
A Self-Hosted Approach to Automatic CI/CD Using
Open-Source Tools on Low-power Devices

Petr John, Kristýna Zaklová, Juraj Lazúr, Jiřı́ Hynek and Tomáš Hruška
Faculty of Information Technology, Brno University of Technology, Brno, Czechia

Email: {ijohn, zaklova, ilazur, hynek, hruska}@fit.vut.cz

Abstract—The process of software development has widely
adopted Continuous Integration and delivery (CI/CD), offering
a comprehensive approach to streamlining the development pro-
cess. Both features are commonly offered by third-party services
or cloud-hosted environments, like Amazon AWS or GitHub.
While these offerings are widely available and perfect for large
projects and companies, they may not be suitable for smaller
projects. Factors like the desire to maintain code and deployment
locally or cost considerations can drive the search for alternative
solutions. This paper presents an infrastructure mostly based
on open-source services that address these specific needs. It is
suitable for both development and the automatic deployment
of small, locally deployed projects. The solution underwent six
months of testing in a lab environment on a low-power device,
namely the Raspberry Pi 4B, which was used to both build new
versions of the software and host it. The solution leverages the
GitHub self-hosted runner to build Docker images from the code
directly on the target device. The images are then pushed into
a local Docker Registry. This ensures that the code can be used
on multiple architectures, namely the arm64, and amd64, by
simply pulling an appropriate image that is cross-built thanks
to Docker buildx. The built images can then be automatically
updated to deploy or be deployed on different hardware. The
solution is suitable for small projects or teams with constrained
budgets thanks to the self-hosting of all the components, the low
purchase price, and the power efficiency of low-power devices
like the Raspberry Pi.

Index Terms—Docker, CI/CD, Continuous Deployment, Rasp-
berry Pi

I. INTRODUCTION

While continuous integration and delivery began as an
often discussed and not implemented concept [1] it quickly
transitioned into a popular approach that stimulates both agile
[2] and test-driven development practices [3]. Tools for this
purpose evolved from basic scripts mentioned by Fowler
and Foemmel [1] to fully-fledged solutions like the popular
tool Travis CI with more than 380 thousand installations1,
Jenkins2 or cloud-based solutions like GitHub Actions, GitLab
CI/CD or the combination of Amazon Web Services (AWS)
CodePipeline and CodeBuild among many others [4].

All of these tools can be used for both the testing of the
created artifacts and the preparation of built and deployable
software, ranging from built binaries to more complex artifacts
like Docker images. Then, these artifacts can be used by
developers to test different parts of their solution, they can

1Home – Travis-CI https://www.travis-ci.com/
2Jenkins Project reports growth of 79% https://cd.foundation/

announcement/2023/08/29/jenkins-project-growth/

be made available for download, or they can be used to
immediately update the existing deployments.

The problem with current approaches to both CI/CD and de-
ployments is often the cost or complexity of the used solutions.
This occurs due to the need to repeatedly rebuild the entire
solution, which can cost large companies like Google millions
of dollars just in computation alone [5]. While some solutions
may require no or simple setup from the developer, like cloud-
based solutions or online hosting solutions. Online hosting
solutions may be too restrictive, limiting the technologies
that can be used, such as specific programming languages
or certain types of databases. Cloud technologies can be too
expensive for small teams. While a large number of cloud
providers offer free tiers like AWS3 and Google Cloud4 These
limits may prove too limited for the needs of the project.

The other option is to create the hosting solution on-premise
and host the solution on the team’s own infrastructure or online
virtual machines or Virtual Private Servers (VPS). While there
are many solutions to simplify the process of self-hosting the
created solution like ISPConfig5 or servers and extensions like
Nginx and Apache2, the process may still prove to be time-
consuming when the updates need to be performed repeatedly.

The aim of this paper is to present an infrastructure that
is able to facilitate the need for CI/CD on small teams
with limited budgets while reducing the manual effort that
is required to both monitor and deploy the created project.
This infrastructure aims to simplify both the development and
the ability to quickly self-host and automatically update the
created deployments through the use of open-source or free-
to-use tools. These targets are accomplished by distributing
the created artifacts as Docker images. This facilitates the
possibility of easily distributing the building and hosting
infrastructure, even with nodes that use different operating
systems and processor architectures, without the need for a
server or high-end components. This was demonstrated by
using a single Raspberry Pi 4B device, which serves as both
a representative of a low-power device and a device based on
the less traditional ARM64 architecture.

This infrastructure empowers small teams to swiftly develop
new software, seamlessly host, and automatically update de-
ployments. It facilitates continuous integration of large appli-

3Amazon Web Services free tier: https://aws.amazon.com/free/.
4Google Cloud free tier: https://cloud.google.com/free.
5ISPConfig home page: https://www.ispconfig.org/.

https://www.travis-ci.com/
https://cd.foundation/announcement/2023/08/29/jenkins-project-growth/
https://cd.foundation/announcement/2023/08/29/jenkins-project-growth/
https://aws.amazon.com/free/
https://cloud.google.com/free
https://www.ispconfig.org/

cations in order to enable teams to achieve significant cost
efficiencies with minimal upfront investment and sustained
low costs over time. The approach was used to develop and
deploy 3 research projects and several student projects at Brno
University of Technology, Faculty of Information Technology
in the time span of 6 months in lab conditions, and while the
device allows only low performance, resulting in slow build
especially when cross-building, it is more than balanced by its
low power consumption.

II. CURRENT SOLUTIONS

As briefly mentioned in Introduction, there already exists
a large number of specialised tools for both the CI/CD
process and the deployment of existing projects. The two
common approaches to these problems are either outsourcing
or self-hosting which come with their own advantages and
disadvantages. Both approaches often utilize similar tools,
which include the aforementioned Jenkins, Travis CI, and
Docker, but may include other tools [6]. The additional
tools include project management tools like Maven and npm,
or tools that can be used to describe the infrastructure or
the deployment like Terraform—infrastructure as code tool,
Kubernetes—a container orchestration platform, or docker-
compose—a Docker plugin allowing developers to define
multi-container applications.

A. Outsourcing

In recent years, cloud providers like Google and AWS
have gained more and more popularity, among the outsourced
solutions, due to the possibility of both vertical and horizontal
scaling, without the need for the improvement of local in-
frastructure. In some cases, this can be without upfront cost,
either by scaling down the solution as needed or by providing
the necessary tools through pay-as-you-go offerings. A large
number of cloud solutions even provide free trials or free tiers
with limits that either allow the user to use the services for
free for (1) a limited time, (2) forever, but with restrictions
(i.e. limiting the amount of traffic that can be sent or the
amount or retention of data), or (3) provide a certain amount
of free balance, that can be expended without charge. While
all of these situations may result in the quick adoption of a
certain technology, they can also result in a vendor lock-in.
This has been already identified as a potential threat in the
year 2011 [7] with some open-source creators even describing
cloud solutions as traps [8]. Cloud providers on the other hand
disagree with the opinion and view the effort needed to switch
between cloud providers as necessary switching costs [9].

Currently, Amazon Web Services has been the most pop-
ular solution in recent years, having approximately 32% of
the market share, with Microsoft Azure and Google Cloud
Platform in pursuit, having 23% and 11% respectively accord-
ing to the statistics of Michalowski [11] The market share
trend can be seen in Figure 1. AWS environment provides
a large amount of CI/CD-focused tools that can bolster the
effectiveness of build/deployment pipelines by providing tools
for managing the builds themselves (CodeBuild), managing

Fig. 1. Cloud Provides Market Share [10]. While Amazon AWS retains the
highest market share, Microsoft’s offering Azure exhibits the biggest growth.

and orchestrating multiple builds (CodePipeline) or caching
dependencies and docker registry (CodeArtifacts and ECR
respectively). Both Sinde et al. [12] and Poornalinga et al.
[13] used the combination of GitHub for CI and AWS services
for CD purposes. Sinde et al. [12] use the combination of
GitHub Actions and Amazon EKS to automatically update
a Kubernetes cluster, and Poornalinga et al. [13] propose a
similar solution, running Jenkins for CI and AWS EC2 for
deployment. Many other publications refer to similar CI/CD
procedures [14], [15], [16], [17]. Also, cloud environments
have the benefit of providing self-healing and self-adapting
web-based applications as outlined by Magalhaes et. al. [18]
in their SHõWA framework.

Another common approach to outsourcing the hardware
requirements is the use of Virtual Private Servers (VPS). VPS
are often created by either Docker or LXD containers [19],
[20] and allow the provider to create a virtual machine for
each customer, thus providing them with dedicated computer
resources without the need to buy the bare-metal solution for
each customer separately [21]. Thanks to this, the user can use
the system in the same way as a traditional bare-metal server,
i.e. the system allows the user to use root privileges and install
any dependencies that may be needed for the deployment.
This leads to reduced costs for the customers, as the same
bare-metal server can be reused and the user is billed for
only a fraction of the running cost based on the resources
that are allocated for his exclusive use. This approach is
provided by services like OVHcloud6 or Hostinger7, but the
aforementioned cloud solutions can be utilized in a similar
manner, mainly by using cloud-specific virtual machines like
Amazon EC2 or Google Cloud Run.

The last option, but not the least, is the utilization of
Web Hosting Panels [21]. These panels include tools like

6OVHcloud homepage https://www.ovhcloud.com.
7Hostinger VPS hosting offerings https://www.hostinger.com/vps-hosting.

https://www.ovhcloud.com
https://www.hostinger.com/vps-hosting

ISPConfig [22], Zpanel, and Virtualmin [23], and provider-
specific solutions like GoDaddy8. They allow the customer to
deploy only code in a specified programming language using
the available services. Another major difference between Web
Hosting Panels and VPS is that the resources are typically
shared between multiple users. While this may initially be
perceived as a disadvantage it may lead to lower costs for
web pages that don’t require as much traffic.

B. Self-hosting

The second option for both CI and CD is self-hosting of
the related components. While this may be cheaper in some
situations (i.e., if low-power devices are used, or the server
is hosted on an always-on device like a Network Attached
Storage) it provides other difficulties that may not be apparent
at first glance. In many cases, the potential user needs to
buy hardware used for both CI/CD and pay running costs
(i.e. electricity, necessary hardware replacement) and other
services, like internet rentals or public IP addresses. On the
other hand, the user has the entire solution in their control and
can modify the environment to fit their use case exactly.

While this provides the users with the most control over all
of the aspects of the environment, they may face difficulties
with more advanced tasks, like resource sharing, scaling
vertically, or managing the environment. In those cases, it
may be beneficial to set up a web hosting panel like the
aforementioned ISPConfig. While this may help with some
basic issues, it may be beneficial to build a self-hosted and
provisioned cloud instead. This can be represented by tools
like PlanetIngnite, which aims to create a decentralized and
self-assembling cloud [24]. There also exist approaches that
can turn multiple machines into a private cloud like Cells
[25]. These approaches or tools like Docker, Terraform, or
Kubernetes can help the user to reduce the human investment
over the lifetime needed to successfully deploy and maintain
the package, as they can provide a model-based approach to
this problem [26], which leads to a reduction in complexity in
the long term when compared to both manual or script-based
approaches. While the model-based approaches may require a
higher up-front investment and a steeper learning curve, they
prove to be better long-term options than even the language-
specific approaches.

Although the cost of traditional server computers can be
high, there is always the option to use either older desktop
computers or lately off-the-shelve single board computers like
the popular Raspberry Pi. This approach has already been
attempted in previous years in such uses as web hosting [27],
[28] or as data storage [29]. These usages did exist before
they were limited to simple web hosting in the past, primarily
due to the low amount of RAM and the limitation of a 32-
bit architecture. In recent years, the hardware improved in
both these aspects. This makes the newer devices much more
capable, and it is now possible to use them for much more
advanced purposes.

8GoDaddy Web hosting offering https://www.godaddy.com/en-uk/hosting/
web-hosting.

III. PROPOSED INFRASTRUCTURE

We required a solution that would satisfy multiple require-
ments.

1) Firstly, the solution should allow the general public to
use the created applications (i.e. be publicly available
on the internet, without the use of specialized software
like VPN).

2) Secondly, it should allow us to quickly iterate over new
versions of the applications with the least amount of
effort using automatic CI/CD practices.

3) Thirdly it should prevent vendor lock-in or any restric-
tion on technologies/approaches that should be used.

4) And lastly, it should be cost effective, requiring both
a small upfront investment and long-term maintenance
costs.

With respect to these requirements, we propose a solution
primarily based on open-source technologies and GitHub9. We
chose GitHub over open-source alternatives like GitLab due
to our familiarity with the software, its large community, and
security. However, it would be possible to move to any such
software that supports self-hosted runners.

All of the self-hosted applications are provided in the form
of Docker containers, which allows the infrastructure to be
both easily deployed and scaled to more devices if needed.
GitHub is used as a code source and it is also responsible for
orchestrating both CI/CD actions. This creates a compromise
between a fully self-hosted solution and an outsourced one.
Due to the low upfront investment being a requirement,
we opted for the use of the Raspberry Pi 5B single-board
computer. With its launch price of $80 MSRP, it proved to be
an ideal choice.

The CI/CD actions are picked up by any of the currently
available runners, which are responsible for both building
the docker images of the application and running any tests
that may be associated with it. Then, the test results get
sent back to GitHub, where they can be visualized to the
developer. Built Docker images get first pushed into a Docker
registry and then picked up by the Deployment Server, which
automatically updates the deployed environment. In our case,
the Docker registry was deployed alongside the application
deployments on the deployment server. The workflow can be
seen in Figure 2.

This segregation of responsibilities divides the solution into
three main components: the code source, deployment server,
and build runners. Each component can be deployed indepen-
dently. The composition, responsibilities, and interactions of
these components are illustrated in Figure 4.

A. Build Runners

Build runners are implemented using GitHub self-hosted
runners. These runners can be either deployed to the same
device as the one responsible for hosting the projects or to
a stand-alone device. While GitHub allows runners to be

9GitHub self-hosted runners https://docs.github.com/en/actions/hosting-
your-own-runners.

https://www.godaddy.com/en-uk/hosting/web-hosting
https://www.godaddy.com/en-uk/hosting/web-hosting
https://docs.github.com/en/actions/hosting-your-own-runners
https://docs.github.com/en/actions/hosting-your-own-runners

GitHub Repository
Code

Build Runners Deployment Server Docker Images

Test Results

Fig. 2. Simplified Build and Test Workflow.

Repository Self-Hosted
RunnerSource Code

Build Metadata

Workflow
Description

buildx builds

cross-built imagesDocker
Registry

Push Images

Fig. 3. Build procedure.

added to repositories and organizations, we opted for both
approaches. This dual strategy is practical because it enables
the maintainers to assign a runner to a specific repository or
organization. Additionally, some projects used during testing
were located under different organizations or repositories,
making it necessary to have the flexibility to assign runners at
both levels. While it would be more practical to change this in
the future, the diversity of our projects currently doesn’t allow
this.

The main advantage of the self-hosted runners over their
standard counterparts comes in the maximum amount of avail-
able minutes. GitHub runners can be used for free only for a
limited amount of minutes, currently 2000 minutes per month
for free accounts. While this number may be suitable for
many projects, larger or more time-consuming tasks like cross-
building for multiple target platforms or frequent builds/tests
can quickly lead to the exhaustion of this limit. The cost
might ramp up quickly since GitHub offers a pay as you
go offering. The orchestration is then implemented by using
GitHub’s integrated Action workflows. We chose the GitHub-
specific workflow description language, but it is possible to
use Jenkins instead, thus reducing the dependence on GitHub.

Then, the triggered actions are responsible for both send-
ing the source code and monitoring the self-hosted runners
and build progress. Our typical workflows contain the build
instructions for creating new Docker images for the latest
update of the built applications. As the target hosting platform
is a Raspberry Pi 4B, the image needs to be built for the
ARM64 architecture, but we also aim to make the same built
image compatible with different architectures based on the
project, e.g., the more common AMD64 architecture. This
is accomplished by cross-building the images using buildx,
which is able to create a Docker manifest that contains
references to all selected architectures. This allows the target
device to pull the correct image without the need for changing
the Docker tag. The images are then automatically pushed to
a self-hosted Docker registry, which acts as the center point
of the entire architecture. This allows all of the machines to
pull the containers from a single source. The build procedure
can be seen in Figure 3.

B. Deployment Server

The deployment server runs Docker containers based on
both publicly available images and the images of the appli-
cations being developed. It is responsible for making these
applications publicly accessible, which requires a fast inter-
net connection and a public IP address. Each deployment
server needs to have access to the Docker registry because
otherwise, it would be impossible to retrieve the images.
Each deployed application currently uses a docker-compose
description, which outlines the list of services that are used.
This approach simplifies the deployment process significantly.
A new deployment can be initiated by transferring the nec-
essary files, such as the docker-compose configuration and
other run-specific files (e.g., secrets, caches), to a different
server. After logging into the registry, a single command like
“docker compose up -d” is all that’s needed to bring the new
deployment online.

While this setup meets the requirements for continuous
integration, it falls short of achieving continuous delivery. To
update a container-based deployment, all containers must be
recreated using the new images. This easy process can be
quickly automated by either using a simple Cron script or
dedicated tools like Watchtower10 This open-source project
pools the registries containing the used images. It also offers
fine-grained control, allowing developers to explicitly label
services to be skipped during updates and providing login
integrations for registries hosted on cloud environments like
AWS.

Watchtower satisfies the continuous delivery as new updates
are automatically deployed via the update of the deployment
containers. While Docker can recover from some errors by
automatically restarting the deployed servers it is necessary to
monitor both the state of the device and the state of essential
deployed services. This is accomplished by the combination
of Netdata and Uptime Kuma services. Netdata monitors the
device status and records metrics like the CPU and memory
usage. Uptime Kuma on the other hand is used for monitoring
both APIs and web-based applications and sending notifica-
tions to instant messaging applications in case any of the
deployed stops responding.

The combination of these services creates a robust, self-
healing, and self-monitored solution, which, however, still
lacks one very important property—security. While it would
be possible to maintain HTTPS certificates and access control
on the level of individual publicly available services, it proved
beneficial to deploy a single Nginx reverse proxy that handles
both the SSL certificates and the server mappings. This vastly
simplifies the deployment process as it separates responsibility
between the team member who is responsible for the mainte-
nance of the reverse proxy and the rest of the team members,
who can focus on the application itself. In the test deployment,
the Let’s Encrypt certification authority in combination with
Certbot was used to generate the certificates. A simple Cron
rule can be used to renew the certificates before they run out.

10Watchtower homepage: https://containrrr.dev/watchtower/.

https://containrrr.dev/watchtower/

 dexter.fit.vutbr.cz

New Images

 GitHub Actions

Organization

Repositories

Tests

GitHub Runners
2000 minutes

per month

Changes or
Manual Trigger

Source Code
Build Metadata

Builds

Runners

Self-Hosted
Cloud

Runner

Watchtower
Services

Watch for updates

Update

API Access

Provide UI
for Registry

New Images

Hosted
Applications

HTTPS

registry-ui

 Docker Registry

Renew
Certbot

Proxy

Netdata
Monitoring

Uptime Kuma

Nginx

Fig. 4. The proposed Infrastructure: The GitHub architecture hosts source
code and orchestrates the build procedure. Quick actions like small tests are
evaluated directly within the GitHub architecture, while self-hosted runners
handle the remaining tasks. The runners primarily cross-build new images and
push them to a Docker registry located on the deployment server, Dexter.

The entire infrastructure with all of the deployed services is
shown in Figure 4. The comprehensive technical specifications
and configurations files of the infrastructure are documented in
a dedicated tutorial, which can be accessed via the following
resource11.

IV. USAGE SCENARIOS

The infrastructure was demonstrated on a research group
project server12 to build and host both the results of the
research group members and to demonstrate the result of
successful theses of students. Below are some of the examples
of the applications that were hosted on the server.

A. Home IoT solution

A solution for a Smart Home installation13 was developed
during a master’s thesis [30] and is hosted on the development
server. It comprises multiple services, such as Chirpstack
responsible for the digestion of messages from IoT devices,
Mosquitto, which acts as a central broker, providing the
ingested messages to the rest of the architecture, the NoSQL
database system InfluxDB responsible for the retention and
efficient querying of time-series data and PostgeSQL which
is used as a metadata store. A combination of a Go-based
subscriber is then responsible for sending the data to a backend

11Dexter Tutorial GitHub repository: https://github.com/dexter-fit/dexter-
tutorial

12Dexter.FIT projects of the research group at Brno University of Technol-
ogy, Faculty of Information Technology: https://dexter.fit.vutbr.cz/.

13Home IoT solution https://jiapl.iot.petr-john.cz/.

application based on Express.js, which transforms the data
into an internal representation and stores them in the selected
database systems. Then, the user can use a frontend application
based on Angular to visualize the state of the system by the
use of specialized dashboards.

This case study showed that even a low-power device like
the Raspberry Pi 4B can handle a small home installation
of 16 Zigbee and 1 LoRaWAN device with no issues, even
when specialized databases like InfluxDB are used. While this
might seem like a small installation due to the Chirpstack
deployment it necessitated the use of 14 containers. Docker
simplifies the installation process significantly due to its abil-
ity to handle various technologies seamlessly. Furthermore,
Docker facilitates easy updates and reinstallation of the setup,
ensuring the system remains current and functional with
minimal effort. This may be primarily helpful in cases when
the deployment needs to be moved to a deployment server
with higher performance.

B. System for Analysis of City Council Decision-Making
The system called Zastupko14 aims to increase city coun-

cils’ transparency by visualizing council meeting results and
providing analysis tools primarily aimed at the general public
[31]. It was designed as a traditional information system with a
client-server architecture. Data is stored in relational databases,
and there is always one central database and then one for each
municipality. In the basic version, the system only provides
data presentations that cannot be edited and does not require
any user accounts.

The case study involved deploying the application in sev-
eral instances, each targeting different users. Each of these
deployments required three containers—one for the back-end,
one for the front-end, and one for the database management
system (DBMS). Two instances were deployed as production,
while one needed an extra container due to the separate landing
page. Four instances were deployed as development, enabling
independent feature development. For example, one instance
was dedicated to a front-end redesign, while another fo-
cused on adding management features. This approach isolated
changes in their respective deployments, simplifying testing
new features independently.

In total, six instances of the system consisting of 19 con-
tainers were created. All of them have a similar configuration.
Creating each subsequent deployment only required copying
the existing configuration and changing the image used. The
approach used made the whole process very simple. The
proposed infrastructure has greatly facilitated and accelerated
the deployment of changes in different parts of the system
instances.

C. GIS for Public Transport Routes Computing
The system called LineShaper15 designed for obtaining

geographically accurate routes of public transport lines [32]

14System for Analysis of City Council Decision-Making home page https:
//zastupko.cz/.

15GIS for Public Transport Routes Computing home page https://dexter.fit.
vutbr.cz/lineShaper.

https://github.com/dexter-fit/dexter-tutorial
https://github.com/dexter-fit/dexter-tutorial
https://dexter.fit.vutbr.cz/
https://jiapl.iot.petr-john.cz/
https://zastupko.cz/
https://zastupko.cz/
https://dexter.fit.vutbr.cz/lineShaper
https://dexter.fit.vutbr.cz/lineShaper

was tested on the project server during the whole development.
The system itself consists of two user mapping applications,
a computing server, and a dedicated PostGIS database. The
user applications allow editing map data and entering routing
tasks. The database then stores the current state of the maps as
well as the associated metadata. In terms of computing power
requirements, the most demanding part of the whole system
is the computing server.

The main task of the computational server is to construct the
routes of the lines. Each route represents one computational
task, which consists of constructing a graph and browsing
it. In the constructed graph, the implemented algorithm then
searches and evaluates the individual routes that correspond
to the given stop order and traffic rules. From the resulting
routes, the one that most closely matches the estimated actual
route of a given line is then selected based on the evaluation.

This case study shows two primary findings. The first
one is that the solution greatly simplified the deployment
of new versions of the system during development, where
individual components could be deployed separately as needed
without affecting other components, thanks to the use of
docker images. The second one shows that it is possible to
use a low-power device like the Raspberry Pi 4B for the
development of more complex computations lasting a few
seconds. On the other hand, the use of low-power devices in
production still has some limitations like increased computing
time (in this study case around 25% on average compared to
the production environment). It is, however, always easy to
migrate the developed system to the production environment
due to the use of Docker technology.

V. DISCUSSION

Traditional self-hosting or third-party solutions like VPS
and cloud environments (e.g. AWS, Azure) provide expected
advantages over ARM-based single-board computers or simi-
lar low-power devices having limited resources of the single-
board computers. This manifests primarily in large projects
that are either updated frequently or are used by a large
number of users. Also, the traditional solutions are more
suitable when specific requirements are needed. This might
include a requirement for either a large number of CPUs,
storage, or RAM or a need for specialized hardware (GPUs
or NPUs for AI tasks) that may not be already included on
the device, or the device might lack drivers. Such solutions,
however, have non-negligible shortcomings. Dedicated server
hardware comes with a much larger upfront investment which
is a problem, especially for smaller start-up projects. On the
other hand, third-party solutions significantly increase running
costs, and there is also the fact that the developers lose some
control over their solution which should not be overlooked in
some cases.

The infrastructure presented in this paper brings a compro-
mise between self-hosting servers and third-party services. It
provides a flexible and cost-efficient solution, which is partic-
ularly highly valuable for the development of new projects by

small teams of developers. It allows them to keep higher con-
trol over their own solution compared to cloud environments
and VPS. Also, it offers them a quick and affordable platform
to develop their projects with all important tools provided by
cloud solutions. The disadvantages of the presented ARM-
based platform are outweighed by the flexibility of the solu-
tion, as it is easily possible to switch from the low-end device
to both cloud and self-hosted servers thanks to the cross-built
docker containers. This empowers the team to develop the
application, deploy it quickly, and switch to a more powerful,
dedicated solution when the need arises. This was the case
in the GIS for Public Transport Routes Computing project.
The deployment of the project was moved elsewhere, but the
deployment server handles a redirect to the new location.

This fact, combined with the extremely low cost and rel-
atively high performance of these ARM-based SBCs, offers
promising future opportunities. For example, it would be fea-
sible to deploy multiple build servers or utilize the ARM SBCs
for various supporting tasks, such as running automated end-
to-end tests with tools like Cypress. Additionally, the lower
performance and ARM architecture can be advantageous, as
they closely resemble the specifications of traditional mobile
phones.

VI. CONCLUSIONS

Cheap devices like the ARM-powered Raspberry Pi can be
used to great success for small teams but may struggle when
some specialized tasks like routing or AI may be required.
While this may be a limitation for some projects, it might be
worth considering this option for smaller teams that already
have access to both a stable internet connection and a public
IP address. The usage of such devices allows teams to quickly
iterate over new, automatically built, and deployed versions.
The main benefit is that the software deployment is not bound
to a specific cloud provider or a similar architecture. This
allows the developed application to be quickly and without
any specifics of the final deployment, as the resulting docker
images can be moved to practically any infrastructure.

ACKNOWLEDGMENTS

This work was supported by project Smart information
technology for a resilient society, FIT-S-23-8209, funded by
Brno University of Technology.

REFERENCES

[1] M. Fowler and M. Foemmel, “Continuous integration,” 2006.
[2] S. Stolberg, “Enabling agile testing through continuous integration,” in

2009 Agile Conference. IEEE, 2009, pp. 369–374. [Online]. Available:
http://ieeexplore.ieee.org/document/5261055/

[3] S. M. Mohammad, “Continuous integration and automation,” vol. 4,
no. 3, 2016.

[4] C. Singh, N. S. Gaba, M. Kaur, and B. Kaur, “Comparison of
different CI/CD tools integrated with cloud platform,” in 2019 9th
International Conference on Cloud Computing, Data Science &
Engineering (Confluence). IEEE, 2019, pp. 7–12. [Online]. Available:
https://ieeexplore.ieee.org/document/8776985/

http://ieeexplore.ieee.org/document/5261055/
https://ieeexplore.ieee.org/document/8776985/

[5] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. Singapore Singapore: ACM, Aug.
2016, pp. 426–437. [Online]. Available: https://dl.acm.org/doi/10.1145/
2970276.2970358

[6] A. Singh, “A comparison on continuous integration and continuous
deployment (CI/CD) on cloud based on various deployment and
testing strategies,” vol. 9, pp. 4968–4977, 2021. [Online]. Available:
https://www.ijraset.com/fileserve.php?FID=36038

[7] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi,
“Cloud computing — the business perspective,” vol. 51, no. 1,
pp. 176–189, 2011. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S0167923610002393

[8] B. Johnson, “Cloud computing is a trap, warns gnu
founder richard stallman,” The Guardian, Feb. 2017. [Online].
Available: https://www.theguardian.com/technology/2008/sep/29/cloud.
computing.richard.stallman

[9] M. Schwartz, “Switching costs and lock-in — amazon web
services,” Dec. 2018. [Online]. Available: https://aws.amazon.com/
blogs/enterprise-strategy/switching-costs-and-lock-in/

[10] S. R. Group, “Cloud market gets its mojo back; ai helps push q4
increase in cloud spending to new highs — synergy research group.”
[Online]. Available: https://www.srgresearch.com/articles/cloud-market-
gets-its-mojo-back-q4-increase-in-cloud-spending-reaches-new-highs

[11] M. Michalowski, “55 cloud computing statistics for 2024,” Mar. 2024.
[Online]. Available: https://spacelift.io/blog/cloud-computing-statistics

[12] S. P. Sinde, B. Thakkalapally, M. Ramidi, and S. Veeramalla,
“Continuous integration and deployment automation in AWS cloud
infrastructure,” vol. 10, no. 6, pp. 1305–1309, 2022. [Online].
Available: https://www.ijraset.com/best-journal/continuous-integration-
and-deployment-automation-in-aws-cloud-infrastructure

[13] K. S. Poornalinga and P. Rajkumar, “Continuous integration, deployment
and delivery automation in aws cloud infrastructure,” Int. Res. J. Eng.
Technol, 2016.

[14] N. Kavya and P. Smitha, “Deploying and setting up ci/cd pipeline
for web development project on aws using jenkins,” Int. Res. J. Eng.
Technol, 2022.

[15] I. J. Miller, B. Schieber, Z. D. Bey, E. Benner, J. D. Ortiz,
J. Girdner, P. Patel, D. G. Coradazzi, J. Henriques, and J. Forsyth,
“Analyzing crop health in vineyards through a multispectral imaging
and drone system,” in 2020 Systems and Information Engineering
Design Symposium (SIEDS). IEEE, 2020, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/document/9106671/

[16] E. Zheng, P. Gates-Idem, and M. Lavin, “Building a virtually
air-gapped secure environment in AWS: with principles of devops
security program and secure software delivery,” in Proceedings of
the 5th Annual Symposium and Bootcamp on Hot Topics in the
Science of Security. ACM, 2018, pp. 1–8. [Online]. Available:
https://dl.acm.org/doi/10.1145/3190619.3190642

[17] K. Brady, S. Moon, T. Nguyen, and J. Coffman, “Docker container
security in cloud computing,” in 2020 10th Annual Computing and
Communication Workshop and Conference (CCWC). IEEE, 2020, pp.
0975–0980. [Online]. Available: https://ieeexplore.ieee.org/document/
9031195/

[18] J. P. Magalhaes and L. M. Silva, “A framework for self-healing
and self-adaptation of cloud-hosted web-based applications,” in 2013
IEEE 5th International Conference on Cloud Computing Technology
and Science. IEEE, 2013, pp. 555–564. [Online]. Available:
http://ieeexplore.ieee.org/document/6753846/

[19] M. H. Syed and E. B. Fernandez, “The software container pattern,” 2015.
[20] D. Ernst, D. Bermbach, and S. Tai, “Understanding the container

ecosystem: A taxonomy of building blocks for container lifecycle and
cluster management,” in Proceedings of the 2nd International Workshop
on Container Technologies and Container Clouds, IEEE, 2016.

[21] D. M. Firmansyah, A. C. Prihandoko, and S. Bukhori, “The concept of
LXD-based web hosting panel,” vol. 1211, p. 012043, 2019. [Online].
Available: https://iopscience.iop.org/article/10.1088/1742-6596/1211/1/
012043

[22] Military Technical Academy ”Ferdinand I”, D. Gı̂rbea, P. Ciotı̂rnae, and
Military Technical Academy ”Ferdinand I”, “Efficient response solution
for integrated command and control center using automatic interactive
voice response system,” vol. 4, no. 1, pp. 35–38, 2021. [Online]. Avail-
able: https://jmiltechnol.mta.ro/7/SS 6%20GIRBEA Ciotirnae-min.pdf

[23] H. Jerkovic, P. Vranesic, and G. Slamic, “Implementation and
analysis of open source information systems in electronic business
course for economy students,” in 2016 39th International Convention
on Information and Communication Technology, Electronics and
Microelectronics (MIPRO). IEEE, 2016, pp. 912–917. [Online].
Available: http://ieeexplore.ieee.org/document/7522270/

[24] A. Bavier, R. McGeer, and G. Ricart, “PlanetIgnite: A self-assembling,
lightweight, infrastructure-as-a-service edge cloud,” in 2016 28th
International Teletraffic Congress (ITC 28). IEEE, 2016, pp. 130–138.
[Online]. Available: http://ieeexplore.ieee.org/document/7809642/

[25] A. Coles, E. Deliot, A. Edwards, A. Fischer, P. Goldsack,
J. Guijarro, R. Hawkes, J. Kirschnick, S. Loughran, P. Murray,
and L. Wilcock, “Cells: A self-hosting virtual infrastructure service,”
in 2012 IEEE Fifth International Conference on Utility and
Cloud Computing. IEEE, 2012, pp. 57–64. [Online]. Available:
http://ieeexplore.ieee.org/document/6424929/

[26] V. Talwar, D. Milojicic, Qinyi Wu, Calton Pu, Wenchang Yan, and
Gueyoung Jung, “Approaches for service deployment,” vol. 9, no. 2, pp.
70–80, 2005. [Online]. Available: http://ieeexplore.ieee.org/document/
1405978/

[27] M. Runia and K. Gagneja, “Raspberry pi webserver,” in Proceedings
of the International Conference on Embedded Systems, Cyber-physical
Systems, and Applications (ESCS). The Steering Committee of The
World Congress in Computer Science, Computer . . . , 2015, p. 62.

[28] J. Nikhila, “Web based environmental monitoring system using
raspberry pi,” in 2017 International Conference on Current Trends
in Computer, Electrical, Electronics and Communication (CTCEEC).
IEEE, 2017, pp. 1074–1080. [Online]. Available: https://ieeexplore.ieee.
org/document/8454964/

[29] S. E. Princy and K. G. J. Nigel, “Implementation of cloud server for
real time data storage using raspberry pi,” in 2015 Online International
Conference on Green Engineering and Technologies (IC-GET). IEEE,
2015, pp. 1–4. [Online]. Available: http://ieeexplore.ieee.org/document/
7453790/

[30] P. John, “Web-based visualization of data from smart devices
in iot,” Master’s thesis, Brno University of Technology, Faculty
of Information Technology, Brno, 2021. [Online]. Available: https:
//www.vut.cz/studenti/zav-prace/detail/145430

[31] K. Zaklová, J. Hynek, and T. Hruška, “Towards transparent
governance: Unifying city councils decision-making data processing
and visualization,” in Lecture Notes in Networks and Systems, ser.
Lecture Notes in Networks and Systems, vol. 2024, no. 987. Springer
Nature Switzerland AG, 2024, pp. 402–411. [Online]. Available:
https://www.fit.vut.cz/research/publication/13126

[32] J. Lazúr, J. Hynek, and T. Hruška, “From data to routes: A
comprehensive approach to public transport line routing,” in IEEE
Xplore, ser. 2024 Smart City Symposium Prague (SCSP). Institute
of Electrical and Electronics Engineers, 2024, pp. 1–6. [Online].
Available: https://www.fit.vut.cz/research/publication/13183

https://dl.acm.org/doi/10.1145/2970276.2970358
https://dl.acm.org/doi/10.1145/2970276.2970358
https://www.ijraset.com/fileserve.php?FID=36038
https://linkinghub.elsevier.com/retrieve/pii/S0167923610002393
https://linkinghub.elsevier.com/retrieve/pii/S0167923610002393
https://www.theguardian.com/technology/2008/sep/29/cloud.computing.richard.stallman
https://www.theguardian.com/technology/2008/sep/29/cloud.computing.richard.stallman
https://aws.amazon.com/blogs/enterprise-strategy/switching-costs-and-lock-in/
https://aws.amazon.com/blogs/enterprise-strategy/switching-costs-and-lock-in/
https://www.srgresearch.com/articles/cloud-market-gets-its-mojo-back-q4-increase-in-cloud-spending-reaches-new-highs
https://www.srgresearch.com/articles/cloud-market-gets-its-mojo-back-q4-increase-in-cloud-spending-reaches-new-highs
https://spacelift.io/blog/cloud-computing-statistics
https://www.ijraset.com/best-journal/continuous-integration-and-deployment-automation-in-aws-cloud-infrastructure
https://www.ijraset.com/best-journal/continuous-integration-and-deployment-automation-in-aws-cloud-infrastructure
https://ieeexplore.ieee.org/document/9106671/
https://dl.acm.org/doi/10.1145/3190619.3190642
https://ieeexplore.ieee.org/document/9031195/
https://ieeexplore.ieee.org/document/9031195/
http://ieeexplore.ieee.org/document/6753846/
https://iopscience.iop.org/article/10.1088/1742-6596/1211/1/012043
https://iopscience.iop.org/article/10.1088/1742-6596/1211/1/012043
https://jmiltechnol.mta.ro/7/SS_6%20GIRBEA_Ciotirnae-min.pdf
http://ieeexplore.ieee.org/document/7522270/
http://ieeexplore.ieee.org/document/7809642/
http://ieeexplore.ieee.org/document/6424929/
http://ieeexplore.ieee.org/document/1405978/
http://ieeexplore.ieee.org/document/1405978/
https://ieeexplore.ieee.org/document/8454964/
https://ieeexplore.ieee.org/document/8454964/
http://ieeexplore.ieee.org/document/7453790/
http://ieeexplore.ieee.org/document/7453790/
https://www.vut.cz/studenti/zav-prace/detail/145430
https://www.vut.cz/studenti/zav-prace/detail/145430
https://www.fit.vut.cz/research/publication/13126
https://www.fit.vut.cz/research/publication/13183

	Introduction
	Current Solutions
	Outsourcing
	Self-hosting

	Proposed Infrastructure
	Build Runners
	Deployment Server

	Usage Scenarios
	Home IoT solution
	System for Analysis of City Council Decision-Making
	GIS for Public Transport Routes Computing

	Discussion
	Conclusions
	References

