
Tumbling Down the Stairs: Exploiting a Tumbler’s Attempt to Hide with
Ordinary-looking Transactions using Wallet Fingerprinting

a, , , , ,

Abstract

The privacy of Bitcoin transactions is a subject of ongoing research from parties interested in enhancing their security, as well
as those seeking to analyze the flow of funds happening in the network. Various techniques have been identified to de-obfuscate
pseudonymity, e.g., heuristics to cluster addresses and transactions, automatic tracing of transaction chains based on usage pat-
terns/features that may reveal common ownership. These techniques gave rise to services that attempt to make these techniques
unreliable with specific forms of behavior. Examples of such behavior include using one-time addresses or transactions with multi-
ple participants. Centralized services employing these behavior patterns, commonly known as tumblers or mixers, offer customers
a way to obfuscate their financial flows. In turn, new approaches have been proposed in recent scientific literature to exploit the way
the mixers operate in order to gain insight into the underlying financial flows. In this paper, we analyze some of these approaches
and identify challenges in the context of their application to a particular modern mixing service – Anonymixer. Furthermore, based
on this analysis, we propose a novel approach for identification of addresses involved in mixing with capability to distinguish be-
tween depositing/withdrawing parties and mixer inner addresses. The approach utilises wallet fingerprints, which we have extracted
using statistical measurements of mixer’s behavior. An internally developed tool implementing the proposed techniques automates
the deobfuscation process and outputs individual money transfers.
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1. Introduction

Cryptocurrencies are often perceived as a technol-
ogy that provides near-instantaneous, unregulated, and
cryptographically-secured money transfers between parties.
The reliance on cryptography provides anonymity (e.g.,
Monero, Zcash) or at least pseudonymity (e.g., Bitcoin,
Ethereum). As such, cryptocurrencies have pioneered a new
way of financial interaction and doing business. Cryptocur-
rencies have also become the primary tool for a number of
illicit activities, including ransomware, procurement of illegal
goods, gambling, and sanctions evasion. For these reasons,
cryptocurrencies are the subject of research and innovation
efforts aimed at improving and reducing their security. Various
parties in the ecosystem are competing for and against more
law enforcement (e.g., police in need of successful progress
in crime investigation [11]) and regulatory oversight (e.g.,
governments using distributed ledger system [12]). The
considerable success of darknet marketplaces, ransomware
campaigns, and digital scams/frauds has prompted interest
from law enforcement agencies (LEAs), which in turn has led
to the stimulation of development in the area of cryptocurrency
traceability.

To address the challenges posed by the identification of
relations between cryptocurrency addresses and transactions
(particularly the impact of co-spent clustering as described in
[13, 14]), a range of counter-techniques have emerged to obfus-
cate money transfers. The capacity of Bitcoin-like cryptocur-
rencies to consolidate numerous inputs and outputs in a single

transaction has provided a foundation for CoinJoin and mixing.
There are two approaches to transaction obfuscation on the

Bitcoin base layer in the current landscape: a centralized one
(mixers), and a decentralized one (CoinJoin). Users of mix-
ers send their coins to an address provided by the service, with
a promise of receiving an appropriate amount of coins later at
a withdrawal address they provided. Deposit and withdrawal
transactions can be causally linked, but modern mixers typically
execute user withdrawals using different coins; behavior some-
times referred to as swapping. Centralized mixers have a repu-
tation for disappearing, be it by an exit scam or a forceful shut-
down by a LEA (as was the case of the infamous ChipMixer).
The second on-chain obfuscation approach is trustless but may
require some extra effort from its users – CoinJoin. Users use
third-party tools to negotiate joined transactions; each user pro-
vides a set of inputs and has a claim on a set of outputs. The
magic is, or rather should be, that an outside observer cannot
link the inputs of a specific user to a set of their outputs with
nothing but pure chance (this should be true even for the partic-
ipants with one another, but it’s not trivial to achieve perfectly).
The most known example is probably Wasabi Wallet, which re-
cently stopped providing this service, as some other providers
of the same service face jail. The next best example is thus
JoinMarket.

The article’s primary contribution is the development of a
novel approach for identifying addresses involved in cryptocur-
rency mixing services, particularly in the context of centralized
mixing service, Anonymixer. This approach employs wallet fin-
gerprinting, a technique that utilizes statistical measurements of
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mixer behavior, to differentiate between depositing and with-
drawing parties, as well as the internal addresses of the mixer.
The accompanying tooling facilitates the automatic identifica-
tion of parties involved in mixing, thereby enhancing the ability
to classify and trace financial flows within mixers. This article
presents a novel method for enhancing the visibility of mixing
operations and provides a foundation for further research into
cryptocurrency privacy techniques.

This article is organized as follows. Section 2 outlines re-
lated work and the state of the art of the technologies used. To
establish a common ground for later inspection of transaction
patterns within the Anonymixer service, section 3 provides an
overview of the most common transaction classification types
and their interpretations. Section 4 describes in more detail
one particular mixer that serves as a basis for subsequent re-
search, including its modus operandi and potential for reverse-
engineering. Section 5 describes the construction of wallet fin-
gerprint and its intricacies: component selection and evaluation.
Section 6 focuses on application of the fingerprint on the stud-
ied mixer and debates the limitations of this study and approach.
Section 7 discusses the achieved state and future work.

2. Related Work

In this section, we provide an overview of the current state
of the art and place this work in the context of the research of
others.

One of the first research articles about mixing or money laun-
dering was published by M. Möser et al. in 2013. The au-
thors examined [3] three then-relevant services: Bitcoin Fog,
BitLaundry and Send Shared (functionality of Blockchain.info).
To analyze these services, the researchers ran experiments us-
ing the offered services as customers. By subsequent analysis
of the transaction graph with the added knowledge of inputs
and outputs, researchers were able to conclude that BitLaun-
dry provided poor anonymity. All of these services have been
shut down since then. It is difficult to evaluate how well the de-
mixing techniques presented in the paper apply to more recent
mixer implementations, as the landscape has transformed sig-
nificantly: the volume of daily transactions has increased, users
are better educated about best practices for preserving their pri-
vacy, and are able to pick from a diverse ecosystem of wallet
implementations. T. de Balthasar et al. [9] studied three mix-
ing services Darklaunder, Bitlaunder and CoinMixer and found
them to offer poor anonymity for their customers, as the authors
were able to detect a path between wallets and return addresses.
M. Prado-Romero et al. [8] approached the identification of Bit-
coin mixing accounts by modeling Bitcoin as a social network
and outlining anomaly communities. L. Wu et al. [7] catego-
rized mixing services into two categories: swapping and obfus-
cating. The authors provided four different examples of these
services: ChipMixer, Wasabi Wallet, ShapeShift, and Bitmix.biz
and conduct analysis to estimate the profitability. J. Pakki et
at. [6] analyzed 21 mixing services and explored their varying
features, advertised, and actual behaviour. A. Shojaeinasab et
al. [5] conducted research on three mixing services, MixTum,
Blender and CryptoMixer. He observed peel chains used to

payout the customers of MixTum and Blender and devised an
algorithm, using address types, for their tracking.

G. Kappos et al. [4] contributed greatly to the research of
transaction peel chains. To track peel chain forward and back-
ward through the transaction graph, he clustered addresses, ex-
tracted address features, and established a change strategy for
each cluster using the output index of the change address.

A different obfuscation method, Coin Join transaction, pro-
vides a potentially trustless way for users to mix their coins.
Möser et al. [10] studied one such trustless implementation,
JoinMarket. The authors could estimate the daily volume and
even the total value mixed within 13 months. As recently as
2023, H. Schnoering et al. published a research article [1] on
detecting CoinJoin transactions on the Bitcoin blockchain.

While there has not been any published academic research, to
the best of the authors’ knowledge, delving into extracting fin-
gerprints (default parameters) of software wallets, the Bitcoin
community has done a significant amount of work. Recently,
one of the Bitcoin Core contributors, Ishaana Misra, published
a well-researched post [2] on her blog, demonstrating that wal-
lets (in their default settings) produce consistently constructed
transactions. As there is a non-negligible amount of various pa-
rameters, one can use these parameters to cluster transactions
according to the wallet that likely produced them and associate
the clusters with a specific wallet implementation.

Our work builds on the shoulders of these giants as it ex-
plores a method of traversing ambiguous peel chains of one
mixer service using wallet fingerprint with novel and detailed
components and CoinJoin detection.

3. Overview of Transaction Types

In order to understand the proposed method for deobfus-
cating mixers, it is important to provide a robust theoretical
background about different types of cryptocurrency transac-
tions, as well as an assessment of the impact on privacy pro-
vided. Hence, this section provides a classification of Bitcoin-
like transactions.

This classification aids in more accurately identifying in-
stances when the ownership changes and when it remains un-
changed. Since users have great freedom in the way they create
their transactions, the following section can never be exhaus-
tive and applicable to every transaction. However, if users be-
have rationally with the construction of their transactions (i.e.,
try to minimize their fees, stick with a particular wallet imple-
mentation for a longer period of time), they exhibit consistent
patterns.

The critical factor for classification is transaction shape —
the number of inputs and outputs. Still, supporting factors like
address types, transaction parameters, and clustering heuristics
influence classification and, especially, interpretation.

Term “Transaction shape” is formulated in format < n : m>,
where n is the number of input addresses and m is the number
of output addresses. Keyword few refers to less than 5, while
keyword many refers to more than 5.
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Figure 1: Transaction < f ew : 2 >. The most common interpretation is simple
spend - a small number of input addresses (IA), one change address (CA), and
one output address (OA).

TxIA OA
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Figure 2: Transaction < 1 : 1 >. The two most common interpretations are
change-less spend and move.

3.1. Few-to-Two Transaction

Transaction shape: typically <1:2>, generally < f ew :2>
Transactions with a single or few inputs and exactly two out-

puts (depicted in Figure 1) are typically interpreted as a simple
spend. While the number of inputs can vary, as the creator of
this transaction may have to include additional inputs to pro-
duce sufficient value, the number of outputs stays the same.
One output address is under the control of the receiver, and
the other is the sender’s change output; such assumption stems
from the nature of so called unspent transaction output (UTXO)
accounting model of Bitcoin-like cryptocurrencies. If only a
single address appears both as the input and the output, it is
deemed as change, and the other output belongs to the receiver
of the funds — such case is referred to as transaction with triv-
ial change.

Transactions with shape < 1 : 2> are the most common type
of transaction1, accounting roughly for 75% of all transactions
with a 30-day moving average as of the time of writing.

3.2. One-to-One Transaction

Transaction shape: <1:1>
Transactions with one input address and one output address,

as depicted in Figure 2, are referred to as move or sweep. Under
the primary interpretation, a single owner owns both the input
and output address. There can be various reasons for this be-
havior, such as an attempt to obfuscate ownership of funds or
transfer to a new address type.

As for the obfuscation aspect, if the amount to be transferred
is known prior, a user may use a simple spend transaction to
generate the exact amount and transfer it to a new address under
its control. When the transfer is to be executed, only transaction
of type <1:1> is required.

1https://transactionfee.info/charts/transactions-1in-2out/
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Figure 3: Transaction <many : 1>. The most common interpretation is consol-
idation.
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Figure 4: Transaction < 1 : many>. The two most common interpretations are
Batched spend and spread.

In cases where an available UTXO matches the desired value
to be transferred plus transaction fee, < 1 : 1 > transaction can
be used as a changeless-spend.

There are thus two common interpretations: either the funds
are moved to an address under the sender’s control or, if there
has been a prior simple spent transaction or the value is ex-
pected or matched by chance, the transaction can transfer funds
between different users. The chance that such matching UTXO
is available is greater when there are more available UTXOs.

3.3. Many-to-One Transaction

Transaction shape: <Many :1>
As a single Bitcoin owner can have their funds spread across

multiple addresses, users may create a transaction that consoli-
dates and centralizes these spread finances to a single address.
These transactions typically have a multitude of smaller inputs
and a single output, as depicted in Figure 3. Addresses on both
sides of the transaction are deemed to belong to a single user.
If, however, the transaction has more than a single output, it can
also be interpreted as consolidation payment, where the outputs
include both the change of the sender and an output for the re-
ceiver, or CoinJoin, described later in section 3.5, where differ-
ent owners own their subset of inputs and outputs.

3.4. One-to-Many Transaction

Transaction shape: <1:many>
Conceptually reverse action to a consolidation transaction,

with a typically single input and a multitude of outputs. It
has two different interpretations: Batch spend or Tokeniza-
tion/Spread. This type of transaction is depicted in Figure 4.

In the Batch spend interpretation, a single user is batching
multiple payments together. This behavior is typical for ser-
vices with large flows, such as exchanges, where many users
can request withdrawals simultaneously. In such a scenario,
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output addresses are independent, and there will be a return ad-
dress among them.

In the Tokenization/Spread interpretation, a single user
spreads the funds across multiple addresses under their control
to prevent a possible future link between their actions, intending
to enhance total privacy and limit traceability.

3.5. CoinJoin Transaction

CoinJoin transactions are special transactions orchestrated to
enhance privacy. While previously mentioned transaction types
were always created by a single user (i.e., all addresses on the
left side of the transaction can be deemed as belonging to a
single user), CoinJoins has multiple participants.

There are several popular implementations for CoinJoin con-
struction: JoinMarket, Wasabi, and Samourai, each with its
own way of constructing CoinJoin transactions and differing
features. The following subsections outline some of the basic
properties of the above-mentioned services. We deem it im-
portant to note that Samourai services were seized by LEAs in
April of 2023 and Wasabi consequently shut down the operation
of their CoinJoin coordinator service. However, it is still pos-
sible to use Wasabi to conduct CoinJoins by utilizing an alter-
native coordinator service. Users may run their own CoinJoin
coordinator, or use freely available sources2 to discover other
coordinators operated by third parties.

3.5.1. JoinMarket CoinJoin Transaction
JoinMarket is a popular wallet implementing CoinJoins. A

taker, party interested in performing a CoinJoin, coordinates
with a set of makers, who provide liquidity for the transactions.
The wallet internally uses a concept of mixdepth, a wallet struc-
ture intended to avoid address reuse.

There are however, other observations about the generated
transactions that can be made. For a CoinJoin with N makers,
the transactions will: a) have N + 1 equal sized outputs, b)
have as many change outputs as required, c) have at least N
inputs. Unlike other wallet providers, JoinMarket does not use
fixed-size denominations, i.e., the size of transaction’s outputs
is decided by the taker. The number of makers involved (N) is
by default randomly picked between 8 and 10. When it comes
to transaction parameters, nVersion is set to 2 and nLockTime
to 0.

3.5.2. Wasabi CoinJoin Transaction
Wasabi is another open-source wallet utilizing CoinJoins to

improve user privacy.
Unlike JoinMarket, Wasabi CoinJoins are restricted to a fixed

set of denominations. The list of possible denominations is
stated in their website3. This makes transactions whose outputs
correspond to one of the possible denomination values likely
to be Wasabi CoinJoins. However, Wasabi can also be used to

2For example https://wasabist.io/ or https://github.com/Kukks/wasabinostr
3https://docs.wasabiwallet.io/FAQ/FAQ-UseWasabi.html#what-are-the-

equal-denominations-created-in-a-coinjoin-round

create CoinJoins which do not follow the aforementioned de-
nomination list, although we suspect that such usage is not very
common. Wasabi refuses to execute CoinJoins with less as a
specified number of inputs, which is 21 by default.

3.5.3. Samourai CoinJoin Transaction
Samourai was an open-source wallet with privacy-enhancing

features competing with Wasabi. On 25th April 2024, its co-
founders have been arrested and the website has been seized by
LEAs. The mixing service it provided (named Whirpool) has
been shut down.

4. Diving Deeper into a Modern Tumbler

The following section analyses one of the most prominent
mixing services with many recommendations. Anonymixer an-
nounced itself on the BitcoinTalk forum in August 2020, and
it is available on the clearweb4 and darkweb5. One of its most
stressed aspects is the lack of Cloudflare or similar proxies on
the clearweb, which differentiates it from the competition. As
these proxies establish a secure TLS connection with the cus-
tomer instead of the mixer server, data are decrypted on the
proxy and typically cached. Proxies thus provide a security
concern for privacy-focused users, especially when USA-based
proxies, such as Cloudflare, are used.

4.1. Online Presence
To gain a better idea about the proclaimed functionality, we

visited and read through the official website and profile on Bit-
coinTalk forum as well as AltCoin Talks forum.

Online sources mention following key takeaways: a) the
minimum mixer withdrawal value is 0.0001 BTC; anything be-
low this value is not used to pay out a customer; b) The cre-
ator is familiar with CoinJoin, especially with JoinMarket; c)
the software wallet is custom-made with obfuscation features;
it avoids common clustering heuristics and makes its operation
look like regular Bitcoin transactions; d) deposited coins are
not available for withdrawal (for some other customer) for 18
blocks from the moment of deposit.

4.2. Mixing Process
To start a mixing session, customers can enter up to 20 output

addresses; P2TR addresses are not supported as of September
2024. Next, a mixing session with a lifetime of 72 hours is
created for the user (identified by a GUID). As a privacy en-
hancing feature, each entered withdrawal address gets a ran-
domly generated delay before the funds reach the address. The
auto-generated delays increase by 0–35 minutes for each con-
secutive address, and can also be manually overwritten by the
customer if desired. Afterwards, the customer is provided a let-
ter of guarantee, which contains a summary of the outgoing ad-
dresses, their amounts and delays. Additionally, it includes ten

4https://anonymixer.com/
5http://btcmixer2e3pkn64eb5m65un5nypat4mje27er4ymltz

shkmujmxlmyd.onion

4



DTx DA

Anonymixer

WTx

Figure 5: Diagram of deposit. Deposit transaction (DTx), created by user wal-
let, placed UTXO onto the deposit address (DA). Sometime later, the DA par-
ticipates in a withdrawal transaction (WTx). Because DTx is created by user
wallet, it is irrelevant for this inspection.

newly created deposit addresses: eight of type P2WPKH, one
of type P2SH and one of type P2PKH. The customer is then
presented with the total amount (including the fee) to be sent to
the mixer. While any of the provided deposit addresses can be
chosen for the deposit, the mixer presents P2WPKH addresses
as the recommended method. After a single confirmation, the
service starts sending withdrawal transactions.

To gain insight into the inner workings of the mixer, a total of
22 mixing sessions were carried out: 20 in March 2023 to gain
initial data and an additional 2 in September 2024 to verify that
the results still held.

The data we collected during these experiments include a)
address specific attributes – type, number of transactions, de-
lay between trasactions and b) transaction specific attributes –
number of inputs and outputs, value, signatures, attributes like
nLockTime, nVersion, nSequence of inputs and fee per vir-
tual byte (fee/vbyte).

As the often-used words deposit and withdrawal refer to dif-
ferent actions in each of the following sections, we provide a
diagram with explicitly stated names for each case.

We structure the experiments in the following way: firstly,
we look at the deposits, withdrawals, and change addresses, re-
spectively. Next, we discuss the observed patterns, and lastly,
in the following section 5, we apply the collected knowledge.

4.3. Inspection of Deposits
Mixer deposit, in this context, refers to a customer sending

coins to address provided by the service. The diagram of the
deposit with naming clarification is depicted in Figure 5.

With our 23 deposits, we were able to uncover that a) de-
posit addresses always has only one deposit and up to one with-
drawal transaction, b) deposit and withdrawal transactions from
the deposit address have delay between 102 and 2231 blocks,
averaging 795.26 blocks, c) signature sizes vary as one of its
components, (r-value is not ensured to be as small as possible),
d) withdrawal transactions were either JoinMarket CoinJoins or
< 1 : 1> transactions with mostly optimal fees6, e) withdrawal
transaction had varying attributes.

6Calculated from the average fee/vbyte in the transaction’s block. We
consider optimal fees to be below double the average of the block.

WTxWA

CA

OA< 1 : 2>

Anonymixer

DTx

Figure 6: Diagram of withdrawal. Deposit transaction (DTx) placed UTXO
onto the withdrawal address (WA). Sometime later, the withdrawal address cre-
ates a withdrawal transaction (WTx), putting UTXO onto the output address
(OA) and receiving change UTXO on the change address (CA). Some withdraw
transactions were of shape <1:1> and thus did not include any change address.
OA is under our control and WA under Anonymixers control, owner of CA and
creator of DTx are currently uknown.

4.4. Inspection of Withdrawals
Mixer withdrawal, in this context, refers to a customer re-

ceiving a payout from the service using a withdrawal transac-
tion. The withdrawal transaction is likely created by the service
rather than some other customer, as that would require a steady
stream of customers with similar mixing amounts. The dia-
gram of withdrawal, as well as naming clarification, is depicted
in Figure 6.

With our 20 withdrawals, we were able to uncover that a)
address type of the withdrawal address can be P2WPKH (18
cases), P2SH-P2WPKH (1 case) or P2WPKH (1 case), b) the
number of transactions is equal exactly to two, c) the delay be-
tween deposit and withdrawal transactions was between 66 and
8979 blocks, averaging 1718 blocks, d) signature again vary is
sizes, e) transaction fee is mostly optimal, f) position of change
address between outputs is not stable and g) transaction param-
eters vary for each transaction.

We follow up by inspecting deposits onto the withdrawal ad-
dress, i.e., transactions that ’prepared’ the value onto the with-
drawal address for our withdrawal transaction. We concluded
that these transactions were, in some cases, created by the mixer
and by the customer in others. To validate this point, we pro-
vide the follow-up with case studies: two instances where we
received the deposit of another user and two different instances
where the received value was placed onto the address by the
service.

4.4.1. User-created Deposit
In two experiments, the value was deposited (’prepared’)

onto the withdrawal address with < many : many > transac-
tions. We were not able to associate these transactions with
any common CoinJoin scheme or service. Thanks to available
OSINT information7, we found that inputs into these transac-
tions are associated with OMG Dark Market. We thus assume
that some deposits into the mixer go directly to someone else as
their withdrawals; the mixer can swap coins between users.

7https://tokenscope.com/
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Figure 7: Diagram of handling change address. Deposit transaction (DTx),
transaction executing the withdrawal from the service, placed UTXO onto the
change address (CA). The change address later participates in a withdrawal
transaction (WTx). These withdrawal transaction were either of shape <1 : 1>,
<Many :1> or <Few :2>.

4.4.2. Service-created Deposit
In two other experiments, the value was deposited (’pre-

pared’) onto the withdrawal address by our other withdrawal.
In other words, the change address within the withdrawal trans-
action for one session was later used to execute another, with a
different withdrawal for our other session. Thus, we conclude
that the mixer can ’prepare’ the funds for future withdrawal by
itself; the mixer does not only swap coins between users.

4.5. Inspection of Change Addresses

To complete the initial inspection of the mixer-associated
activities, we inspect the change addresses of our withdrawal
transaction.

Out of 20 sessions with 20 withdrawal transactions, 16 con-
tained a change address. While these additional outputs are
not guaranteed to belong to the service, we consider it reason-
able to assume most of them do, as multiple customers would
have to execute withdrawals at the same blockheight with ex-
actly the correct value to produce a changeless transaction of
shape < 1 : 2 >. In the context of change addresses, we found
that a) address type was always P2WPKH, b) it was associ-
ated with exactly two transactions — one deposit and one with-
drawal, c) delay between the two transactions was between 303
and 32,761 blocks with an average of 4,957 blocks, d) signature
sizes differ, e) withdrawal transaction type was either < 1 : 2>,
< 1 : 1> or <many : 1> and f) usually an optimal fee and high
variance on all observed transaction parameters.

4.6. Discussion on the Observed Behavior

Running our experiments, we confirmed that the operator of
the Anonymixer service provides above-standard service for its
users (when compared to previously studied mixers [9, 5]. The
custom implementation employs seemingly randomized trans-
action parameters, making it seem like two subsequent transac-
tions were made by a different user.

In scenarios where user deposits go directly to another user
without the involvement of any other address, the visibility of
the transaction is limited. The same goes for deposits directly
deposited into the JoinMarket ecosystem.

When it comes to payouts from the mixer, we observed two
different transaction shapes: a) withdrawal using transaction

Tx1 A1

O1

A2 A3

O2 O3

Tx2 Tx3A0

Figure 8: Generic depiction of a peel chain. The initial value from address A0
is being “peeled” by individual transactions with subsequently smaller output
values, sequential creating additional outputs O1, O2 and O3.

with shape < 1 : 1 >; and b) withdrawal using transaction with
shape < 1 : 2 >. In either case, the value is placed onto the
withdrawal address in advance and either directly by another
service customer (as their input into the service) or by the ser-
vice itself (as a change from the previous withdrawal). In cases
when the service places a remainder from user withdrawal to
a new address, which is later used for another withdrawal, a
peel chain is created. peel chain refers to a pattern commonly
found on the Bitcoin Blockchains. It refers to a chain of vari-
able length of typically < 1 : 2 > transactions, where a larger
amount is gradually, through the individual transactions, being
’peeled’ and typically sent to various addresses. A general de-
piction of peel chaining is provided in Figure 8). These chains
can be traversed forward and backward once a single participat-
ing address is discovered.

In experiments where change address was encountered, it
was later withdrawn from using < 1 : 2 >— creating another
link the in the peel chain, < 1 : 1>— end of the peel chain, or
<many :1>— reset of the peel chain.

Interestingly, the transfer out from the change address came
in three distinct varieties: <Many : 1>, <1 : 1>, or <Few : 2>,
with a total of 12 unique transactions observed. Out of the
eight consolidation transactions (<Many : 1>), only four were
unique, meaning multiple changes addressed from different ses-
sions were later used in a transaction together. This hints that
these addresses are under the control of the mixer service, as
the mixes were done on different days at different times — it
is unlikely that a single customer of the service was mixing at
the same exact time on different days on four occasions. Since
we are confident that the service performed these consolidation
transactions, we can later inspect other inputs and track them
backward in the transaction history.

The service claims that withdrawals can be batched together
if scheduled for the same time. However, we could not verify
whether this behavior occurs across different mixing sessions,
i.e., for different customers. On the other hand, we later con-
firmed that the behavior occurs within the same mixing session
by specifying withdrawals to occur simultaneously (by setting
the same delay for two payout addresses). As a result, the with-
drawal transaction has three outputs: two of our addresses and
one change address.

Overall, Anonymixer provides a unique case for mixers, as
there are some important differences when compared with pre-
viously popular mixing services, such as ChipMixer or other
researched mixers with poor implementation, such as MixTum.

Chipmixer, for example, did not attempt to hide its operation
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in a sufficient manner. Inputs were typically consolidated and
tokenized in one step, using a <many :many> transaction. The
resulting tokens were then distributed to the customers for their
withdrawal; hard to trace but easy to detect.

A different mixing service, MixTum, used consolidation
transactions to gather inputs (< many : 1 >). Afterwards, cus-
tomer withdrawals were created using a long peel chain pattern
that reused the same address type, allowing for relatively easy
tracking.

Anonymixer , on the other hand, uses more complicated
mixing schemes. Firstly, inputs into the service are some-
times mixed with independent users’ coins, making tracking
any withdrawal transaction difficult, as the pool of addresses is
“diluted” by random users. Secondly, transactions are created
with a variety of parameter and feature combinations. Thirdly,
withdrawal transactions may directly follow a deposit from a
customer, disallowing peel chain tracking backward through
transaction history. Moreover, the peel chain cannot be tra-
versed forward if the withdrawal transaction only has a single
output.

If we are to identify inputs and outputs into the Anonymixer,
we need a reliable method for traversal of the peel chains it
creates. The success of chain traversal is highly dependent on
correctly identifying the change address in each link,- simple
spend transaction.

While some well-known methods can work on Anonymixer
in specific cases, the encountered chains are often too am-
biguous — fresh addresses on the outputs, same address types,
roughly equal and rounded output values, and similar future
spending transactions. To gain more vectors for change address
identification and untangling of the peel chains, we create a
Wallet Fingerprint of the Anonymixer wallet, as it is — by the
author’s own testimony — created “from scratch”.

5. Wallet Fingerprinting

Wallet fingerprinting aims to identify repeated and stable pa-
rameters within transactions that a particular wallet generates
and broadcasts to the network. Fingerprinting generally ap-
plies only when the default wallet settings are used, as many
wallets expose these settings as configurable to users, even
though some wallet fingerprints stem from limitations in the
implementation and features. Creating a trustworthy and de-
tailed fingerprint allows us to track peel chains even on transac-
tions where other typical techniques, like address type match-
ing, value rounding, and clustering, would not be as reliable.

Fingerprints are constructed from a set of components and
their expected values. As the service uses its own wallet im-
plementation, we could not apply any known fingerprints as-
sociated with commonly used wallets [2] (e.g., Bitcoin Core,
Electrum), but we had to create our own based on the previ-
ously described experiments. Since we found that the compo-
nents commonly used to create fingerprints are insufficient for
this use case, we expanded them in certain directions.

The following section describes how we approached our
components’ selection and often dives into technical details.

5.1. Component Selection

Based on our findings, the mixer wallet seems to random-
ize several parameters, such as nVersion, RBF, the value of
nLockTime, and whether the nLockTime value is applied or
not. Other wallets are not known to behave in such a manner;
transactions generated by a single wallet are relatively stable
(even though an article [15] states that the Bitcoin Core wallet
creates transactions with different parameters when RPC calls
are used).

The selected components for the fingerprint are shown in Ta-
ble 1. We considered the following transactions for the con-
struction of the fingerprint that we collected in the previous sec-
tion:

a) The withdrawal transaction from the deposit address (non-
CoinJoin);

b) The withdrawal transaction towards our withdrawal ad-
dress; and

c) The withdrawal transaction from the change address.

Withdrawal transactions from the change addresses admit-
tedly have a lower amount of confidence. However, none ex-
hibited any deviation from the already known fingerprints re-
garding transaction parameters. Since these were the only non-
CoinJoin transactions with multiple inputs that we assume the
mixer created, it allowed us to inspect input ordering.

General Transaction Parameters
nVersion {1, 2}

Tx types simple spend, move
consolidation

RBF {true, false}
Low-r-Grinding ✗

Input/Output Attributes
Particular Input Ordering ✗

Particular Output Ordering ✗

Deterministic Change Index ✗

Change Address Type Match ✗

Handling of nLockTime
nSeq. 0xFFFFFFFF 6x none, 2x height
nSeq. 0xFFFFFFFE 7x none, 10x height
nSeq. 0xFFFFFFFD 6x none, 9x height
nSeq. other 0x none, 0x height
Unix time value ✗

Address Attributes
Number of transactions 2
Blocks between transactions 66 ≤

Address Types P2WPKH, P2PKH
P2SH-P2WPKH

Table 1: Wallet fingerprint components, their observed values and quantities.
Numerous parameters are omitted. In terms of input/output orderings, we rec-
ognize value, lexical and historical.
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Figure 9: Visual representation of transaction distribution based on height-lock
field values. In this figure, you can see the distribution of values in various
height-lock related fields. The innermost ring splits the transactions by value of
the nVersion field (1 or 2). The middle ring further splits the segments by the
nSequence field values (where ”No lock” corresponds to nSeq.==0xFF..FF;
”Explicit” to nSeq.==0xFF..FE and ”RBF” to nSeq.<=0xFF..FD). The out-
ermost ring splits the segments by values of nLockTime itself. Concrete counts
and percentages can be seen in Table 2.

5.2. Discussion on the Extracted Fingerprint

To get an idea of what transaction parameters and what com-
binations are common, we scanned the last 1,000 blocks around
the time of mixing in March of 2023. The results are shown in
a graphical form in Figure 9 and with concrete values in Table
2.

At first glance, the service operator has certainly gone to
some lengths to provide an above-standard level of privacy.
Typical fingerprinting candidates, such as nVersion and RBF,
are not very useful in isolation, as their value is set most likely
randomly, blending in with the rest of the transactions on the
network. However, certain combinations with other parameters
are fairly uncommon, according to Table 2.

The parameter nVersion of 2 is common by itself. However,
when combined with explicitly disabled locktime (nSequence
0xFF..FF) with nLocktime value of blockheight, the like-
lihood of encountering such a transaction is very low. Yet,
we detected this combination of parameters. The same goes
for cases where nVersion is 2, locktime is explicitly enabled
(nSequence 0xFF..FE) but nLocktime has a value of 0. We
observed this combination multiple times.

We therefore assume that the Anonymixer wallet generates
the values of transaction field nVersion, nSequence of inputs
and nLockTime seemingly independently or in wrong-at-the-
time ratios, which results in rare combinations that do not com-
monly appear in other transactions. For example, nLockTime
is set on the transactions to a blockheight above 0, but disre-
garded by all its inputs, or vice-versa: Locktime is enabled by
inputs and set to 0 on the transaction level. The application of
the fingerprint is still probabilistic — a transaction matching the

nVer. nSeq. nLockTime Count Percent
No lock 0 651 143 30.034618 %v1 No lock 0 485 413 22.390157 %

v1 RBF 0 468 101 21.591624 %
Has value 190 996 8.809880 %RBF 0 186 733 8.613245 %v2

Explicit Has value 96 894 4.469332 %
No lock Has value 33 890 1.563210 %v1 Explicit 0 28 056 1.294111 %

v2 Explicit 0 19 757 0.911311 %
v1 RBF Has value 5 141 0.237134 %

Explicit Has value 1 802 0.083119 %v2 No lock Has value 49 0.002260 %

Table 2: Distribution of latest transactions based on their values of nVersion,
nSequence and nLockTime. The statistics were calculated based on all trans-
actions from blocks (mined over roughly one week) 799,000-800,008. Ab-
normal combinations of parameters are highlighted.

fingerprint does not automatically belong to the mixer. Tables 1
and 2 convey the important observation: Anonymixer uses fairly
uncommon parameter combinations too frequently, allowing us
to better identify when the transaction is still likely created by
the mixer and when it’s likely to be a different user. We can fur-
ther improve the likelihood of correct identification by utilizing
additional context. When examining a link in a standard peel
chain, we can try to apply the fingerprint in all directions —
withdrawal transaction on outputs and deposit transaction of
the input — giving us a much better chance, when combined
with other anomalies, to correctly differentiate between user
and mixer addresses.

Our fingerprint relies on data from addresses as well as
transactions. The total address search space is limited, since
it focuses only on addresses with two transactions and only
three transaction shapes. To limit the number of matched ad-
dresses when consolidation is encountered, we utilize no low-r-
grinding and no input orderings for the classification.

The absence of low-r-grinding can also be used to classify
transactions with a single input. However, unless adjusted for
probability, the result can have a lot of false positives.

While we suspect that the service mostly uses P2WPKH
addresses, we cannot completely disregard addresses of other
types as we assume they could be used as another type of ob-
fuscation of the peel chain.

5.3. Leveraging Fingerprint to Interpret Peel Chains

To test the capabilities of our fingerprinting approach, the
following section demonstrates its ability to navigate through a
transaction peel chain encountered in one of our experiments.
This partial transaction graph consists only of addresses that,
unless stated otherwise, participated in only two transactions in
total, are of the same type, and their transactions split input val-
ues into roughly equal parts. Figure 10 depicts the transaction
diagram for this particular case study.

We start on our address A0, where we received the with-
drawal funds. Since the withdrawal transaction is of shape
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Figure 10: Transaction graph depicting the studied peel chain. Using the constructed fingerprint, we have a new vector to distinguish between different actors.

< 1 : 1 > and the input address A1 into this transaction par-
ticipated in only two transactions, we follow up to inspection
this address. The first question is whether address A1 could be
a deposit address for some customers. To answer this question,
we move to inspect the transactions that deposited funds onto
it, transaction Tx1. Transaction Tx1 is of shape < 1 : 2 > and,
importantly, a) nVersion is 1 b) nSequence of input is final
but nLockTime value is set. This leads us to believe the mixer
constructed the transaction, as the combination is invalid. If we
inspect the other output address A2, we find it to have partic-
ipated in multiple transactions. Transactions spending UTXO
associated with the address, i.e., constituted by the owner of
the address, have unsurprisingly extremely stable parameters.
From its transactions, we also find that it participates in dust-
ing attacks, leading us to believe it to be an output address of
a different customer and thus address funding the withdrawal
transaction, address A3 belongs to the mixer. If we follow the
transaction that deposited funds onto A3, transaction Tx2, we
find the exact same parameters as with Tx1; now, however, with
signature with high r-value. If we follow the other output
to address A4 and inspect its output transaction, we find more
standard parameters - as the nLockTime value is not set and not
enabled. The address A4 participated in only one other transac-
tion Tx3, sending the received UTXO to Wasabi Wallet address
A5, as we detect Wasabi CoinJoin by its special characteristics.
We thus deem address A4 as another mixer output, Tx2 as being
created by the mixer, and A6 as being under the control of the
mixer. If we follow our search towards the overall source of the
funds, to transaction Tx4, which parameters are again differ-
ent but still consistent with mixers wallet fingerprint and follow
its other output address A7 and we inspect its only other trans-
action Tx5, we can identify transfer to the coinsbuy platform8

using address A8 and to a different address A9, whose finger-
print is consistent with address A7. We thus deem A6 as another
customer of the mixer service and a customer of the coinsbuy
platform, Tx4 as being constructed by the mixer, and A10 as be-
ing under the control of the mixer aswell. We then move back to
the main peel chain and follow the transaction Tx6, to find the
first really strong deviation from our collected fingerprint – two
inputs from the same address with otherwise standard transac-

8https://coinsbuy.com/

tion parameters nVersion 2, enabled LockTime with correct
blockheight value, leading us to mark this transaction as not
generated by the service but by a customer. The exploration is
thus concluded as there are no more candidate transactions or
addresses to consider.

As we applied the above-described method to all of our cap-
tured sessions, we identified a spread transaction (<1 :many>)
as a source of certain chains. After inspection of the only input
address, we found an exit from JoinMarket, which we know
is used by Anonymixer. When we applied our fingerprint to
other outputs from the spread transaction, we identified multi-
ple other origins of peel chains, all of which matched our finger-
print exactly — many instances of specific rare combinations of
nVersion, nSequence and nLocktime.

As a result, we consider adding spread into the fingerprint as
an improvement for future experiments and evaluations.

6. Automation of the Mixer Address Discovery Process

As demonstrated in the previous section, using the collected
wallet fingerprint allows us to track seemingly perfect peel
chains — chains whose addresses are of the same type with no
address reuse and whose transaction split the input value into
roughly equal parts. This makes the detection of change address
using standard approaches difficult. The last step in showcas-
ing the functionality of our proposed approach is to automate
the process. The goal is to:

a) identify addresses of the service;
b) identify withdrawal addresses of customers of the service;
c) identify deposit transactions into the mixer;

To gather blockchain data, we utilize a Bitcoin Core9 client
and the Mempool10 service, as these provide transaction links
forward and backward between inputs and outputs.

We use the addresses collected during the experiments as a
seed for our algorithm. Essentially, we perform forward and
backward searches from the seeds. We subject each encoun-
tered address and transaction to the fingerprint, extracted in

9https://bitcoincore.org/
10https://mempool.space/
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Section 5, and either continue the search or mark the transac-
tion or address as an anomaly, possible withdrawal or deposit,
depending on the context.

This search is enabled by the unique characteristics of the
mixer itself. Since it is trying to hide its operation under the
guise of standard Bitcoin transactions — that have only a small
number of inputs and outputs — brute-force search can be con-
sidered a viable strategy.

6.1. Results
By traversing the transaction graph backward from the with-

drawal addresses, forward from the deposit addresses, and for-
ward from the change addresses, we were able to identify 344
service addresses and 461 customer addresses. The total vol-
ume of Bitcoin transferred through the encountered peel chain
was 0,8534 BTC, the earliest encountered transaction was 17th
January 2023, the latest 15th May 2024.

While we know that the estimated volume is far below the
actual value, it acts as the lower bound. As we were able to
identify the addresses of hundreds of supposed customers, we
also confirmed, using OSINT11 methods, that on several occa-
sions, the customer withdrawal money could be followed di-
rectly into well-known online services, such as HTX, coinsbuy
or ChangeNOW. In several other cases, the output addresses we
associated with reports on well-known community sites12 typi-
cally with scams or ransomware.

With this brief example, we aim to emphasize that we can
traverse peel chains both forward and backward through the
transaction graph, even though the visibility is still quite limited
since ambiguous cases are ignored. When < 1 : 2> transaction
is encountered from either direction, one has to correctly deter-
mine which output is the change address and which output is
the peeled value. Wallet fingerprints can help us in cases where
clustering heuristics or commonly used change address detec-
tion heuristics do not work, especially when the wallet uses
such specific combinations as is our case.

Because the studied peel chain often ended or started with
consolidation instead of < 1 : 1 > transaction, we were able to
uncover tens of addresses from a single seed.

Like numerous other studies, the absence of extensive test-
ing/validation sets acts as a barrier, preventing us from accu-
rately assessing this method’s effectiveness. However, given
that our assumptions about the service are conservative, we can
estimate the lower bounds.

One of the obvious limitations of our approach of analysis
of Anonymixer is the inability to detect isolated transfers: if a
value is deposited into the mixer and then immediately, without
intermediate transaction, used in its whole for withdrawal for
some other customer (< 1 : 1 > changeless payment), no input
or change address can be followed. In some such specific cases
that we got the chance to observe, the mixer had no financial
profit — change address provides a way for the mixer to get its
cut when two users mix the same amount — the traceability is
limited, and so is the mixer’s profitability.

11https://tokenscope.com/
12http://checkbitcoinaddress.com/

We believe that we encountered this exact scenario on several
occasions — our deposited value enlarged by the mixers fee was
deposited onto the mixers address and later, using changeless
spend, used to payout another customer with the same value
we originally intended to mix. The whole service fee was thus
spent on the transaction fee.

This holds when the number of mixed coins is on the lower
side of the spectrum - as the service fee is calculated from the
total amount being mixed while the transaction fee is relatively
constant.

To provide a performance comparison with existing ap-
proaches, all the techniques discussed in Section 2 would need
to be implemented and tested on the same dataset. However,
since our method — analysis of uncommon parameters and
subsequent construction of fingerprint — can work in tandem
with the current methods, the performance of peel chain track-
ing heuristic should only increase — as we simply provide ad-
ditional vectors to feed the heuristic to influence decisions.

7. Conclusion

Usage of the Anonymixer unique wallet fingerprint has
proven to be a valid approach, as we exploited its high vari-
ance in transaction parameters and automatized identification
of involved addresses in mixing rounds and peel chaining.
Hence, wallet fingerprinting holds significant potential for clas-
sification purposes, despite the limited exploration of this con-
cept in contemporary scientific literature. This approach ap-
pears promising in several ways. For example, it could be
employed: a) to verify that a common-spent clusters do not
contain irrelevant addresses; b) to improve detection of spare-
changes address within transactions; or c) to provide an addi-
tional vector for correlation of blockchain transactions with off-
the-blockchain events.

Nevertheless, the generation of a fingerprint from a limited
set of approximately 40 transactions, with the objective of mon-
itoring a specific service on the blockchain, represents a signifi-
cant advance. The techniques and approaches that we have pre-
sented can, and it is highly probable that they will, be employed
in the future to enhance the efficacy of change address detection
heuristics, thereby improving visibility at the base layer of the
Bitcoin network.

Raw data from mixing sessions are available to cybersecurity
researchers upon request and validation of serious and honest
interest.
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