 0.598 9.13 0.689 (0.674) 1.0 (0.695) 9.89 (9.48)

VISUAL
7 S1 0.080 0.153 1.56 0.163 0.208 2.56
8 S2 0.077 0.130 1.60 0.156 0.182 2.25
9 S3 0.050 0.125 1.56 0.156 0.180 2.17

10 S4 0.037 0.149 2.23 0.156 0.190 2.51
11 S5 0.059 0.179 2.38 0.169 0.211 2.99

Primary AUDIO Fusion = LR 1+2+3 0.440 0.446 6.92 0.514 0.530 6.71
Contrastive AUDIO Fusion = LR 4+5+6 0.491 0.502 8.61 0.637 (0.600) 1.0 (0.636) 8.95 (8.39)
Single Best AUDIO = XI-ResNet-152 PSVM 0.524 0.532 7.73 0.572 0.574 7.69

Primary VISUAL Fusion = LR 7+9 0.059 0.122 1.76 0.158 0.179 2.20
Contrastive VISUAL Fusion = AVG 7+9 0.054 0.137 1.56 0.157 0.189 2.36
Single Best VISUAL = 9 0.050 0.125 1.56 0.156 0.180 2.17

Primary AV Fusion = LR 1+2+3+7+...+11 0.035 0.038 0.72 0.105 0.106 1.20
Single Best AV = LR 5+9 0.047 0.051 0.82 0.136 (0.113) 0.137 (0.121) 2.06 (1.50)
Single Best AV = LR 2+9 0.054 0.063 0.87 0.109 0.111 1.35

3.3. Results

Table 4 shows the results of the individual subsystems and fusions
submitted to the open condition.

4. CPU AND MEMORY USAGE DETAILS OF THE
SUBMISSIONS
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