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Abstract

In the realm of digital forensics, password recovery is a critical task, with dictionary attacks remaining one of the oldest
yet most effective methods. These attacks systematically test strings from pre-defined wordlists. To increase the attack
power, developers of cracking tools have introduced password-mangling rules that apply additional modifications like
character swapping, substitution, or capitalization. Despite several attempts to automate rule creation that have been
proposed over the years, creating a suitable ruleset is still a significant challenge. The current state-of-the-art research
lacks a deeper comparison and evaluation of the individual methods and their implications. In this paper, we introduce
RuleForge, an ML-based mangling-rule generator that integrates four clustering techniques, 19 mangling rule commands,
and configurable rule-command priorities. Our contributions include advanced optimizations, such as an extended rule
command set and improved cluster-representative selection. We conduct extensive experiments on real-world datasets,
evaluating clustering methods in terms of time, memory use, and hit ratios. Our approach, applied to the MDBSCAN
method, achieves up to an 11.67%pt. higher hit ratio than the best yet-known state-of-the-art solution.
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1. Introduction

Since the inception of password authentication in com-
puting, the evolution of password-cracking techniques has
been a significant area of focus. Password cracking is used
not only by malicious hackers but also by the “good guys”
such as law enforcement, cyber defense organizations, pen-
etration testers, and security analysts to measure password
strength (Proctor et al., 2002; Vu et al., 2007; Kelley et al.,
2012), or simply by people who have forgotten their pass-
words. In digital forensics, recovering passwords is crucial
for unlocking encrypted or password-protected data, mak-
ing it an indispensable method for investigating cases of
cybercrime, fraud, or data breaches.

Among the wide range of strategies invented and em-
ployed over the years, dictionary attacks have stood the
test of time as one of the oldest yet still prevalent meth-
ods of breaching password-secured entry points. These at-
tacks, leveraging a predefined list of potential passwords,
exploit the human tendency to use memorable, hence often
weak, passwords (Bishop and V. Klein, 1995).

The introduction of password-mangling rules (Peslyak,
2017; Steube, 2024) to dictionary attacks has significantly
enhanced their effectivity, enabling attackers to systemati-
cally test modifications of candidate passwords far beyond
simple wordlist matching. This approach preys on the
common practice of creating passwords that are slight vari-
ations of dictionary words or predictable patterns (Bishop
and V. Klein, 1995). These rules apply a series of modifi-
cations, such as character substitution, insertion, deletion,
and capitalization, to each entry in a wordlist to expand
the attack vector by orders of magnitude.

Regardless of the advancements in password-cracking
techniques, the process of creating and optimizing man-
gling rules has for many years been largely manual, time-
consuming, and somewhat esoteric. In recent years, re-
searchers and developers have proposed several methods
to automate the rule-creation process (Marechal, 2012;
Kacherginsky, 2013; Steube, 2017a; Drdák, 2020; Li et al.,
2022). Some of the newest approaches utilize machine
learning, namely clustering (Drdák, 2020; Li et al., 2022),
with the most recent approach being a method proposed
by Li et al. (2022) called MDBSCAN. While the stud-
ies show a significant potential of such approaches, they
lack a broader comparison of individual clustering meth-
ods and rule-creation strategies, leaving room for improve-
ments and further research.

1.1. Contributions

Firstly, we conduct an in-depth examination and com-
parison of four clustering methods, evaluating their effec-
tiveness for mangling-rule creation. Our analysis includes
measuring clustering and password-generation time, mem-
ory consumption and hit ratios on real-world datasets.
Secondly, we introduce several optimizations to the rule
creation process, including an extended rule command set
and advanced techniques for selecting cluster representa-
tives. Thirdly, we apply these techniques to MDBSCAN,
the best-performing method identified, and benchmark it
against the current state-of-the-art approach from Li et al.
(2022). Lastly, we compare our methods to other exist-
ing rule-creation and password-guessing tools, extending
the comparison beyond clustering-based approaches. The
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results demonstrate that our method surpasses state-of-
the-art solutions across multiple scenarios. Notably, we
have achieved up to 11.67%pt. improvement in hit ratio
over the best-performing yet-known solution. These con-
tributions are showcased through the design and proof-of-
concept implementation of RuleForge, a clustering-based
mangling-rule generator that serves not only to validate
our methodology but also allows other researchers and
forensic practitioners to experiment with the automated
creation of password-mangling rules.

1.2. Structure of the Paper

The paper is structured as follows. Section 2 overviews
existing research in smart password guessing, the history
and the current state of using password-mangling rules for
dictionary attacks. In Section 3, we propose the design
and a proof-of-concept implementation of our machine-
learning-based rule generator. This section also describes
our proposed enhancements to the rule-creation process.
Section 4 describes the experimental evaluation of the rule
generator and a comparison of ruleset-creation methods.
Finally, Section 5 discusses the achieved results and pin-
points ways for possible future improvements.

2. Background and Related Work

Users frequently choose simple, memorable passwords
(Bishop and V. Klein, 1995) that make them vulnera-
ble to intelligent password-guessing techniques that mimic
human behavior in password creation. Narayanan and
Shmatikov (2005) proposed password guessing based on
character distribution represented by Markovian models,
later adopted by the famous Hashcat tool (Steube, 2020)
as the default method for creating passwords in brute-
force attacks. Düermuth et al. (2015) presented OMEN
(the Ordered Markov ENumerator), an algorithm based
on iterating over bins in order of decreasing likelihood,
outperforming previously-known Markov-based password
guessers. Weir et al. (2009) introduced password crack-
ing with Probabilistic Context-Free Grammars (PCFG).
The method was further improved by Houshmand et al.
(2015), who added keyword and multiword patterns, Hran-
ický et al. (2019, 2020), who proposed a faster and a dis-
tributed version, and Veras et al. (2014, 2021), who added
semantic patterns, dividing password fragments into cat-
egories by semantic topics like names, sports, etc. Kanta
et al. (2022, 2023) utilized contextual information for cre-
ating fine-tailored password dictionaries against specific
targets. In recent years, deep-learning approaches for pass-
word guessing have been introduced. Ciaramella et al.
(2006) studied Principal Component Analysis (PCA) pre-
processing and different architectures of neural networks
for password guessing. Melicher et al. (2016) deployed
the “Fast, Lean, and Accurate” (FLA) technique for mea-
suring password strength based on Recurrent Neural Net-
works (RNN). Hitaj et al. (2019) proposed creating pass-
words with Generative Adversarial Networks (GAN) and

released the PassGAN generator. Xia et al. (2019) in-
troduced password guessing based on PCFG, Long Short-
TermMemory (LSTM) and a model called GENPass based
on Convolutional Neural Networks (CNN).

Despite the invention of sophisticated techniques for
guessing passwords in the past decades, the dictionary
attack is still one of the most widely used methods, of-
ten used with additional mangling rules that multiply the
number of password candidates and increase the chance of
finding the correct password.

2.1. The Evolution of Password-Mangling Rules

The origins of password-mangling rules for dictionary
attacks date back to 1991 when Alec Muffet released the
legendary Crack program (Muffett, 1996). Crack offered
a programmable dictionary generator and mangling rules
that applied additional modifications to candidate pass-
words. The 1995 version 5.0 contained 21 pre-defined
rulesets and a cookbook for creating new ones using 29
supported commands like character substitution or ap-
pendage. The syntax was similar to those used in state-of-
the-art cracking tools like John the Ripper (Peslyak, 2015)
and Hashcat (Steube, 2020).

In 1996, Alexander Peslyak, better known as the “So-
lar Designer,” created the John the Ripper (JtR) tool as
a replacement for the popular Cracker Jack (Jackal, 1993)
UNIX password cracker. In addition to a complete re-
design of the tool, Peslyak (2015) added support for man-
gling rules compatible with those used in the original Crack
program. Over the years, various improvements to John’s
rule engine have been added (Peslyak, 2019), including
word shifting and memorization.

Jens “atom” Steube later decided to fix the missing
multi-threading support in JtR’s dictionary attack mode.
In 2009, he released the Hashcat tool (Steube, 2020), origi-
nally called “atomcrack.” The initial version was a simple
yet very fast dictionary cracker (Steube, 2017b). Hash-
cat had a native support for password-mangling rules and
adopted the syntax and semantics from JtR.

The release of CUDA (NVIDIA Corporation, 2019) and
OpenCL (Munshi, 2009) started a revolution in the pass-
word cracking area. Cracking program creators quickly
reacted by adding GPU support to their tools (Bakker
and van der Jagt, 2010; Steube, 2017c; Peslyak, 2019).
Steube was no exception and, in 2010, released cudaHash-
cat and oclHashcat (Steube, 2017c), the latter being even-
tually transformed into a single unified tool named just
“hashcat.” OpenCL support was also added to JtR in 2012
(Peslyak, 2019). Unlike Cracker Jack and JtR, Hashcat ap-
plied the rules directly inside the GPU kernel, which dra-
matically reduced the number of necessary PCI-E transfers
(Steube, 2017c). Hashcat also extended the repertoire of
rules with new ones such as ASCII value incrementation,
character block operations, or separator-based character
toggling (Steube, 2024). To the best of our knowledge,
Hashcat is the only password cracker with an in-kernel
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rule engine and a self-proclaimed “world’s fastest pass-
word cracker” (Steube, 2020). This could be true as Hash-
cat now computes all hash algorithms on OpenCL devices
using highly optimized kernels. Moreover, the team Hash-
cat won several years of DEFCON and DerbyCon “Crack
Me If You Can” (CMYIC) contests (Zivadinovic et al.,
2016). The latest 2022 v6.2.6 release of Hashcat supports
56 unique mangling-rule commands (Steube, 2024).

2.2. Approaches to Automated Rule Creation

While both Hashcat and JtR provide several default
rulesets and their respective websites document the syntax
and semantics of the supported mangling rules (Peslyak,
2017; Steube, 2024), creating new rulesets is not a trivial
task. To this day, several approaches have been proposed
to automate the rule creation (Marechal, 2012; Kachergin-
sky, 2013; Steube, 2017a; Drdák, 2020; Li et al., 2022).

The hashcat-utils repository contains a simple utility
called generate-rules.c, written by Jens Steube. The tool
generates a specified number of random rules from ei-
ther a time-based or a user-specified seed (Steube, 2017a).
While the generated ruleset can theoretically be used for
password cracking, their form is purely random without
any deeper meaning, as there is no sophisticated system
for their creation. From a research perspective, the tool
can be used as a baseline rule creator for comparison with
more advanced techniques.

Marechal (2012) proposed an algorithm for mangling-
rule creation. The idea was to start with a list of mangling
rules, either handpicked or randomly generated. Those
were applied to a wordlist, resulting in mangled passwords.
Next, Marechal proposed finding the largest common sub-
string of the words and computing the required append or
prepend operations to produce it from the remaining pass-
words. These operations resulted in rules that were then
ranked by the number of passwords created. Marechal also
released a proof-of-concept implementation called rules-
finder, which is still maintained to this day (Marechal,
2022). While the approach is working, its major drawback
is the need for an existing ruleset.

A different technique was proposed by Peter “iphelix”
Kacherginsky in 2013 with a proof-on-concept implemen-
tation as a part of the Password Analysis and Cracking Kit
(PACK) (Kacherginsky, 2013). The PACK/Rulegen gen-
erator uses a similarity-based approach but does not apply
clustering in the true sense of the word. For each candi-
date password, it creates a group of similar passwords.
For each group of passwords, Rulegen calculates the Lev-
enshtein distance (Levenshtein, 1966) between the origi-
nating password and other passwords in the group. By
analyzing the calculated distances, the optimal sequence
of operations is found and described by a series of rules
(Kacherginsky, 2013).

Drdák (2020) researched possibilities for adopting ma-
chine learning for automated mangling-rule creation. The
idea was to apply clustering to an existing password dic-
tionary (a “training dictionary”) to create clusters of pass-

words with similar syntax. One password was chosen as
a representative of each cluster. Mangling rules were then
automatically created to describe necessary modifications
for transforming the representative to the remaining pass-
words in the cluster. Drdák chose the Affinity Propaga-
tion (AP) (Frey and Dueck, 2007) method and created
a proof-of-concept implementation that showed promising
experimental results. Drdák later published the findings
in his bachelor’s thesis (Drdák, 2020). While the general
idea has been later proven usable by other researchers (Li
et al., 2022), Drdák’s study had its limitations. Firstly,
Drdák tested only a single clustering method. Secondly,
a significant issue was an extremely long computing of the
distance matrix for larger training dictionaries.

The same issue was independently identified and later
addressed by Li et al. (2022). They proposed a novel
method called MDBSCAN, a modified version of the clas-
sic DBSCAN algorithm (Ester et al., 1996), that was cus-
tomized for clustering passwords. To accelerate the dis-
tance calculation, they used the SymSpell (Garbe, 2012)
fuzzy search algorithm. The research on using MDBSCAN
for the rule generation problem shows great success in ex-
perimental results, even compared to PCFG (Weir et al.,
2009) and PassGAN (Hitaj et al., 2019).

While MDBSCAN (Li et al., 2022) is, to the best of
our knowledge, the most efficient clustering-based tech-
nique for automated rule creation, the authors focused
mainly on DBSCAN and MDBSCAN and have not tested
other clustering methods like Affinity Propagation (Frey
and Dueck, 2007) or Hierarchical Agglomerative Cluster-
ing (HAC) (Jiawei et al., 2012). The rule-creation method
is also not optimal, namely in terms of cluster representa-
tive selection, and, as we demonstrate in our paper, fails
in certain scenarios. Also, a selection of only 14 rules was
implemented. Moreover, we have not found any released
proof-of-concept implementation of the proposed method.

2.3. Research goals

Although several approaches for automated mangling-
rule creation have been proposed, significant gaps and
unanswered questions remain. To fill these gaps and ad-
vance the state of the art in the field we have decided to:

1. Compare tested and yet-untested clustering meth-
ods: DBSCAN (Ester et al., 1996), MDBSCAN (Li
et al., 2022), AP (Frey and Dueck, 2007), HAC (Ji-
awei et al., 2012).

2. Implement missing rule commands and experimen-
tally verify their contributions.

3. Explore other possibilities for choosing a cluster rep-
resentative and verify their benefits.

4. Compare these clustering-based approaches to other
mangling-rule creation methods like PACK/Rulegen
and other password-guessing tools like OMEN, etc.

5. Create an open-source proof-of-concept implementa-
tion to allow researchers and forensics practitioners
to experiment with automated rule creation.
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Figure 1: Rule generation process

3. The Proposed Mangling-Rule Generator

To fulfill the research goals from Section 2 and also to
provide a tool for both experimental and actual password-
cracking purposes, we propose a design and a proof-of-
concept implementation of RuleForge, an ML-based mang-
ling-rule generator with four clustering methods: AP (Frey
and Dueck, 2007), HAC (Jiawei et al., 2012), DBSCAN
(Ester et al., 1996), and MDBSCAN (Li et al., 2022).
Our tool is also equipped with an extended rule com-
mand set, enhanced methods for choosing cluster repre-
sentatives, and configurable rule command priorities.

3.1. Design

The process of rule generation with RuleForge consists
of several key steps, illustrated in Fig. 1. The workflow
starts with processing the training password dictionary.
For DBSCAN and MDBSCAN clustering methods, we find
similar passwords according to the Damerau–Levenshtein
(Damerau, 1964) distance and use the SymSpell (Garbe,
2012) fuzzy search algorithm to accelerate the process, like
Li et al. (2022) proposed. For AP and HAC, we calcu-
late a classic edit-distance matrix utilizing the Levenshtein
distance metric (Levenshtein, 1966). Using the selected
method, passwords clusters are created.

Next, we select strings to be considered representa-
tives of their respective cluster. The primary reason for

Table 1: Rule commands implemented in RuleForge, ap-
plied on “Password”

Rule Description E.g. Output
: Do nothing : Password
l Lowercase all letters l password
u Uppercase all letters c PASSWORD
c Uppercase all letters c PASSWORD
t Toggle case t pASSWORD

TN Toggle case at position N T2 PaSsword
zN Duplicate first character N times z2 PPPassword
ZN Duplicate last character N times Z2 Passworddd
$X Append character X to end $1 Password1
^X Prepend character X to front ^_ Password
[ Delete first character [ assword
] Delete last character ] Passwor

DN Delete character at position N D2 Pasword
iNX Insert character X at position N i4! Pass!word
oNX Overwrite ch. at pos. N with X o2$ Pa$sword
} Rotate the word right } dPasswor
{ Rotate the word left { asswordP
r Reverse the entire word r drowssaP

sXY Replace all Xes with Y ss$ Pa$$word

choosing representatives is to create rules based on com-
paring passwords within a cluster to their given representa-
tive and model necessary transformations by the produced
rules. With AP, the representative is determined by the
clustering method itself. For the remaining methods, the
representative is selected using one of the methods dis-
cussed in Section 3.3. DBSCAN and MDBSCAN do not
necessarily categorize every element into a cluster; they
put these unclusterable elements into an “outlier cluster.”
Creating rules from this cluster is, understandably, inef-
fective. Therefore, we added an option to exclude these
outliers from rule creation.

Once clusters are created and their representatives se-
lected, the process of generating passwords starts. Rule-
Forge generates rules by leveraging a user-provided rule
priority file, specifying the sequence in which rules are for-
mulated. The process is thoroughly explained in Section
3.4. Finally, RuleForge creates an output ruleset consist-
ing of rule commands sorted by frequency or, optionally,
a ruleset with a user-specified top number of rules.

3.2. Clustering Methods

As discussed above, RuleForge uses clustering to find
groups of similar passwords. Once identified, we can notice
differences between passwords in a group. These differ-
ences typically reveal how users create their passwords and
serve as anchors for rule identification. Applying different
clustering methods may lead to varied ways of grouping
passwords and creating diverse rules. By experimenting
with these methods within the tool, it is possible to at-
tain varying password-cracking success rates. The follow-
ing paragraphs describe the supported clustering methods
and their use in RuleForge.

AP. Affinity Propagation considers all objects as possible
exemplars, exchanging real-valued messages between them
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until a high-quality set of exemplars (and corresponding
clusters) emerges (Frey and Dueck, 2007). The two key
parameters that we need to specify are damping, which is
the extent to which the current value is maintained rela-
tive to incoming values, and convergence iter, which rep-
resents the number of iterations with no change in the
estimated clusters that stop the convergence. In the con-
figuration of the proposed rule generator, the parameter
convergence iter is set at 15, while the damping parame-
ter is adjusted to fall within the 0.6 to 0.8 range. These
values were selected to optimize the clustering process.

HAC. The Hierarchical Agglomerative Clustering method
places each object into a cluster of its own. The clusters are
then merged into larger clusters according to the criterion
set by a parameter distance threshold (Jiawei et al., 2012).
For the HAC approach, we set the distance threshold pa-
rameter to a value of 3, which has been experimentally
verified to be the most effective for our use case.

DBSCAN. In order to form clusters, DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) first
identifies core points—objects that have at least MinPts
neighbors (i.e., objects whose Damerau–Levenshtein dis-
tance (Damerau, 1964) to the core point is less or equal
to ϵ). Each core point at first forms a cluster with just it-
self as its only member. Iteratively, clusters are extended
or merged by adding objects that are neighbors of core
points in each cluster. The result is a set of clusters and a
set of non-clustered noise objects. MinPts and ϵ are user-
definable parameters of the method (Ester et al., 1996).
In DBSCAN clustering, we set ϵ as 1 and MinPts to 3.
In our experience, higher values of ϵ lead the algorithm to
degenerate into outputting a single cluster containing the
vast majority of passwords. Higher values of MinPts cause
the majority of passwords to be categorized as noise.

MDBSCAN. When used for clustering passwords, the DB-
SCAN algorithm has a tendency to form one large clus-
ter containing the majority of passwords. To improve the
granularity of its output clusters, Li et al. (2022) proposed
a modified version titled MDBSCAN (Modified Density-
Based Spatial Clustering of Applications with Noise). The
modification lies in using an additional truncation met-
ric to determine whether an object belongs to a cluster.
When performing clustering, a note is made of the initial
element of the cluster. An object is only added to a clus-
ter if its Jaro–Winkler distance1 (Winkler, 1990) to the
initial point is less or equal to ϵ2

2 with all else being un-
changed from the DBSCAN algorithm. The user-definable
parameters of this method are ϵ1, ϵ2, and MinPts, where
ϵ1 and MinPts are equivalent to the parameters of the DB-
SCAN algorithm. For our use, we set ϵ1 to 2, ϵ2 to 0.25

1The Jaro–Winkler distance is a real number in the range 0 to 1.
2In the case of merging two clusters, one initial point is disre-

garded. The choice of object to disregard is not specified.

and MinPts to 3. The truncation feature of MDSBCAN
allows for using a higher value of ϵ1 than with DBSCAN—
the large cluster generated by DBSCAN gets “broken up”
by MDBSCAN—which is helpful because a higher value
leads to fewer values being categorized as noise. However,
going above the value 2 again leads to enormously large
clusters. Lower values of ϵ2 lead to the creation of too
many useless single-password clusters, whereas higher val-
ues lead to the creation of too large clusters. And with
MinPts, the results are the same as with DBSCAN.

Algorithm 1 Rule identification

Global: Vector −→rp = [r1, r2, . . . , r19] of rule commands
in priority order, where r1 and r19 are commands with
the highest and lowest priority respectively
Input: Password P from a cluster ci, representative
Prep of a cluster ci
Output: Sequence of rule commands R generated by
transforming P to Prep

while P ̸= Prep do
rf = None ▷ Initialize rf value to check whether

▷ a suitable rule command was found.
for each rule command r ∈ −→rp do

Calculate the number of transformations n using
levenshtein distance(P, Prep).
Create a password Pm by modifying password P
with rule command r.
Calculate the new number of transformations nm

using levenshtein distance(Pm, Prep).
if nm < n then

▷ Suitable rule command rf found.
P = Pm

rf = r
break ▷ Stop looking for other commands.

if rf ̸= None then
R.append(rf )

else
break ▷ No other possible modification found.

return R ▷ Return the final command sequence.

3.3. Choosing cluster representatives

Once the clusters are created, it is necessary to se-
lect a represenative for each cluster and search for possible
transformations to the remaining passwords in the cluster.

Levenshtein Method. Existing works that use clustering
for rule creation (Drdák, 2020; Li et al., 2022) always
choose a representative as a concrete password from the
cluster, concretely, the one with the lowest mean Leven-
shtein distance to others. Therefore, we call it this tech-
nique the “Levenshtein Method.” Nevertheless, this ap-
proach is rather limiting. Assume the password clusters in
Fig. 2. The blue candidates are representatives chosen by
this method. In the leftmost cluster, hello1 is selected as
a representative. Assuming the rule commands from Table
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1, possible transformations to hello2 and hello3 are (1)
deleting the last character and appending “2” or “3”, (2)
overwriting the 6th character with “2” or “3”, or (3) re-
placing all occurrences of “1” with “2” or “3.” Obviously,
such modifications are only usable in very specific cases.
What we want are rules that have general use.

P@ssw0rd!
P@55W0rD

Pa$$W0rd_123

P@$$w0rD2024

password

Qw3rTy%2024

QW3rty_!42
Qwerty$123!Qw3Rty!@42

qwerty

Levenshtein Method

Substring Method

hello2
hello1

hello3

hello

Figure 2: A visual comparison of cluster representative
selection methods

Substring Method. Therefore, we propose an alternative
called the “Substring Method” which works as follows.
Firstly, we transform all characters of the substring to low-
ercase. This way we obtain more general words to which
capitalization rules may easily be applied. Next, we undo
all “leetspeak-based” transformations like a → @ or s → $.
As we have observed, removing leetspeak often allows the
extraction of original words and sentence fragments that
inspired the password creator. Finally, we calculate the
longest common substring of all passwords in the cluster.
The resulting string is the cluster representative. Note
that the representative may or may not be an actual ex-
isting password from the cluster.

Combo Method. While the Substring Method allows the
creation of more generally usable rules, we achieved the
best experimental results (See Section 4.) by using their
combination. This “Combo Method” works as follows:

1. For each cluster, choose a representative using the
Levenshtein Method and generate all possible rules
(See Section 3.4.).

2. For each cluster, choose a representative using the
Substring Method. Generate all possible rules to ex-
tend the previously created ruleset.

3. The top nmost frequent rules create the final ruleset.

3.4. Rule Creation

The rule-generation process utilizes the Levenshtein
distance (Levenshtein, 1966) to determine the number of
editing operations required to transform a password within
a cluster to its representative. This method of measuring
edit distance helps find specific rules that, when used on
passwords, make the edit distance smaller. A rule that

decreases the edit distance is deemed appropriate and in-
corporated into the rule set. Multiple rules (such as sXY
and oNX) may achieve identical modifications in certain
instances. Therefore, RuleForge introduces a rule prior-
ity system, specifying which rules it prioritizes during the
rule-creation process. These rules can be specified in the
input rule-priority file, where one can determine which
rules RuleForge should generate and in which priority. The
rule generator proposed by Li et al. (2022) supports 14 dif-
ferent types of rules. With RuleForge, we expanded the
number of rules to 19. Rules that RuleForge supports are
displayed in Table 1. Other Hashcat rules that have not
yet been implemented are considered for future work. This
approach of using rule priority enables the exploration of
different rule-priority configurations, leading to different
password-cracking hit rates. The rule generation process
is illustrated in Algorithm 1.

3.5. Proof-of-Concept Implementation

To create a proof-of-concept implementation of Rule-
Forge, we chose a combination of two languages: Python
and C#. Python mainly for its popularity, common knowl-
edge among researchers, extensive computation and data-
analysis support, and wide compatibility with machine-
learning libraries. And C# chiefly because of our depen-
dence on the SymSpell library, which is written therein,
but also due to its better multithreading performance,
which is useful in effectively computing distance matri-
ces. We used the Python Scikit Learn3 library to perform
HAC and AP clustering. For DBSCAN and MDBSCAN,
we made our own implementation in C# and made use
of the SymSpell library. MDBSCAN was implemented, to
the best of our efforts, according to the paper from Li et al.
(2022). RuleForge is accessible on (** Blinded **) under
the MIT License.

4. Experimental Results

4.1. Benchmarking of Clustering and Rule Creation

In this section, we analyze clustering and rule creation
with the discussed methods and evaluate them on real-
world datasets. Next, we compare the original (Li et al.,
2022) and RuleForge’s implementations of MDBSCAN, fo-
cusing also on different representative-selection methods.
Finally, we compare the performance of RuleForge with
other techniques and state-of-the-art tools. In the experi-
ments, we use various password dictionaries. Table 2 de-
scribes each of them. All are also available on (** blinded
**). Note, for some experiments, we use abbreviations
(marked as “Ab.”) instead of full names.

Time and space complexities are critical deciding fac-
tors, and thus, we first analyzed the computing time and
memory requirements for clustering and rule creation with

3https://scikit-learn.org/
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Figure 3: Time (a) and peak memory (b) requirements for
generating rules from wordlists of different sizes

the four examined methods. For this purpose, we ran a se-
ries of benchmarks with dictionaries of different sizes on
an AMD Ryzen 5 2600X workstation with 64 GB of RAM.
The inputs were pseudo-random subsamples with 1,000 to
100,000 passwords from the RockYou dictionary. For each
subsample, we used RuleForge in the “Combo” mode (See
Section 3.) with AP, HAC, DBSCAN, and MDBSCAN.
Fig. 3 shows the time and maximum resident set size (RSS)
required to create clusters and generate mangling rules for
inputs of different sizes. Dashed lines indicate extrapo-
lated values for wordlist-size values that could not be mea-
sured due to a lack of memory in our workstation.

Based on the execution times, DBSCAN, MDBSCAN,
and HAC demonstrate comparable and decent performan-
ce, with all three methods processing dictionaries contain-
ing 100,000 passwords in under 5 minutes. In contrast, AP
exhibits significantly poorer performance, requiring about
21 hours to handle the same workload.

In terms of memory requirements, DBSCAN andMDB-
SCAN show linear complexity, whereas AP and HAC dis-

play quadratic complexity, which is due to the necessity of
computing the full distance matrix, as mandated by the
Scikit Learn library. In concrete values, at 100,000 pass-
words, DBSCAN and MDSBCAN require about 200 MB
of memory, HAC requires 137 GB, and AP 247 GB. DB-
SCAN and MDBSCAN’s efficient linear memory usage is
achieved by leveraging the SymSpell library (Garbe, 2012)
for finding similar passwords.

The doubling of memory usage from HAC to AP is
caused by the fact that HAC can utilize a 1-byte integer
distance matrix, whereas AP requires at least a 2-byte float
distance matrix. Note that the memory requirements for
AP and HAC are much higher than just the size of their
distance matrices (for 100,000 passwords, this would be
10 GB and 20 GB for HAC and AP, respectively). This
is caused–as we observed–by some inefficiencies in Scikit
Learn’s handling of distance-matrix clustering.

DBSCAN and MDBSCAN are thus very well suited
for processing any-sized dictionaries. AP and HAC, on
the other hand, are barely usable for larger dictionaries
due to extensive memory requirements.

4.2. Cross-checking Clustering Methods and Rule Creation
on Different Wordlists

Next, we compared the achievable hit ratios of rules
generated from the clusters produced by each of the four
clustering methods. For this purpose, we employed Rule-
Forge in the “Combo” mode, except for AP which selects
cluster representatives natively. We experimented with
four training (t) dictionaries (tl, r65, ms, dw) for creating
rulesets. Each ruleset was gradually applied to words from
four attack dictionaries (pr, tm, en, dp) in a dictionary-
cracking session with Hashcat in plaintext mode. The tar-
get “hashlists” were RockYou-75 and Xato-net-100k. For
both, we calculated the number of hits. The dictionaries’
descriptions are available in Table 2. To maintain fair con-
ditions for all methods, we used the best (i.e. first) 1,000
rules generated by each method.

Table 3 shows the hit ratios on RockYou-75 and Table 4
on Xato-net-100k. In average, MDBSCAN produced rules
with the best hit ratios. The second best-achiving method
was AP which, in a few cases (r65+en on both targets;
dw+pr and dw+dp on Xato-net-100k) even outperformed
MDBSCAN. We believe this success of AP is caused by its
virtually optimal cluster representative selection, but this
is reclaimed by high computational and memory costs, as
shown in the previous experiment.

4.3. Comparison of MDBSCAN-based Implementations

In this experiment, we focused on the best-performing
MDBSCAN method and compared its implementations.
As a baseline, we used the original version from Li et al.
(2022), which we compared with RuleForge in the Lev-
enshtein (RF-leven), Substring (RF-substr), and Combo
(RF-combo) modes. Training, attack, and target dictio-
naries remained the same as in the previous experiment.
Likewise, we used the first 1,000 generated rules.
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Table 2: Password dictionaries for experimental evaluation

Ab. Name Passwords Description
tl tuscl-m 37,006 Tuscl leak (ASCII, ≤ 10 ch.)
r65 rockyou-65-m 29,596 RockYou subsample (ASCII, ≤ 10 ch.)
ms myspace-m 30,000 MySpace leak (ASCII, ≤ 10 ch.)
dw darkweb2017-top10k-m 9,999 Darkweb subsample (ASCII, ≤ 10 ch.)
tm 10-million-list-top-10000 9,999 9,999 Passwords from the 10-million list
pr probable-v2-top12000 12,645 A subsample from the probable dictionary
en english-6 15,542 English words up to 6 characters
dp default-passwords 1,315 Commonly used passwords
- RockYou-960 960,000 A 960k subsample of the RockYou leak
- rockyou-75-m 59,090 ASCII subsample of the RockYou leak
- Xato-net-100k 99,987 Top passwords from the Xato 10m dataset
- phpbb-m 184,344 ASCII passwords from phpBB leak

Table 3: Attacks on rockyou-75-m

Rules Hit ratio
t Method pr tm en dp

tl

mdbscan 56.54% 51.56% 22.60% 2.60%
dbscan 47.46% 40.13% 16.48% 1.89%
hac 48.61% 42.40% 17.82% 1.95%
ap 53.49% 47.32% 20.43% 2.29%

r65

mdbscan 57.43% 53.23% 23.22% 2.66%
dbscan 47.28% 39.95% 16.52% 1.88%
hac 44.24% 37.49% 16.88% 1.89%
ap 57.14% 51.46% 23.31% 2.61%

ms

mdbscan 55.85% 50.15% 21.30% 2.43%
dbscan 48.48% 41.34% 16.90% 1.87%
hac 51.35% 46.40% 19.07% 2.10%
ap 49.72% 42.61% 17.37% 1.90%

dw

mdbscan 55.99% 52.05% 23.02% 2.72%
dbscan 47.62% 40.25% 17.13% 2.61%
hac 45.11% 38.53% 17.84% 1.84%
ap 55.09% 49.57% 22.34% 2.68%

Table 5 describes the hit ratio of attacks on RockYou-
75 and Table 6 on Xato-net-100k. RF-combo produced
the highest average hit ratio and, in all cases, outper-
formed the original version from Li et al. (2022), empha-
sizing our contributions. Interestingly, in the r65+en at-
tack on RockYou-75, the Substring Method resulted in
a higher hit ratio than Combo. Note that this is the same
combination as where AP produced better results than
MDBSCAN. Similarly, in the tl+tm attack on Xato-Net-
100k, the Levenshtein Method also performed better than
Combo. Such anomalies are caused by the nature of pass-
words in the chosen dictionaries and show that there is no
optimal method for all cases.

4.4. Comparison of Rule-Creation Methods

In the last experiment, we compared hit rates of dic-
tionary attacks with rulesets generated by different meth-
ods. As both the training dataset and the attack wordlist,
we used a pseudo-random subsample of 960,000 passwords
from the RockYou dataset, named “RockYou-960.” We
then conducted a series of cracking sessions with the first

Table 4: Attacks on Xato-net-100k

Rules Hit ratio
t Method pr tm en dp

tl

mdbscan 40.91% 48.26% 21.17% 3.44%
dbscan 36.18% 42.88% 17.77% 2.80%
hac 34.89% 43.15% 17.62% 3.01%
ap 39.41% 46.25% 20.06% 3.13%

r65

mdbscan 40.98% 49.32% 21.27% 3.67%
dbscan 36.06% 42.44% 17.68% 2.74%
hac 29.57% 35.93% 16.79% 2.35%
ap 40.36% 47.11% 21.34% 3.40%

ms

mdbscan 39.62% 46.46% 19.75 % 3.17%
dbscan 36.38% 43.13% 17.87% 2.77%
hac 34.95% 42.89% 17.40% 2.78%
ap 37.26% 43.69% 18.11% 2.28%

dw

mdbscan 41.39% 49.77% 21.50% 3.84%
dbscan 36.77% 42.93% 18.29% 3.40%
hac 30.00% 34.78% 17.31% 2.41%
ap 41.51% 48.66% 21.45% 3.86%

n rules from the ruleset, where n = 100, . . . , 29000, and
measured the hit rate on Xato-net-100k and phpbb-m dic-
tionaries from Table 2. We tested the original MDBSCAN,
as proposed by Li et al. (2022), and RuleForge’s implemen-
tation of MDBSCAN and DBSCAN in both Levenshtein
and Combo modes.

AP and HAC were not used in this experiment due
to exceptional memory requirements. Considering a sin-
gle byte for password distance, the matrix would require
a memory of ∼922 GB or ∼461 GB if a triangular ma-
trix was used, which was beyond the capabilities of our
experimental machine.

To compare our attacks in a broader scope, we also
deployed several tools from related work (See Section 2.).
Concretely, we tested iphelix’s PACK/Rulegen (Kacher-
ginsky, 2013). Next, we used PCFG as originally pro-
posed byWeir et al. (2009), i.e., without enhancements like
Markov, etc. We also deployed the Ordered Markov ENu-
merator (OMEN), proposed by Düermuth et al. (2015),
and PassGAN by Hitaj et al. (2019). As the last three
methods do not produce mangling rules, equivalent num-
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Figure 4: Password recovery performance comparison (Training: RockYou960, Attack: RockYou960)

Table 5: Attacking rockyou-75-m: MDBSCAN RF vs. Li

Rules Hit ratio
t Method pr tm en dp

tl

Li et al. 52.44% 46.04% 18.55% 2.19%
RF-leven 55.12% 51.45% 21.10% 2.53%
RF-substr 53.42% 48.22% 22.34% 2.36%
RF-combo 56.54% 51.56% 22.60% 2.60%

r65

Li et al. 55.14% 50.49% 19.41% 2.30%
RF-leven 55.83% 51.70% 21.44% 2.50%
RF-substr 53.65% 47.69% 23.76% 2.51%
RF-combo 57.43% 53.23% 23.22% 2.66%

ms

Li et al. 51.19% 43.96% 17.26% 2.10%
RF-leven 51.06% 44.41% 18.04% 2.06%
RF-substr 52.76% 48.08% 20.12% 2.26%
RF-combo 55.85% 50.15% 21.30% 2.43%

dw

Li et al. 52.49% 45.87% 18.42% 2.27%
RF-leven 54.01% 49.84% 20.91% 2.58%
RF-substr 50.99% 44.69% 20.48% 2.24%
RF-combo 55.99% 52.05% 23.02% 2.72%

bers of password guesses were generated instead, using
RockYou-960 as the training dictionary for creating mod-
els. Finally, we used a random ruleset generated by Hash-
cat to serve as a baseline for other methods.

Experimental results are displayed in Fig. 4. Note that
the results from our RuleForge generator use shorthands
in the legend: (M)DBSCAN-RF-{leven,combo}. The hor-
izontal axis displays the amount of rules on the top and
the corresponding number of guesses on the bottom. The
guess count is always the size of the dictionary multiplied
by the current number of rules. The vertical axis displays
the hit ratio. Solid lines represent methods that generate
and utilize password-mangling rules, while dashed lines

Table 6: Attacking Xato-Net-100k: MDBSCAN RF vs. Li

Rules Hit ratio
t Method pr tm en dp

tl

Li et al. 39.16% 43.33% 18.80% 2.91%
RF-leven 40.84% 49.11% 20.27% 3.53%
RF-substr 37.11% 44.11% 21.16% 3.06%
RF-combo 40.91% 48.26% 21.17% 3.44%

r65

Li et al. 39.11% 44.57% 18.29% 2.92%
RF-leven 40.40% 48.76% 19.93% 3.80%
RF-substr 33.64% 40.27% 20.70% 2.85%
RF-combo 40.98% 49.32% 21.27% 3.67%

ms

Li et al. 37.00% 39.80% 17.51% 2.61%
RF-leven 37.93% 44.47% 18.41% 2.96%
RF-substr 35.03% 41.82% 17.74% 2.56%
RF-combo 39.62% 46.46% 19.75% 3.17%

dw

Li et al. 39.10% 42.55% 18.60% 3.00%
RF-leven 40.66% 48.71% 20.30% 3.74%
RF-substr 34.28% 39.53% 18.48% 2.66%
RF-combo 41.39% 49.77% 21.50% 3.84%

signify other password-guessing methods.
The best average hit ratio was achieved by RuleForge’s

MDBSCAN in the Combo mode, which also showed the
best absolute hit ratio in most measurements. Anoma-
lies were observed at around 800 rules on Xato-net-100k,
where it was briefly exceeded by the classic Levenshtein
method of RuleForge, and around 1600 rules on phpbb-
net, where PACK performed better than MDBSCAN. In-
terestingly, for lower amounts of guesses on phpbb-m, all
methods were surpassed by PCFG, which then degraded
to one of the worst methods in our scenario. RuleForge’s
DBSCAN in both modes also performed well and, in many
measurements, exceeded the original MDBSCAN from Li
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et al. (2022).
To best quantify the benefits of our improvements to

the original work, the most important factor is the dif-
ference between MDBSCAN-RF-combo (the solid purple
line) and MDBSCAN Li et al. (the solid red line). The
biggest measured difference between our implementation
and the original MDBSCAN was a 6.68%pt. improvement
at 6,400 rules on Xato and a 11.67%pt. improvement at
18,000 rules on phpbb-m. Those are marked by black line
segments with arrows.

Contrary to the experiments of Li et al. (2022), PACK
surpassed the original version of MDBSCAN at higher
guess counts and even outperformed MDBSCAN-RF over
a specific short range on phpbb-m. OMEN performed
slightly worse than the previously-mentioned rule-based
methods but still followed closely. The nature of pass-
word guessing with Markovian chains creates a curve with
a stairs-like shape. PCFG-based guessing generates pass-
words in a probability order, starting from the most proba-
ble candidate password. Interestingly, PCFG showed much
better performance on phpbb-m, where it had the highest
hit ratios on smaller amounts of guesses, than on Xato-
net-100k, where the increments in hit ratio were mini-
mal. PassGAN performed rather poorly, notably at lower
amounts of guesses. Execution times were also high, which
prevented us from conducting measurements for high num-
bers of guesses, as it would take weeks to generate the
passwords. Its success rate grew with increasing numbers
of guesses but never exceeded OMEN or the clustering-
based methods. As anticipated, the randomly generated
ruleset showed the lowest hit ratios.

5. Conclusion

Our research demonstrates the significant potential of
the clustering-based generation of password-mangling rules
in enhancing dictionary attacks, often yielding success ra-
tios that surpass those of other state-of-the-art password-
guessing methods. Appropriately tailored rules modify
dictionary passwords in a way that mimics human behav-
ior, increasing the chance of successful hits.

Nevertheless, concrete methods differ in speed, mem-
ory requirements, and the usability of the rulesets they
produce. Affinity Propagation (AP) inherently selects clus-
ter representatives and generates high-quality clusters that
result in rules with relatively high success rates. However,
the method suffers from poor time and space complex-
ity, rendering it impractical for larger training dictionar-
ies. Hierarchical Agglomerative Clustering (HAC) offers
significantly better time complexity, but its memory re-
quirements remain high due to the need to compute a com-
plete distance matrix. With DBSCAN and MDBSCAN,
the memory requirements can be minimized if the Sym-
Spell fuzzy search algorithm (Garbe, 2012) is used instead.
From all the examined methods, MDBSCAN, proposed by
Li et al. (2022), led to the most effective rules, primarily

thanks to its capability to “break down” the cluster of out-
lier passwords into smaller ones, allowing the creation of
more effective rules.

The quality of the generated rules depends not only
on the clusters produced but also on the selection of their
representatives. As demonstrated by our experiments, the
traditional Levenshtein Method used by Li et al. (2022)
is not always optimal. Combining it with the substring-
based approach we propose generally yields superior re-
sults. Our Combo Method achieved significantly better
outcomes in most cases.

The strategy for the generation of rule commands is
also crucial. By incorporating commands for case tog-
gling, word rotations, reversals, and character overwrites,
we achieved higher hit ratios than Li et al. (2022), not only
in MDBSCAN Combo mode but also in the standard Lev-
enshtein mode, and, unexpectedly, even with classic DB-
SCAN in most measurements. In terms of MDBSCAN, we
achieved up to an 11.67%pt. improvement in hit ratio over
the original method.

Naturally, the success rate of each attack highly de-
pends on the training dictionary that serves to create man-
gling rules and on the dictionary that is used in the attack
wordlist. We assume the best results can be achieved by
training on dictionaries that have a similar nature to the
attack’s target.

Last but not least, we released RuleForge, an open-
source clustering-based rule generator that serves not only
as a proof-of-concept implementation of our enhancements
but also as a tool for further password recovery research
and a mangling-rule generator for actual cracking tasks.
The release contains sources, documentation. and all pass-
word datasets that were used in this paper.

Looking ahead, we would like to evaluate the behav-
ior of alternative distance metrics and other methods like
Spectral Clustering (Jia et al., 2014) and their potential
benefits to password-mangling rule creation. We also be-
lieve AP and HAC could be optimized for this specific use
case. Moreover, it could also be helpful to conduct a deeper
evaluation on a larger set of password dictionaries. An-
other potential lies in experimenting with hybrid methods
that would combine multiple state-of-the-art approaches.
With the spread of AI in recent years, we also believe deep
learning and LLM-based approaches could show usability
in mangling rule creation and evaluation.
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