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Written Term Detection Improves Spoken
Term Detection
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Abstract—End-to-end (E2E) approaches to keyword search
(KWS) are considerably simpler in terms of training and indexing
complexity when compared to approaches which use the output of
automatic speech recognition (ASR) systems. This simplification
however has drawbacks due to the loss of modularity. In partic-
ular, where ASR-based KWS systems can benefit from external
unpaired text via a language model, current formulations of E2E
KWS systems have no such mechanism. Therefore, in this paper,
we propose a multitask training objective which allows unpaired
text to be integrated into E2E KWS without complicating indexing
and search. In addition to training an E2E KWS model to retrieve
text queries from spoken documents, we jointly train it to retrieve
text queries from masked written documents. We show empirically
that this approach can effectively leverage unpaired text for KWS,
with significant improvements in search performance across a wide
variety of languages. We conduct analysis which indicates that
these improvements are achieved because the proposed method
improves document representations for words in the unpaired text.
Finally, we show that the proposed method can be used for domain
adaptation in settings where in-domain paired data is scarce or
nonexistent.

Index Terms—Keyword search, spoken term detection, keyword
spotting, end-to-end keyword search, multitask learning, domain
adaptation, masked language modeling.

I. INTRODUCTION

K EYWORD search (KWS), known alternatively as spoken
term detection, is a branch of spoken content retrieval

task concerned with retrieving speech segments where a user-
provided query is uttered. Given a user’s short written query, a
KWS system searches an archive of speech and returns those
utterances in the archive hypothesized to contain the query,
timestamps showing the exact location of each hypothesis and a
set of scores denoting the system’s confidence in the hypotheses.
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The traditional approach to KWS involves building a large
vocabulary continuous speech recognition (LVCSR) system,
using it to decode the archive, and, from the resulting lattices,
constructing an inverted index in which queries are searched [1],
[2], [3], [4], [5]. However, this approach inherits the shortcom-
ings of the underlying automatic speech recognition (ASR),
most notably, the non-trivial complexity and computational costs
associated with ASR training and decoding. There has therefore
been interest in end-to-end (E2E) approaches which eschew the
ASR part of the KWS pipeline. These E2E systems are trained
to directly predict whether, and where, a query occurs in a given
speech segment, leading to a much simpler system in terms of
training and search [6], [7], [8]. Although E2E KWS systems,
like the one in this paper, still rely on simple ASR systems to
get timing information at training time, they feature a much
more simplified indexing and search scheme, comparable in
complexity to acoustic modeling in ASR.

Its complexities notwithstanding, ASR-based KWS still
maintains some advantages over E2E KWS in terms of both
efficiency and accuracy of search. While ASR-based systems
transcribe the archives into text-based structures such as factor
transducers [4], confusion networks [9] and position specific
posterior lattices [10] which allow fast, sub-linear indexes, E2E
methods generally rely on inner-product search with fixed frame-
rate vector document representations. Thus, the storage and
computational cost of E2E KWS grows linearly in the duration
of the archive. In addition to efficiency, ASR-based KWS also
outperforms E2E KWS in terms of search accuracy. The perfor-
mance advantage of ASR-based KWS is especially pronounced
for short queries while E2E KWS tend to have the advantage
for longer queries [11]. Nevertheless, the two approaches tend
to be complimentary and prior work has achieved significant
improvements in search accuracy by combining them across
queries of all lengths [7], [8], [11].

As with E2E systems in other domains, the simplification
in E2E KWS comes at the expense of data efficiency as these
systems generally require larger amounts of labeled training data
than their more modular counterparts. Of particular interest to us
is that ASR-based systems (even end-to-end ASR systems) can
be improved with unpaired text data independent of the paired
training speech-text data. This naturally raises the question
of how to use large text-only corpora to improve E2E KWS
systems. Since E2E KWS systems, as have been explored in
literature, model span probabilities and not word probabilities,
they cannot make use of language models which constitute
the primary method of using text-only data to improve ASR
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systems. On the other hand, there has been a recent trend in
E2E ASR of using joint training with text-to-text transduction
tasks to integrate the unpaired text into ASR training and re-
duce the dependency on external language models during ASR
inference [12], [13], [14].

Inspired by these approaches, in this paper, we propose train-
ing an E2E KWS system jointly with an auxiliary text-to-text
task. Taking the E2E KWS model of [11] as the baseline, we
introduce a joint training scheme where, in addition to the
baseline training of predicting the locations of short written
queries in speech segments, the model is also trained to predict
the locations of written queries in masked written sentences. As
this auxiliary training objective can be computed with purely
textual inputs, it provides a way to incorporate text-only corpora
into the KWS model.

We conduct extensive experiments which yield the following
results:
� The proposed model consistently and significantly im-

proves keyword search performance across several lan-
guages, domains and input feature choices. Moreover, the
proposed joint speech-text training scheme is orthogonal to
multilingual pretraining and data augmentation, and can be
used alongside them to achieve even better performance.

� The proposed joint training method improves document
representation of phrases contained in the auxiliary un-
paired text, both when such phrases exist in spoken form
in the paired KWS training data and when they do not.

� Training with unpaired text from a domain improves per-
formance on test sets in that domain, and therefore provides
a viable solution for dealing with domain mismatches
between the KWS train and test sets.

The rest of the paper is organized as follows: Section II covers
previous related work; Section III recapitulates the baseline
end-to-end KWS framework which we build upon and then
describes the proposed model; Section IV details the experi-
ments conducted and discusses the results of those experiments;
Section V concludes the paper with a summary and future
research directions.

II. RELATED WORK

Our work falls within the gamut of ASR-free KWS sys-
tems which attempt to simplify the KWS pipeline. Some of
the earlier approaches to this include the use of point-process
models [15], [16] and dynamic time warping [17], [18], [19].
More recent approaches use neural architectures which encode
queries and documents and effect search by combining those
encodings [6], [7], [8], [20], with especially [7] and [8] achieving
high efficiency by using completely separated encoders for
the query and the document and combining the encodings by
simple dot-products. Several improvements have been made to
the document representations including pretraining the docu-
ment encoder as an autoencoder [6], an ASR encoder [21], a
self-supervised model [22] and a multilingual KWS document
encoder [11]. However, none of these approaches have been able
to integrate unpaired text directly into the keyword search model.
We note that [6] and [20] pretrain their query encoders using

external text. Unlike those, we use the unpaired text to better train
our document encoder. As we will show in Section IV-E, using
unpaired text to train the document encoder with our method
leads to significantly better KWS performance than using it for
training only the query encoder.

Classical ASR-based methods can easily incorporate unpaired
text as they are modular. Various works have shown that using
external text can significantly improve ASR-based KWS by
using such text to augment the ASR pronunciation lexicon [23],
[24] and the language model [25], [26]. These works show that
the KWS improvements can be substantial even when improve-
ments to the underlying ASR system are less pronounced, due
to the effect on rare and out-of-vocabulary (OOV) queries. The
fundamental question of this paper is how to leverage such
external text for end-to-end KWS methods which possess neither
lexicons nor language models.

A related line of research is the use of unpaired speech for
training. This includes pretraining with surrogate unsupervised
objectives on large, untranscribed corpora and then finetuning
on paired data [27], [28], [29], [30], or semi-supervised training
which involves training a seed ASR model on small transcribed
data, using it to transcribe otherwise unlabeled data and then
adding the resulting automatically-transcribed data into the
training pool for further training [31], [32], [33]. The work most
related to ours in this direction is [8], in which an ASR system
was used to transcribe large quantities of speech for training
E2E KWS. Overall, these works, which improve performance
by making use of unpaired speech, are orthogonal to ours which
makes use of unpaired text. In our experiments, we use the
pretrained model from [30] to extract input features and we
show that adding unpaired text with our method yields consistent
improvements.

A more related line of work involves using unpaired text
data directly in ASR training. One way of doing so is using
a text-to-speech (TTS) system to generate matching speech, and
including the resulting paired data as part of ASR training [34],
[35], [36]. However TTS adds its own significant computational
and modeling complexity. Moreover, robust TTS systems are
generally a luxury only available for high resource languages.
Therefore, joint speech-text models such as MMDA [37],
PSDA [38], MUTE-L [12], USTED [13], Textogram [14] and
MAESTRO [39] have gained interest as a way of integrating
unpaired text into end-to-end ASR to improve performance on
ASR, as well as other downstream tasks such as spoken lan-
guage understanding [40] and spoken machine translation [41].
These models incorporate unpaired text by treating the entire
ASR model as part of a larger multimodal text generator, some
of whose parameters can be jointly trained for text-to-text
transduction without any explicit TTS synthesis. By improving
the underlying ASR system, these methods can plausibly be
used to improve ASR-based KWS systems, especially recently
proposed KWS systems based on end-to-end ASR [42], [43],
[44], [45]. However, they cannot work for end-to-end ASR-free
KWS systems which are generally discriminators rather than
text generators. Our proposed method introduces a surrogate ob-
jective for incorporating text into the discriminative framework
ASR-free KWS systems.
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Fig. 1. Illustrations of the baseline and proposed systems. Both accept a written query and a spoken document and return a sequence of probabilities indicating
where, if anywhere, in the document the query is spoken. The proposed system, however, also accepts documents in text form through a text encoder, thereby
allowing the possibility of training with text-only data.

III. METHODS

In this section, we describe the joint training method that we
propose for KWS. First, in Section III-A, we recapitulate the
baseline E2E KWS method from [11]—which we will subse-
quently refer to as baseline end-to-end KWS (BeKWS)—as it
forms the basis of our method. Then in Section III-B, we describe
the proposed joint model, which we will subsequently refer to as
the joint speech and text retriever (JOSTER). In Section III-C,
we provide details on how we train the model.1

A. Baseline End-to-End Keyword Search (BeKWS)

BeKWS—depicted in Fig. 1(a)—is a model trained to pre-
dict the probabilities of a query occurring in each frame of
a spoken document. For a (possibly multi-word) query q =
(q1, q2, . . . , qK) comprising a sequence of K letters and a
document X = (x1,x2, . . . ,xN ) comprising a sequence of N
acoustic frames, the model is used to predict the sequence
y(q,X) = (y1, . . . , yN ), where each yn ∈ {0, 1} is a binary
random variable indicating the existence of the query, i.e:

yn =

{
1, if q is spoken in X in a time span including n

0, otherwise.

(1)

The model comprises a document encoder and a query with
parameters Δ and ψ respectively. Given the query q and the
document X, the model outputs the sequence z(q,X;θ) =
(z1, . . . , zN ) of query occurrence probabilities where:

zn (q,X;θ) = σ
(
h�
ne (q;ψ)

)
, (2)

1Code for BeKWS and JOSTER available at https://github.com/bolajiy/
golden-retriever

where θ := {Δ,ψ}; hn is the nth frame of H(X;Δ), a down-
sampled representation of X computed by the document en-
coder; e(q;ψ) is the vector representation of the query com-
puted by the query encoder, and σ(·) is the logistic sigmoid
function. Thus, zn(q,X;θ) is interpreted as Pθ(yn = 1|q,X).

Given a training dataset containing of a set of spoken docu-
ments X , the model is trained by stochastic gradient descent to
minimize the negative log-likelihood of the indicators:

θ∗ = argmin
θ

∑
q∈Q

∑
X∈X

∑
n

− logPθ (yn|q,X) , (3)

where the training queries are taken from Q, the set of all uni-
grams, bigrams, trigrams in the transcripts of X , and the word-
level timestamps required for training are obtained by forced-
alignment with an HMM-GMM-based ASR system trained on
the KWS training data. In practice, the model is trained with a
modified cross-entropy objective which was introduced in [7]
(and which we will recap in Section III-C) because it has been
shown to outperform the vanilla binary cross-entropy implied
by (3).

B. Joint Speech and Text Retriever (JOSTER)

The approach we propose for incorporating unpaired text into
E2E KWS, JOSTER—depicted in Fig. 1(b)—involves modify-
ing the document encoder of BeKWS to accept not just acoustic
inputs but also textual ones. To do so, we introduce a pair of
modality encoders which transform input from their respective
modalities into a shared space; a speech-only encoder which
takes spoken documents as input, and a text-only encoder which
takes written sentences as input. The output of either encoder can
then be fed into a shared document encoder, and combined as
in (2) with the output of the (shared) query encoder to obtain
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probabilities of occurrence of the query in either spoken or
written sentences.

For a spoken document, Waudio = (w1, . . . ,wN ), we com-
pute its representation Xaudio(Waudio;Δaudio) by passing it
through an optional speech-only encoder with parameters
Δaudio. Henceforth, to reduce clutter, we drop the functional
form Xaudio(Waudio;Δaudio), and simply write Xaudio with the
understanding that the dependency is implied. Note that, with
the change of the model, we have had to make a slight change
in notation: in Section III-A, X denoted both the sequence of
acoustic features and the document encoder input (since these
are identical for BeKWS); here, Waudio denotes the sequence of
acoustic features, while Xaudio refers to the document encoder
input which computed on Waudio. For most of our experiments,
we do not use a speech-only encoder at all. Rather, we use
the text-only encoder to project written documents to the space
of acoustic features, i.e., by default, Δaudio = ∅ and Xaudio =
Waudio.

To compute the representation for a written document,
Wtext = (w1, . . . , wN ), we first mask it to obtain W̃

text
=

(w̃1, . . . , w̃N ):

w̃n =

{
_, with probability π,

wn, with probability 1− π,
(4)

where _ is a special mask symbol. Then we incorporate a

rudimentary duration model transforming the input to Ŵ
text

=
(ŵ1, . . . , ŵN ) where each ŵn is obtained by simply repeating
w̃n ρ times. For instance, the phrase Wtext = thecat might be

converted to W̃
text

= t_ec_t, and then, if ρ = 2, to Ŵ
text

=
tt_ _eecc_ _tt. This final representation is then input into the
text encoder—a neural network with an embedding lookup input
layer—with parameters Δtext to obtain Xtext(Wtext;Δtext). We
determine the values ofπ andρ experimentally (see Section IV-C
for an analysis of their impact).

Having obtained the modality-specific representations, we
can use (2) to get the occurrence probabilities Pθ(yn|q,Xaudio)
orPθ(yn|q,Xtext) for any queryqwhere the parameters {Δ,ψ}
are shared by both the speech-text retrieval and the text-text
retrieval.

As stated in Section III-A, for spoken documents,y(q,Xaudio)
is defined by whether the query is spoken at a time span of
the document. For written documents, y(q,Xtext) is defined by
whether the query occurs exactly at a given location. Using the
example from above, with document sentence Wtext = thecat

and Ŵ
text

= tt_ _eecc_ _tt, and a query q = cat,

y
(
q,Xtext

)
= 000000111111. (5)

C. Training

We train the model jointly on a paired speech-text dataset,
X audio, and an unpaired text-only one, X text, using stochastic
gradient descent. At each training step, k, we sample the dataset
μ uniformly from {audio, text} and minimize:

Jμ
k =

L∑
l=1

M∑
m=1

f
(
z
(
qμ
k,l,X

μ
(
Wμ

k,l,m;Δμ

)
;θ

)
,

Fig. 2. Post-processing of model output into KWS hypotheses. Contiguous
regions with scores above 0.5 are selected as hits, and the confidence of each hit
is the median score in corresponding region.

y
(
qμ
k,l,X

μ
(
Wμ

k,l,m;Δμ

)))
, (6)

where {qμ
k,1 . . .q

μ
k,L} is a mini-batch of L queries sampled

randomly from the set of unigrams, bigrams and trigrams of
the dataset X μ; 2 {Wμ

k,l,1, . . . ,W
μ
k,l,M} is a set of documents

sampled from the dataset such that Wμ
k,l,1 contains qμ

k,l while
the other M − 1 documents are sampled randomly; Xμ(·) is the
output of the corresponding modality-specific encoder; z(·) is
the model output as described by (2); y(·) is the ground truth
as described by (1) and (5); and f(·) is the modified binary
cross-entropy function defined as:

f(z, y) = −
N∑

n=1

(
1zn>1−φ · (1− yn) log (1− zn)

+ 1zn<φ · λ · yn log zn
)
, (7)

where φ is a hyper-parameter controlling the tolerance of the
objective to easily-classified frames and λ controls the relative
weighting of positive to negative frames.

D. Post-Processing for Keyword Search

After the model is trained, we no longer require the text-
only document encoder (Δtext), i.e., at search time, JOSTER
becomes effectively identical to BeKWS. We post-process the
output of the query and spoken document encoders for KWS
using the procedure illustrated in Fig. 2. As in BeKWS, for a
given document, the query is detected if there exists “islands” of
consecutive frames whose sigmoid outputs, Pθ(y|q,Xaudio),
exceed some threshold. We set this threshold to 0.5 in all our
experiments, although we found search performance to be stable
for thresholds between 0.4 and 0.7. The first and last frame of
the sequence are taken as the timestamps of the query hit and the
median probability of the sequence is taken as the confidence.
Finally, we discard hits which are shorter than 40 ms× query
length in letters.

IV. EXPERIMENTS

In this section, we conduct experiments to analyze various
aspects of the proposed JOSTER model. First, we describe the

2Note that, as in the baseline, we consider multiple occurrences of the same
training query to be distinct elements of the set, so that the probability of sampling
a particular training query is directly proportional to the number of times it occurs
in the training data.
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TABLE I
STATISTICS OF THE TRAINING TEXT CORPORA

experiment setup including datasets, input features, metrics and
model configuration. Next we present a macro comparison of
the KWS performance of the proposed method to that of the
BeKWS baseline. Then we analyze the effect of the text repre-
sentation hyperparameters on search performance. Afterwards,
we conduct experiments to understand how JOSTER achieves its
improvements with analyses of the effect of the size and choice
of unpaired text, the performance difference on various kinds of
queries and, finally, the effect of the domain of the unpaired text
on KWS performance.

A. Experimental Setup

1) Datasets: We conduct the bulk of our experiments on the
IARPA Babel corpora for low resource ASR and KWS,3 from
which we select Assamese,4 Bengali,5 Pashto,6 Turkish7 and
Zulu8 as the target languages for KWS training and testing.

For each language, we use the limited language pack (LLP)
subset which contains about 10-hours of training data per lan-
guage as the paired training data. We use the text from the full
language packs (FLP) as the unpaired text for each language.
These contain 5-6 times as many sentences as the LLP subset.

Each language has a 10-hour development (dev) set and a
5-hour evaluation (eval) set, with a few thousand queries per
set. Table I gives a summary of the text data for each language
including the size of the paired text lexicon, the size of the
unpaired text lexicon, and the proportion of evaluation queries
which are OOV with respect to each text source. We note that
Turkish and Zulu, both agglutinative languages, have larger
vocabulary sizes and higher OOV rates.

In addition to these, we use the LLP data from 19 other
languages of the Babel corpus (about 190 hours in total) for mul-
tilingual pretraining of the KWS model—which was shown to
significantly improve KWS performance for BeKWS in [11]–in
order to measure whether and how well the proposed method can
be used to improve a multilingually pretrained KWS baseline.

2) Acoustic Features: We use features from a pretrained 300
million parameter XLS-R model [30] as the acoustic input to

3[Online]. Available: https://www.iarpa.gov/index.php/research-programs/
babel

4[Online]. Available: https://catalog.ldc.upenn.edu/LDC2016S06
5[Online]. Available: https://catalog.ldc.upenn.edu/LDC2016S08
6[Online]. Available: https://catalog.ldc.upenn.edu/LDC2016S09
7[Online]. Available: https://catalog.ldc.upenn.edu/LDC2016S10
8[Online]. Available: https://catalog.ldc.upenn.edu/LDC2017S19

our KWS system.9 In a preliminary experiment on the Turkish
development set, we tried using the outputs of 5th, 10th, 15th,
20th and 23 rd (final) layers of the XLS-R model and found
that the 15th layer worked best, and so we use it forsubsequent
experiments. Note that, due to computational constraints, we
only use the XLS-R model as a feature extractor rather than
finetune it.

In addition to the 1024-dimensional XLS-R features, we also
consider 42-dimensional multilingual bottleneck features (BNF)
in Section IV-B as an alternative acoustic input, giving us yet
another axis along which to analyze the proposed method’s
performance. The BNF extractor is a TDNN-based [46] mul-
tilingual acoustic model which we trained in block-softmax
fashion [47] to classify clustered context-dependent triphone
states on the other Babel languages’ LLP data.

3) Metric: We report the term weighted values (TWV) in all
our experiments [48], which is a measure of weighted recall and
precision averaged across queries. The TWV of a set of queries
Q at a threshold ζ is defined as:

TWV (ζ,Q) = 1− 1

Q
∑
q∈Q

(Pmiss (q, ζ) + βPFA (q, ζ)) , (8)

where Pmiss(q, ζ) is the probability of misses, PFA(q, ζ) is the
probability of false alarms and β is a parameter which controls
the relative importance of the two. Following prior NIST eval-
uations [49], [50], we set β = 999.9. The threshold ζ is tuned
on the dev sets. For the dev sets, we report the maximum term
weighted value (MTWV) which is the TWV at the threshold
which maximizes it. For the eval sets, we report the actual
term weighted value (ATWV) which is computed by using the
threshold tuned on the dev set. Note that we report all our TWV in
percentages, i.e., we always multiply the TWVs as defined in (8)
by 100, so 100% corresponds to a perfect system with no misses
and false alarms, whereas 0% corresponds to a system with no
outputs, and negative TWV (up to −β × 100%) is possible for
systems with a preponderance of false alarms.

In addition to the TWV, we report Detection Error Tradeoff
(DET) curves in Section IV-B. The DET curves show a plot of
miss probabilities vs false alarm probabilities for a KWS system,
giving a more holistic view of keyword search performance.
KWS systems with DET curves closer to the lower-left corner
of the plot have better false alarm to miss tradeoffs and are thus
considered better. We use NIST’s F4DE toolkit10 for computing
TWVs and generating DET plots.

We adopt keyword-specific thresholding for across-query
score normalization [51] in order to allow various queries with
different score distributions to be compared with a single global
threshold.

4) Model Configuration and Hyper-Parameters: We base the
architecture of our model on [11]. The query encoder is a
network with a 32-dimensional embedding layer for computing
vector representations of each input grapheme, followed by 2
bidirectional gated recurrent unit (GRU) layers with 256 output

9[Online]. Available: https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr2_
300 m.pt

10[Online]. Available: https://github.com/usnistgov/F4DE
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TABLE II
TERM WEIGHTED VALUE COMPARISON BETWEEN THE BASELINE AND THE PROPOSED SYSTEM

units per direction per layer, and a 400-dimensional output
projection layer whose outputs are summed along the sequence
dimension to obtain the vectoral query representation.

The shared document encoder for JOSTER has 6 bidirectional
long short-term memory (BLSTM) layers with 512-dimensional
output per direction per layer, followed by a 400-dimensional
output layer. We apply dropout of 0.4 between successive
BLSTM layers, and down-sample by a factor of 2 after the fourth
BLSTM layer. By default (other than in Section IV-E), we do
not use any speech-only document encoder between the feature
extractor and the shared encoder. This results in document
encodings with frame durations of 40 ms for XLS-R features
and 20 ms for BNF. The text-only document encoder comprises
a 32-dimensional embedding layer, followed by a BLSTM layer
with 512-dimensional output per unit per direction, and an affine
projection layer to match the input dimension of the shared
encoder.

For the baseline (BeKWS), we ensure that the configuration
and number of parameters are comparable to the JOSTER con-
figuration above. We use the same query encoder configuration
as JOSTER above. We use the configuration of JOSTER’s shared
document encoder as the document encoder for BeKWS.

For the text-document representation, we set the masking
probability to π = 0.3 and the duration to ρ = 2. We obtain
these values by tuning to maximize average MTWV on Pashto,
Turkish and Zulu dev sets, and apply them without tuning on
Assamese and Bengali. For the training loss function, follow-
ing [11], we set the positive weight to λ = 5, the tolerance
parameter to φ = 0.7 and the number of training utterances per
query to M = 4.

B. Performance Comparison to BeKWS

In this section, we compare the performance of JOSTER to
BeKWS across languages and feature kinds. Table II shows
the TWV for each of the five test languages. For the baseline
(BeKWS), we note that replacing BNF as used in [11] with XLS-
R features yields significant improvements across languages—
on average, +10.2 MTWV on the dev sets and +9.3 ATWV on
the eval sets. Furthermore, by pretraining the document encoder
multilingually for KWS, using speed perturbation and increasing
M from 4 to 8 (in (7)), the baseline performance is increased by
an additional +6.8 dev MTWV and +7.6 eval ATWV on average
across languages, showing that BeKWS with XLS-R features
can be improved with multilingual KWS pretraining despite the

XLS-R features being already multilingual. This tracks a similar
finding about multilingual BNF in [11].

We find that JOSTER invariably improves the TWV by con-
siderable margins compared to BeKWS in each setting (BNF,
XLS-R, XLS-R + multilingual pretraining). For BNF, the im-
provements across languages average +4.7 for dev set MTWV
and +4.4 for eval set ATWV. When using XLS-R features, the
respective improvements increase slightly to +5 and +5.3. When
finetuning the multilingually pretrained model with XLS-R
features, we get average improvements of +3.7 and +3.5 by
using JOSTER instead of BeKWS. Note that we use the same
multilingual model—which is trained without unpaired text—to
initialize the document encoders for both BeKWS and JOSTER.

The DET plots in Fig. 3 provide an even more comprehensive
picture of the performance difference. In each test language,
JOSTER outperforms BeKWS across virtually all operating
points of the plots; i.e., at any given recall rate, JOSTER in-
curs fewer false alarms than BeKWS, further strengthening the
significance of the superiority of JOSTER.

C. Text Pre-Processing

As described in Section III-B, when computing the repre-
sentation of written documents, we first mask with probability
π = 0.3 and repeat each token ρ = 2 times. In this section, we
quantify the significance of these choices on retrieval perfor-
mance.

Fig. 4 shows the MTWV as π is varied with ρ fixed to 2.
We find that even without masking (at π = 0), JOSTER already
outperforms BeKWS by +3.5 MTWV. This runs counter to our
original intuition that without masking, retrieval from written
sentences would be too trivial to aid learning. Nevertheless,
setting π to 0.15 further improves MTWV by an average of +1.9.
Increasing π further starts to worsen performance. We note that
although MTWV varies with the masking rate, only at extreme
values (π > 0.9) does it get worse than the baseline, indicating
that the joint training is robust across a large range of π. We
surmise that having the text input is crucial, and the masking
acts as extra regularization in the vein of dropout.

Fig. 5 shows the performance of JOSTER as ρ is varied with
π fixed to 0.3. JOSTER outperforms the baseline across all the
settings of ρ we tried. Although the average MTWV at ρ = 2 is
better than the MTWV at ρ = 1, by 1.4, the latter may still be
preferred as the computational cost of the text document pipeline
increases linearly with ρ. Finally, we consider a more involved
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Fig. 3. DET plots showing the evolution of misses and false alarms on the evaluation sets for BeKWS (B) and JOSTER (J).

Fig. 4. MTWV on the development sets as the masking rate of text documents
is varied.

Fig. 5. MTWV on the development sets as the duration of each letter in text
documents is varied.

duration model (denoted ρ̄ in the figure), where we set ρ for each
letter to be its average duration—estimated by forced-alignment
with graphemic HMMs trained for each language. We find that

this added complexity yields no TWV improvements. In fact,
it generally degrades performance compared to fixed duration
with 1 ≤ ρ ≤ 4.

Overall, we note that although both parameters can change
the performance of the system, the variance is low enough that
JOSTER still outperforms BeKWS over large ranges of either
parameter.

D. Number of Negative Utterances Per Training Step

In this section, we measure the impact of the number of
negative examples in each training step. Instead of fixingM = 4
for both paired and unpaired batches, we vary them in turn:
� M(audio): We set M = 4 for unpaired batches and vary it

between 2, 4 and 8 for paired batches.
� M(text): We set M = 4 for paired batches and vary it

between 2, 4 and 8 for unpaired batches.
Fig. 6 shows the impact as of these variations. In both cases,

we find that increasing M increases the MTWV, with M(audio)
having higher impact compared toM(text). This however comes
at the cost of increased compute and memory cost for each
training step. Note that in all our experiments, negative training
utterances are sampled randomly. We hypothesize that better
sampling of negatives could result in better training efficiency
or even better search accuracy, but we leave investigation of any
such sampling strategies to future work.

E. Number of Shared Layers

So far, we have fed the speech features directly into the
shared encoder, i.e., there are no trainable speech-only encoder
parameters. In this section, we reduce the number of shared
layers. As we reduce the number of shared layers, we increase
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Fig. 6. Average MTWV on the development sets as the number of negative
utterances per training step is varied.

Fig. 7. MTWV on the development sets as the number of layers shared between
the two training tasks is varied.

the number of speech-specific layers (including transferring any
dropout or down-sampling components) so that the architecture
and number of parameters used for the spoken document pipeline
(|Δ|+ |Δaudio|) do not change. For instance, when we remove
two LSTM layers from the shared encoder, we use a two layer
LSTM network with the same configuration as the speech-only
encoder. We keep the text-only encoder configuration constant
throughout.

Fig. 7 shows that the MTWV generally improves as more lay-
ers are shared. It is particularly noteworthy that when no layers
are shared (Δ = ∅) by the two modalities’ document encoders
(with the query encoder shared as always), the MTWV is almost
identical to the baseline. This indicates that the performance
improvements result from using the unpaired text to improve
the (acoustic) representations learned by the document encoder
rather than simply having more text data for training the query
encoder.

F. Size of Unpaired Text

In this section, we measure the impact as we change the
amount of unpaired text used for the auxiliary task and report
the results in Fig. 8. First, we compare using the FLP text as has
been done so far to using the LLP text, i.e., using the transcripts
of the paired data as the “unpaired” text. The LLP text performs
significantly worse than using the FLP text and, in three of the
five languages, worse even than BeKWS.

Fig. 8. MTWV on the development sets as the size and composition of
unpaired text is varied. None refers to the baseline with no unpaired text, LLP
refers to using the LLP text for joint training, S-min denotes the worst of three
randomly selected LLP-sized texts while S-max denotes the best of the three,
FLP denotes using the entire FLP text for training.

Next, to test how much of this degradation is due to data
size and how much of it results from using the same text, we
create three random subsets of the FLP text (with the LLP text
excluded) each with the same number of sentences as the LLP
text. We report the MTWV of the best (S-max) and worst (S-
min) performing of these splits for each language. We observe
that even the best split performs much worse than the full FLP
indicating the size of the augmentation text matters. However,
we also observe that even the worst random split outperforms
the LLP text, indicating that textual diversity is also crucial.
Finally, we report a topline (Dev+Eval) where we use the text
from the transcriptions of the Dev and Eval sets as the unpaired
text for training, and find that, unsurprisingly, it outperforms
using even the larger FLP text. While it is unrealistic to assume
that the transcription of the test set can be obtained beforehand,
this shows that further improvements can be obtained if it can
be somewhat anticipated.

G. In-Vocabulary and Out-of-Vocabulary Queries

In this section, we quantify how much improvement we get
on various queries depending on whether or not they exist in the
unpaired text.

Fig. 9 shows the ATWV difference between JOSTER and
BeKWS across languages for queries that are:

1) OO: Out of vocabulary of both the KWS training data and
the unpaired FLP text

2) OI: Out of vocabulary with respect to the KWS training
data but in the FLP text vocabulary

3) II: In vocabulary with respect to both KWS training data
and the FLP text.

Note that for multi-word queries, out-of-vocabulary means at
least one of the query words is out-of-vocabulary.

The worst average improvements over BeKWS (+0.84 on
average ATWV) are achieved for OO queries (which form a
minute proportion of all queries as shown in the OOV-F col-
umn of Table I), with performance even degrading for two of
the five languages. For OI and II queries, we get consistent
significant improvements (+5.7 and +5.3 average ATWV re-
spective improvements).
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Fig. 9. ATWV differential between the proposed system and the baseline on
different subsets of the eval sets’ queries. OO denotes queries which are OOV of
both the LLP (paired) and FLP (unpaired) training corpora, OI denotes queries
which are out of the LLP vocabulary but in the FLP vocabulary and II denotes
queries which are in both vocabularies.

Overall, we infer that JOSTER improves the document en-
coder’s representation of words which are in the augmentation
text regardless of whether or not they actually exist in spoken
form in the paired data.

H. Performance in Mismatched Domain Setting

So far, we have trained and tested exclusively with Babel data.
In this section, we experiment with Turkish data from various
domains with various configurations of paired and unpaired data.
The objective for doing so is twofold:

1) To what extent is the matching domain necessary? In other
words, can we improve the TWV in one domain by using
text from a different domain?

2) Is text-only domain adaptation possible? Given paired
training data in one domain and a test set in another do-
main, how much can we improve the test set performance
using unpaired text from the target domain?

To answer these questions, we conduct experiments on two
Turkish language datasets. In addition to the Turkish Babel
dataset used in previous experiments, we use Turkish Broadcast
News (BNTR) [52] for KWS training and testing.

To match the training data size of the Babel LLP corpus,
we use a 10-hour subset of BNTR from the VOA channel11

for training. This training set has a vocabulary size of 16464.
We select two 10-hour subsets from the remaining BNTR data
as dev and eval sets. Since the BNTR dataset has no official
keyword lists, we randomly select 1500 queries composed of
equal proportions of unigrams, bigrams and trigrams for each
of the dev and eval sets with OOV rates of 11.7% and 6.5%
respectively. We experiment with three text corpora for un-
paired training: Babel FLP text, BNTR—unpaired text from the
Broadcast News dataset totalling around 180 hours and text from
Turkish Wikipedia. The first two allow us to measure the impact
of using text from the test domains, while Wikipedia stands as
a control corpus.

Table III shows the results of training with various configura-
tions of paired and unpaired data on the different test sets. First,

11[Online]. Available: https://catalog.ldc.upenn.edu/LDC2012S06

TABLE III
TWV ON THE TURKISH BABEL AND BROADCAST NEWS DATASETS AS THE

PAIRED AND UNPAIRED TRAINING DATA ARE VARIED

we note that the BNTR results are generally better than the Babel
ones, which is to be expected as the latter contains conversational
speech from a telephone channel, while the former contains news
recordings of professional newscasters.

For each test set, we get improvements by using JOSTER
regardless of the unpaired text used for joint training. However,
we get the largest improvements when we use text from the test
domain to augment training. For instance, in the cross-domain
setting where we train with the paired Babel data and test on
BNTR, JOSTER with the Babel FLP text improves the dev
MTWV and eval ATWV by +8.3 and +8.0 respectively compared
to BeKWS. Augmenting with Wikipedia text results in further
+4.4 and +3.5 dev and eval improvements compared to using the
Babel FLP text. Finally, using BNTR (target domain) unpaired
text provides further improvements of +6.1 and +6.5 compared
to Wikipedia. This final result cuts the gap to a topline of using
BNTR data for training by 65% and 60% on the Dev and Eval
sets respectively.

In the converse cross-domain setting (training with BNTR
paired data and testing on Babel), we observe a similar trend
where JOSTER using Wikipedia improves on the performance
of BeKWS, with further performance gains obtained from using
BNTR text, and the best performance resulting from using Babel
text. We note, however, that the performance improvements are
not as dramatic in this case—likely due to the difficulty of
transferring the BNTR-trained model to the difficult acoustic
conditions of the Babel data.

Finally, when training and testing within the same domain, we
observe that JOSTER generally improves the TWV compared to
BeKWS even with unpaired text from other domains. This holds
even for BNTR which already has a high baseline performance.

Overall, these results add an extra dimension to the results
so far, showing that the proposed method performs well, not
just across languages—as shown in previous sections—but also
across domains within the same language. Furthermore, they
suggest that training JOSTER with unpaired text from a domain
most improves search performance on test sets in that do-
main, providing a good alternative when domain-specific data is
limited.

I. Comparison With TTS-Based Text Augmentation

In this section, we compare our proposed method with TTS-
based unpaired text integration, where we use an off-the-shelf
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TABLE IV
TWV ON THE LIBRI-LIGHT CORPUS

TTS model to synthesize speech for the unpaired text and
train with the resulting data. Here, we experiment with English
language corpora due the difficulty of obtaining high-quality
open-source TTS systems for other languages. Specifically, we
use the 10-hour Libri-light corpus [53] as the paired KWS
training data, and test on the standard Librispeech test splits [54]
with around 1300 randomly generated queries for each test split.
We use the Coqui xTTS system [55] for speech synthesis. We
use the 100-hour Librispeech training set as the unpaired data
for JOSTER and TTS. For JOSTER, we also consider training
with Wikipedia text.

Table IV shows the results of these experiments. JOSTER,
even with Wikipedia text, improves across all dev and test sets,
and further, although the best performance is achieved when the
in-domain Librispeech-100 text is used. Similarly, using TTS
for data augmentation significantly improves KWS compared
to BeKWS.

Compared to JOSTER, we note that TTS performs better
on the “clean” test sets and performs worse on the more
acoustically-challenging “other” sets. This highlights a differ-
ence between the two approaches. JOSTER, being text-based,
is more channel-agnostic and is more influenced by linguistic
similarities between the unpaired text and the target. TTS, on
the other hand, is also influenced by channel match between the
output of TTS (which is typically clean speech by design) and the
test audio. Although, the impact of TTS augmentation on KWS
could plausibly be improved by augmentation with artificially
generated noise, reverberations or room impulse responses, an
in-depth exploration of TTS-based augmentation is out of the
scope of this paper. Moreover, these add extra complications
which JOSTER does not have.

V. CONCLUSION

In this paper, we propose JOSTER, a method for integrating
linguistic context into end-to-end KWS by jointly training a
KWS system with an auxiliary text retrieval objective on un-
paired text. Furthermore, we conduct experiments comparing
the proposed method to a baseline KWS system without the
auxiliary objective, and conduct analyses to better understand
how the proposed method affects the baseline KWS system.
Our experiments show the following:
� The proposed method significantly improves the baseline

end-to-end KWS system over several languages and feature
types. Moreover, other approaches for improving the base-
line such as multilingual pretraining and speed perturbation
can also be applied on top of the proposed method to yield
further improvements.

� Despite being trained with text, the proposed method
improves document (speech) representations rather than
query (text) representations of phrases in the auxiliary
text. When such phrases are searched, the performance
improves regardless of whether the phrase also occurs in
the paired training data. On the other hand, the performance
on query phrases which are not in the auxiliary text does
not improve—and sometimes degrades.

� The proposed approach improves performance even when
the auxiliary text is from a different domain than the
target test set. However, the best performance is generally
achieved when the text domain matches the test set and the
proposed approach shows promise as a way to do text-only
domain adaptation.

A promising avenue for future work is to extend this approach
to other spoken retrieval tasks such as hotword spotting and spo-
ken question-answering for which available paired text-to-text
data dwarfs paired speech-to-text data. Another direction is to
combine it with semi-supervised training methods so as to be
able leverage not just unpaired text but also unpaired speech. Fi-
nally, like other E2E-KWS systems, ours relies on inner-product
based search in vector spaces, and could therefore benefit from
approximate inner-product search methods such as hashing [56]
or vector quantization [57], [58] which allow building fast vector
indexes with sub-linear memory cost capable of handling up
to trillions of documents [59] to make it competitive from a
deployment standpoint.
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