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Abstract—Phishing is a major threat, using deceptive tactics
to steal sensitive information like passwords and financial de-
tails. The rapid innovation by cybercriminals and sophisticated
social engineering amplify the challenges in combating phishing
campaigns. Traditional blocklisting methods struggle due to the
dynamic nature of the Internet and the continuous emergence of
new phishing sites. Our research presents an innovative approach
to detect phishing domains using machine learning classifiers
built upon an extensive array of information combined from
DNS records, IP addresses, RDAP servers, TLS certificates, and
geolocation data for over 500,000 Internet domains. Using a fine-
tailored vector of 143 unique features and seven classification
methods, we have achieved a 0.9830 precision rate, an F1 score
of 0.9770, and a remarkably low false positive rate of only 0.27%.
We further examines the contribution of individual features and
the overall impact of information from the utilized data sources
on the decision making of the classifiers.

Index Terms—Phishing, Domain, Detection, ML, DNS, IP,
RDAP, TLS, GeoIP

I. INTRODUCTION

Phishing is one of the most prevalent malicious threats that
users face on the Internet every day [1], [2]. Phishers lurk
in the dark, preparing sophisticated campaigns and trying to
catch users unaware. Users who are tricked by phishing are
exposed to data theft, which often results in significant privacy
or financial loss. Attackers typically design phishing sites to
mimic legitimate ones, aiming to look trustworthy to the users

The rise in phishing attacks has driven the cybersecurity
field to create robust security frameworks. Many research
teams and companies propose systems and techniques to com-
bat this menace. Defensive strategies target various levels of
user communication, focusing on channels like email, instant
messaging, and social networks, where social engineering
tactics are quickly deployed. Protection mechanisms aim to
identify phishing URLs, domain names, emails, and websites,
along with efforts to increase user awareness. Traditionally,
phishing protection methods have relied on blocklists and
heuristic approaches. Blocklists, while effective, depend on
user-reported phishing domains and URLs. However, their
scope and frequency of updates are limited, capturing only
a fraction of short-lived phishing sites [3]. In recent years, the
cybersecurity field has witnessed a paradigm shift with the
integration of machine learning techniques. These techniques
build on identified data and learn hidden patterns to match
similarities, leading to the identification of new threats.

This paper introduces a novel method leveraging machine
learning for the real-time detection of phishing domains. We

analyze patterns in both benign and phishing domains using
a dataset of information for 500,925 domain names, verified
and double-checked to ensure the correctness of the ground
truth. The information covers data from DNS records, IP
addresses, RDAP details, TLS handshakes and certificates, and
the GeoIP data. From the dataset, we create a comprehensive
feature 143-feature vector on which we trained, tuned, eval-
uated, and compared seven classifiers. Designed to enhance
existing blocklists, our approach adds an advanced layer of
defense against emerging phishing threats. It offers a fresh
perspective on how data-driven approaches can be used to
strengthen digital security in an ever-evolving cyber landscape.

The paper is organized as follows: Section II reviews the
evolution of phishing detection techniques. Section III details
the data collection methodology. Section IV analyzes the data.
Section V discusses feater selection and extraction. Section VI
describes the methodology for training and tuning classifiers.
Section VII presents experimental results. Section VIII inter-
prets our findings and, finally, Section IX concludes the paper.

II. RELATED WORK

Numerous studies have explored malicious domains, in-
cluding phishing domains, studying and proposing detection
methods. Usable features such as character ratios can be
extracted solely from the domain name, as demonstrated by
Drichel et al. [4] on 136 lexical features for detecting DGA-
based botnet C&C domains.

Bilge et al. [5] highlighted the importance of DNS data
in phishing and botnet domain detecting, using two lexical
and 15 DNS-related features, including IP address count and
TTL properties, obtained from passive DNS traffic analysis.
Perdisci et al. [6] similarly employed passive DNS analysis,
focusing on statistical IP-related features like IP diversity
and average TTL per domain. Antonakakis et al. [7] further
confirmed that IP addresses information, such as BGP prefixes,
AS numbers, and reputation scores, is highly useful.

An effective phishing detection method is analyzing HTML
elements [8], [9]. However, such an approach requires full-
page scraping and often rendering, as dynamic content or
even single-page applications have become a standard lately.
This results in high page-fetching and computational costs.
Palaniappan et al. detected malicious domains with DNS and
Web-based features [10] using logistic regression. However,
their data set consisted of only 20,000 domains, and they
reached 60% accuracy on the testing set.



TLS certificate chains provide additional signs of domain
maliciousness, as confirmed by Hageman et al. [11] who
analyzed phishing attacks in Q4 2020, detecting that 84% of
identified attacks were carried out over HTTPS. They also
discovered phishers often rely on a small group of issuers,
as only 132 of 853 analyzed authorities encountered among
certificate chains in phishing campaigns. Torroledo et al. [12]
utilized 30 TLS-based features to detect phishing and malware
domains, achieving a precision rate of 0.8963. Drichel et
al. [13] analyzed certificates from TLS transparency logs,
achieving a low false positive rate with 129 features.

Using lexical properties, DNS, or TLS data is contributive,
but combining them improves results even further. Kuyama
et al. [14] detected malicious domains with 9 WHOIS and 8
DNS-based features, and Shi et al. [15] added two IP-based
and three lexical features. Although they showed success,
the studies focused primarily on botnet domains. Chatterjee
et al. [16] reached a precision of 0.867 in detecting phish-
ing websites with 14 features, including DNS record counts
and domain age. However, they focused on URLs rather
than domains. Hason et al. [17] detected phishing and C&C
domains with 9 features ranked by robustness. Sadique et
al. [18] achieved 87% accuracy on a dataset with 38,000
phishing and 60,000 benign domains by merging host-based,
WHOIS, GeoIP, and lexical data, the latter having the highest
importance. However, no DNS or TLS information was used.

Apart from the study by Sadique et al. [18], most existing
ML-based approaches have drawn data from merely one or
two sources, for instance, DNS and WHOIS. Moreover, the
precision rate of the documented detection methods hardly
exceeded 0.9 [12], [16]–[18], indicating a considerably large
space for improvements. Previous studies were also generally
conducted on smaller datasets, typically ranging between
10,000 and 110,000 samples [13], [15], [16], [18], some had
even less samples [14]. Most phishing detection efforts have
aimed to identify malicious content on web pages, URLs, or
emails. In contrast, methods that examine domain names have
been focused primarily on malware C&C domains.

Our work focuses exclusively on phishing detection on
a domain-name basis, combining domain lexical features with
other available domain-related information from five external
data sources. This approach has two notable advantages.
Firstly, it allows the detection of phishing in encrypted com-
munication where URLs are not available – in practice, domain
names accessed by clients could be collected in a network
by observing DNS queries or the SNI fields in most TLS
handshakes. Secondly, our method does not require costly
scraping, rendering and interpreting the entire page’s contents.
We propose a comprehensive feature vector consisting of 143
attributes that are used as input to our classifier. Additionally,
we crafted a much larger dataset of 500,925 samples to
propose and evaluate our classifiers.

III. DATA COLLECTION

With machine learning, we faced the challenge of securing
ground truth - lists of unquestionably benign and phishing

domains. As shown in Figure 1, the first step was building our
dataset using publicly available domain lists and conducting
additional filtering to eliminate misclassified domains.

Fig. 1. A holistic overview of the classifier creation.

We chose the public Top One Million list provided by
the Cisco Umbrella platform [19] to acquire a set of benign
domains for our dataset. The platform was chosen due to its
collection methodology, which covers the DNS resolutions of
millions of users in more than 150 countries worldwide. It
also provides subdomains and is not limited to only domains
hosting websites but generally any popular ones regardless of
services hosted on the domain, representing a reliable source
that mimics a real classifier’s input. To ensure only benign
domains are in the dataset, we applied recurrence filtering as
described by Rahbarinia et al. [20], resulting in a compiled
list of 432,572 benign domains.

The phishing dataset was obtained using OpenPhish [21]
and PhishTank [22] platforms that accept and validate phishing
domain and URL reports. We collected the reports from their
MISP feeds as soon as they were published. As our approach is
purely domain-centric, we only stored the domain names from
the URLs – this resulted in 68,829 potential phishing domains.
Stripping the URL data could introduce false positives: for
instance, a single phishing resource hosted on a file-sharing
service should not necessarily make its entire domain name
malicious. To mitigate this issue and increase the quality of
the dataset, we conducted additional filtering using VirusTotal
[23] that detects malicious URLs based analyses from multiple
security vendors. Using the VirusTotal API, 476 misclassified
domains were identified and removed. This filtering resulted
in a high-quality dataset of 68,353 verified phishing domains.

For each domain name, we performed a DNS scan to
obtain information about the records available for the name –



associated IP addresses, name servers, and mail servers. As the
domain names were often subdomains of a higher-level zone,
we also determined the domain name of the zone by iteratively
querying public resolvers for a SOA record, switching to a
more general name if no SOA record was found. From the
SOA, we determined the primary nameserver address. We
then queried this nameserver for the following record types
associated with the domain of interest: A, AAAA, CNAME,
MX, NS, and TXT. If DNSSEC was present, each RRset
signature was validated locally, using only the key retrieved
from the domain, without establishing a chain of trust. We
also determined the IP addresses corresponding to the names
found in the CNAME records.

In the next step, we used all IP addresses obtained from
the A, AAAA, and CNAME records. For each IP address,
we measured round-trip time (RTT) using ICMP echo and
determined their geographic location and autonomous systems
affiliation using the publicly available GeoLite2 City and ASN
databases (v. 20230606) [24]. Additional information, such as
administrative contacts, on DNS zones corresponding to the
source names and the related IP addresses was collected using
RDAP, or WHOIS if RDAP was unavailable. Finally, for each
domain name, we attempted to establish a TLS connection on
port 443 to collect certificate chains and handshake details.
The final dataset is published on Zenodo1.

IV. HIGHLIGHTS FROM THE DATA ANALYSIS

After collecting all relevant domain-related data, we ana-
lyzed and compared benign and phishing datasets. In addition
to gaining deeper insight into our data, the motivation was
to identify key characteristics that help distinguish between
legitimate and phishing domains. This section describes the
most interesting findings.

A. Lexical Analysis of Domain Names

The com domain, the most common TLD on the Internet
[25], appeared most frequently in both datasets. The net
domain was more common in benign domains, representing
17.5% of the benign dataset, compared to 1.9% in phishing.
National TLDs, such as uk or fr, were much more frequent for
benign domains. Domains like io, site, or xyz were frequently
used for phishing and very rarely seen in the benign dataset.
Phishing sites also often used clickbait TLDs like page,
club, shop, info, and online. Generally, phishing domains had
longer names with an average of 29.35 and the median of 26
characters. For benign domains, the average was 22.25, with
a median of 20 characters.

Although all domain names mainly consisted of letters,
domains with only letters were more prevalent in the benign
dataset (56.48%) compared to phishing (32.53%). Figure 2
shows the percentage of individual character groups in domain
names. Numbers and hex symbols occurred significantly more
in phishing domains. Phishing domain names also had slightly
higher entropy.

1https://zenodo.org/doi/10.5281/zenodo.12518089

Fig. 2. Character distribution in domain names
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Fig. 3. Top 10 leaf certificate issuers (benign, phishing)

B. Analysis of Data from DNS Records

Inspired by Bilge et al. [5], we examined the TTL values
of DNS records. About 0.75% of benign and 0.15% of
phishing domain names had very high average TTL values and
standard deviations above 80,000. TTL averages and standard
deviations showed similar patterns in both sets. Nevertheless,
a distinction was observed in domains where 60% to 70% of
DNS records had TTL below 100, present in about 20% of
phishing domains but only 5% of benign ones.

We also found that phishing domains typically do not have
large numbers of DNS records. Less than 1% of phishing
domains had more than two A records. In the benign dataset,
many domains had large numbers of TXT records, while
phishing domains mostly had none, one, or two records.
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Fig. 4. Top 8 registrars of benign and phishing domain names (registrar names are shortened)

Similarly, a higher number of NS and MX records was more
typical of benign domains.

C. Analysis of IP-related Information

The benign dataset showed a higher diversity in the total
counts of IP addresses (both IPv4 and IPv6). More than 76%
of benign and 85% of phishing domain names have 0 to 3
related IPs. We rarely discovered more than 10 addresses for
phishing domains, while some benign domains had over 50,
and even over a hundred associated IP addresses.

There are slight differences in IPv6 support. Most of the
names in our datasets refer only to IPv4 addresses (73% of the
benign names, 65% of the phishing names). In many cases,
domains have an equal number of IPv4 and IPv6 addresses
(23% of the benign names, 33% of the phishing names).
In general, phishing domains tend to have a higher number
of IPv6 addresses. IPv6 addresses make up 27% of all IP
addresses in the benign dataset, while the number of IPv6
addresses in the phishing dataset is 31%.

D. Analysis of Data from RDAP (WHOIS)

By analyzing domain-related WHOIS/RDAP information,
we detected approximately 21% of the domains in both
datasets were registered through MarkMonitor, Inc. However,
the next top registrars were quite different. The other top two
registrars for domains in the benign set were GoDaddy.com,
LLC (15.6%) and CSC Corporate Domains, Inc. (6.9%). In
the phishing set, SafeNames Ltd. (11.1%) and CloudFlare,
Inc. (6.2%). The distribution of the top 8 registrars is shown
in Figure 4. Analyzing time properties like the domain age,
registration period, and time from last change, we discovered
phishing domains are generally short-lived, corresponding to
findings of related studies [15], [17], [26].

E. Analysis of TLS Certificate Chains

For domains with available TLS data (77.63% benign,
73.96% phishing), we examined the certificate chains. Only
1.7% of benign and 2.7% of phishing domains used self-
signed certificates. Most chains had between two and four
certificates: A leaf certificate for the website, 0–2 intermediate
certificates, and the root certificate. Having no intermediate
authority was common (43.70%) for benign domains, while
for phishing it was not that frequent (30.22%). Most phishing
domains (59.22%) had chains of length three.

Figure 3 shows the most common leaf certificate issuers.
Among benign domains, the most frequent (19.60%) was
DigiCert Inc, followed by Let’s Encrypt (10.58%) and Ama-
zon (10.14%). For phishing domains, the two dominating
leaf certificate authorities were Google Trust Services LCC
(21.34%) and Let’s Encrypt (20.15%) for obvious reasons.
Many Phishing websites were hosted on Google Firebase,
where Google allows hosting up to 1 GiB of data at no cost
under web.app and firebase.app domains. Let’s Encrypt, on
the other hand, provides TLS certificates to essentially anyone
who asks, and the process can also be automated easily.

F. Geolocation Data Analysis

Finally, we analyzed the geolocation information for all
domain-related IP addresses in both datasets. Unsurprisingly,
the highest concentrations of servers were found in the eastern
US and western and central Europe. Those included both
benign and phishing sites. Nevertheless, some countries, such
as Singapore, Taiwan, or Finland, were much more common
in the benign dataset, while Brazil, India, Italy, or Vietnam
appeared more frequently among phishing locations. In several
countries, it was even possible to pinpoint concrete regions
where phishing sites were concentrated.

V. FEATURE ENGINEERING

Following the procedure in Figure 1, the next step was to
select features relevant to phishing detection. We started with
a list of potentially helpful features. A significant part consists
of novel features we designed inspired by our findings from
the data analysis. The rest was adopted from previous studies.

This initial selection was filtered in several steps. Specifi-
cally, we excluded features that were discussed in related work
but could not be extracted from our dataset. Consequently,
we removed those deemed irrelevant for phishing detection in
previous studies. We also discarded features with no significant
contribution and those that duplicated information. Once fil-
tered, we ended with a vector of 143 features that we used for
experiments. Table I lists and describes the features, divided
into six categories based on their origin. Features with citations
are adopted from related work. The rest we consider novel as
we have not found studies that cover them.

First, we identified 43 lexical features from the domain
name alone, as they have proven useful in previous studies [4],
[15]. Some features measure the length of the domain name



TABLE I
FEATURE VECTOR FOR PHISHING DOMAIN CLASSIFICATION

Domain Name Lexical Features (lex )

Name Description & References
name len Length of the domain name [7], [15], [17], [26]
has digit Flag if the Domain name (DN) contains a digit [13]
phishing kw count Occurence count of 47 phishing keywords [13]
consecutive chars Longest consecutive sequence length [15], [17], [26]
tld len Length of the Top-level domain (TLD)
tld abuse score Score for most-abused TLD [27]
tld hash Hash of the Top-level domain
sld len Length of the Second-level domain (SLD)
sld norm entropy Normalized entropy of SLD
sld phishing kw count Occurence count of 47 phishing keywords in SLD
sub count Number of subdomains (level) [10]
stld unique char cnt Number of unique characters in TLD and SLD
begins with digit Flag if the name begins with a digit
www flag Flag if the name begins with “www”
sub max conson len Longest consonant sequence length in subdomains [13]
sub norm entropy Norm. entropy of subdomains [4], [15], [18], [26]
{sub,sld} digit count Number of digits in subdomains and SLD [10]
{sub,sld} digit ratio Ratio of digits in subdomains and SLD
{sub,sld} vowel count Number of vowels in subdomains and SLD [18]
{sub,sld} vowel ratio Ratio of vowels in subdomains and SLD
{sub,sld} consonant count Number of consonants in subdomains and SLD
{sub,sld} consonant ratio Ratio of consonants in subdomains and SLD
{sub,sld} nonalnum count Total number of hyphens in subdomains and SLD [10]
{sub,sld} nonalnum ratio Ratio of underscores and hyphens in subdomains and SLD
{sub,sld} hex count Number of hex symbols in subdomains and SLD
{sub,sld} hex ratio Ratio of hex symbols in subdomains and SLD
bigram matches No. of common phishing bigram matches [28]
trigram matches No. of common phishing trigram matches [28]
tetragram matches No. of common phishing tetragram matches [28]
pentagram matches No. of common phishing pentagram matches [28]
avg part len Average length of domain name parts
stdev part lens Standard deviation of domain name part lengths
longest part len Length of the longest domain name part
shortest sub len Length of the shortest subdomain

DNS-based Features (dns )

Name Description & References
A count Number of A records [29]
AAAA count Number of AAAA records
MX count Number of MX records [14], [30]
NS count Number of NS records [14]
TXT count Number of TXT records
CNAME count Number of CNAME records
resolved rec types Number of discovered RRsets
has dnskey Flag if a DNSKEY RRset is in the zone
dnssec score DNSSEC scoring
ttl avg Avg. of TTLs across RRsets [6], [15], [17], [26], [29]
ttl stdev Standard dev. of TTLs across RRsets [15], [17], [26]
ttl low Number of RRsets with TTL ∈ [0, 100] [5]
ttl mid Number of RRsets with TTL ∈ [101, 500] [5]
ttl distinct count Number of distinct TTL values across RRsets [5]
soa refresh SOA refresh parameter
soa retry SOA retry parameter
soa expire SOA expire parameter
soa min ttl SOA minimum TTL
dn in mx Flag if any mailserver is a subdomain of the DN
txt ext verif score No. of vendor verification strings in TXT RRs
txt spf exists Flag if an SPF record is in the TXT RRs
txt dkim exists Flag if a DKIM record is in the TXT RRs
txt dmarc exists Flag if a DMARC record is in the TXT RRs

DNS-based Lexical Features
zone level No. of subdomains in the zone’s DN
zone digits No. of digits in the zone’s DN
zone len No. of characters in the zone’s DN
zone entropy Normalized entropy of the zone’s DN
soa pri ns level No. of subdomains in the primary NS’s DN
soa pri ns digits No. of digits in the primary NS’s DN
soa pri ns len No. of characters in the primary NS’s DN
soa pri ns entropy Normalized entropy of the primary NS’s DN
soa email level No. of subdomains in the admin’s mail DN
soa email digits No. of digits in the admin’s mail DN
soa email len No. of characters in the admin’s mail DN
soa email entropy Normalized entropy of the admin’s mail DN
mx avg len Avg. number of characters of the DNs in MX records
mx avg entropy Avg. normalized entropy of the DNs in MX records
txt avg entropy Avg. normalized entropy of TXT RRs values

IP-based Features (ip )

Name Description & References
count Number of IP addresses [5], [7], [15], [17], [26], [31]
mean average rtt Average RTT of all ICMP Echo attempts
ip v4 ratio Ratio of IPv4 to all IP addresses
entropy Total entropy of all /16 (/64 for v6) IP prefixes [6], [32]
as address entropy Entropy of autonomous systems (AS) IP prefixes [32]
asn entropy Entropy of AS numbers [10], [18]
distinct as count Number of distinct ASNs [7], [29], [33]

RDAP-based Features (rdap )

Name Description & References
Related to the Domain Name

registration period Diff. between expiration and regist. date [15], [17], [26]
domain age Days elapsed from the domain registration [29]
time from last change Days elapsed from the last change [18]
domain active time min(today, expiration) - reg. date [15], [17], [26]
has dnssec Flag if domain uses DNSSEC
registrar name len Length of the registrar’s name [10], [18], [29]
registrar name entropy Entropy of the registrar’s name [10], [18], [29]
registrar name hash Hash of the registrar’s name [10], [18], [29]
registrant name len Length of the registrant’s name [10], [18]
registrant name entropy Entropy of the registrant’s name [10], [18]
admin name len Length of the administrative contact’s name
admin name entropy Entropy of the administrative contact’s name
admin email len Length of the administrative contact’s e-mail [14]
admin email entropy Entropy of the administrative contact’s e-mail [14]

Related to Domain-associated IP addresses
ip v4 count No. of IP addresses recognized by RDAP as IPv4
ip v6 count No. of IP addresses recognized by RDAP as IPv6
ip shortest v4 prefix len Length of the shortest IPv4 prefix
ip longest v4 prefix len Length of the longest IPv4 prefix
ip shortest v6 prefix len Length of the shortest IPv6 prefix
ip longest v6 prefix len Length of the longest IPv6 prefix
ip avg admin name len Average length of the admin’s name for IP addresses
ip avg admin name ent Average entropy of the admin’s name for IP addresses
ip avg admin email len Average length of the admin’s e-mail for IP addresses
ip avg admin email ent Average entropy of the admin’s e-mail for IP address

TLS-based Features (tls )

Name Description & References
chain len Length of the certificate chain [31]
is self signed Flag if leaf ceriticate is self-signed [12], [31]
root authority hash Hash of root certificate authority’s name
leaf authority hash Hash of leaf certificate authority’s name
leaf cert validity len Length of the validity period of the leaf cert. [8], [12],

[31]
negotiated version id Negotiated TLS version number (TLSv1.x)
negotiated cipher id An identifier of the negotiated TLS cipher [31], [34]
root cert validity len Length of the validity period of the root certificate
broken chain Flag if there is a certificate that was never valid
expired chain Flag if there is an expired certificate in the chain
total extension count Total extensions in all certificates in the chain [12], [34]
critical extensions Total extensions flagged as “critical” in all certificates
with policies crt count No. of certificates that include the policies extension
percentage with policies Percentage of certificates with the policies extension
x509 anypol crt count No. of certificates not enforcing any policy
iso pol crt count Total discovered policies from the 1.* OID space
isoitu pol crt count Total discovered policies the 2.* OID space
subject count No. of subject alt. names (SANs) in the leaf cert. [12],

[31]
unique SLD count No. of unique domain name SANs
server auth crt count No. of certs. with “Web Server Authentication”
client auth crt count No. of certs. with “Web Client Authentication”
CA certs in chain ratio Ratio of CA certificates in the chain
common name count No. of common names in the chain

Geolocation Features (geo )

Name Description & References
countries count Number of distinct countries [5], [7], [15], [17], [26]
countries hash Unique hash for each combination of countries [10]
continent hash Unique hash for each combination of continents
lat stdev Standard deviation from latitudes of IP locations
lon stdev Standard deviation from longitudes of IP locations
mean lat Mean latitude of IP locations
mean lon Mean longitude of IP locations
centroid lat Central latitude of IP locations
centroid lon Central longitude of IP locations



and its individual subdomain parts. We have also included
flags that indicate whether the domain name begins with
a digit or with “www”. Other important lexical features include
character occurrence counts, character ratios, and normalized
entropies for the second-level domain (sld ) and for a con-
catenation of all subdomain parts (sub ). We also calculate
the length of the longest consonant sequence. Additionally, we
counted the occurrence of 45 common phishing-related click-
bait words such as “account” or “free”. We also extracted the
most common {2,3,4,5}-grams contained in phishing domains
and added features that reflect the number of matches in the
analyzed domain name. In addition, we added a feature that
reflects the statistical likelihood that the site is abusive based
on its TLD. The tld abuse score ranges from zero to 0.6554,
based on data from an article published by Tim Adams [27].

Next, we included 38 DNS-related features like counts of
record types, as proven useful by Kuyama et al. [14], or
records with TTL values in intervals [0, 100] and [101, 500]
since Bilge et al. detected that lower TTL values are more
frequent for hi-flux malicious domains [5]. We also introduced
novel features. To domains that contain a DNSKEY, we
assigned a DNSSEC score expressing discrepancies in the
signatures, calculated as (v − 2i)/(v + i), where v, i are the
counts of valid and invalid signatures respectively. Moreover,
we scored the domains by the presence of common verification
strings in the TXT records, such as “google-site-verification=”.
Motivated by the success of lexical features [4], [15], [18]. We
also calculated lengths, digit counts, and entropy to various
strings found in DNS. In Table I, these attributes are called
DNS-based Lexical Features.

Eight IP-related features describe properties of IP addresses
associated with the domain, extracted not only from DNS
A and AAAA records but also by resolving IP addresses
for CNAMEs. IP address count and IPv4 ratio showed con-
tributions in prior studies [5], [7], [15]. Motivated by the
research of Perdisci et al. [6] who suggested low IP diversity
often indicates high-flux malicious domains, we included the
average entropy of IP prefixes and AS numbers. We suppose
credible services may show lower latencies, especially when
located in the same area as clients. Therefore, we incorporated
the average RTT as a feature. Lastly, we calculated the number
of distinct autonomous systems (ASNs).

Next, we included 24 RDAP-based features. The first 14
describe domain name registration information like the regis-
tration period, domain age, and time from the last change. All
are in days and the present timepoint is the midnight of the
day when the features were extracted. This way, we ensure
the data collection date does not influence the classifiers’
decisions. We also added a flag indicating the DNSSEC
support. Other features describe the textual properties of the
domain’s registrar, registrant, and administrative contact. The
next ten features are based on the RDAP data collected for
the IP addresses. They measure the number of addresses
recognized by RDAP as IPv4/6, lengths of prefixes, and textual
properties of the IP-related administrative contacts. While we
designed most of the RDAP-based features manually, some of

them, like the registration period or the domain active time,
were inspired by previous studies [15], [17], [26].

Furthermore, 24 TLS-related features were extracted from
the TLS handshakes and certificate chains. Some features, like
the validity length, were adopted from the work of Torolledo
et al. [12]. Others, like extensions and security policies, were
crafted manually. Features derived from the TLS handshakes
describe the negotiated TLS version number and the ID of the
negotiated cipher suite. Other TLS-based features reflect the
length of the certificate chain, authorities, validity, and various
properties based based on extensions and security policies.

Finally, we included nine features related to geolocation.
The number of different countries has been shown to be
a contributing factor in related work [5], [7], [15], [17]. In
addition, we computed a unique hash for each combination of
country and continent of location, as we believe that specific
phishing campaigns may be orchestrated by blackhat groups
operating within specific regions. For cases where determining
area on a country basis may not be sufficient, we have also
included the mean and central latitude and longitude of all
the IP locations, as these properties describe concrete areas
in a higher level of detail. Standard deviations of latitude and
longitude indicate the dispersion of domain-related servers.
Such properties help distinguish between services hosted in a
smaller region and big national or international players.

VI. TRAINING AND TUNING CLASSIFIERS

To verify the applicability of our feature selection, we
performed the train-test split with 70% of the data reserved
for training and tuning and 30% for the final test. We tested
the selected features on seven classification methods. For each
method, we tuned the model to find the optimal hyperparam-
eter values using a grid search with 5-fold cross-validation
[35]. Our main goals were to maximize the F1 score, keep the
false positive rate low, and reduce overfitting. Following the
described methodology, we tuned and validated the results of
the following classification algorithms:

• Logistic Regression – The method was chosen as a base-
line because it does not rely on linear feature relations.

• Support Vector Machine (SVM) – We selected this clas-
sifier for its effectivity with high dimensional data and
capability of modeling non-linear relationships [36].

• Decision Tree – Provides decent performance, clear in-
terpretability of the results, and robustness to outliers.

• Random Forest – The method was selected to test how
a classifier with many weak learners behaves on our data.

• AdaBoost – The method assigns higher weights to rele-
vant features, being beneficial on large feature vectors.

• XGBoost – The classifier is known for its high perfor-
mance and resilience against overfitting [37].

• LightGBM – The method was chosen for its effectivity,
high training speed, low memory consumption, and native
support for categorical features [38].

For the best-performing LightGBM classifier, we utilized 897
estimators of a maximum depth of 17 and 59 leaves. We
used a learning rate of 0.15, column subsample ratio of



0.9, min_child_samples of 27, and 240,000 samples
for constructing bins. The scale_pos_weight set to 6.28
compensated the class imbalance.

VII. EXPERIMENTAL RESULTS

First, we verified the performance of the classifiers on the
validation part of our dataset. To assess the methods’ stability
and eliminate the influence of the random state seed choice,
we conducted 10 training rounds per classifier with random
seeds. Note that the actual effect of randomization depends on
concrete configurations of model parameters and is manifested
differently in distinct classification methods. As the model may
also depend on the order of the samples in the training dataset,
we also randomly shuffled the samples in each run.

Table II compares standard metrics’ values among the
methods when validated on the reserved 30% of the data. For
each metric, namely precision, recall, and false positive rate
(FPR), the table shows the mean and the variance of all values
collected in each round. Due to class imbalance and the goal to
eliminate both false positives and false negatives, we consider
the F1 score to be the most descriptive metric of success.

We see that the best-performing classifier was LightGBM,
which achieved the best results in all metrics. As several
related studies use accuracy as the primary metric, we also
calculated weighted accuracy, which was 99.39%, with a vari-
ance of 7.995e10-9. To get a deeper insight into the classifier’s
decisions, we examined the impact of each feature. Thus, we
used the SHapley Additive exPlanations (SHAP), which also
measure the interaction between features [39]. Figure 5 shows
the top 20 features according to their SHAP score. The features
are sorted by score from most important to least important.
Note that the remaining 123 features are not shown, but many
of them also contributed significantly to the decision process.

To evaluate the contribution of the different sources of
information, we further analyzed how each feature category
influences the decision process. Therefore, we calculated the
influence IC of feature class C ∈ {lex, dns, ip, tls, rdap, geo}
as an aggregated mean of the absolute SHAP values:

IC =
1

n

n∑
i=1

|SHAP(fi)|,

where SHAP(fi) is the SHAP value for the i-th feature in
category C, and n is the number of features in that category.
The resulting impact for all categories is displayed in Figure
6. The longer the bar, the more important the category is for
the LightGBM classifier.

VIII. DISCUSSION

With an average F1 score of 0.8608, logistic regression
fails to grasp complex relations between domain attributes. All
other methods achieved a precision above 0.96, F1 above 0.93,
and higher resilience to the class imbalance. The Decision
Tree classifier produced fair results, but the performance of
the Random Forest was naturally higher thanks to the use of
hunders of individual trees. SVM and AdaBoost achieved even
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higher F1 scores, however the methods were highly demanding
on computing resources. The best-performing classifiers were
XGBoost and LightGBM, with the latter having a slightly
higher performance. Both methods were also swift in training.
As shown in Table II, LightGBM is a clear winner, outper-
forming other methods in all metrics. The classifier offers
exceptional performance, low training times, resilience to class
imbalance, and good handling of categorical features.

The results further show that all the feature categories
contributed to the LightGBM classifier decisions, with RDAP
having the highest importance. By conducting a separate addi-
tional experiment, we verified that classification based solely
on RDAP features was less successful, underlying the fact that
other sources also play an important role. The most important
feature was “dns ttl low”, confirming the findings of Bilge
et al. [5] and our insights from the data analysis. Lexical
features also appeared frequently in the top 20 list, namely
our proposed statistics-based TLD abuse score and n-gram
matching showed usability for building a phishing domain
classifier. From RDAP-based features, the most important was
domain age, referring to the fact that long-running services
are statistically more likely to be trustworthy, while malicious
sites are more likely to be shut down early. The information
about domain’s registrar was also crucial in the decision
process, which further confirms its usefulness, documented
in previous studies [10], [18]. International service providers
such as Facebook or Amazon distribute their servers across



TABLE II
COMPARISON OF RESULTS FOR INDIVIDUAL CLASSIFICATION METHODS

Precision Recall F1 FPR
Classifier Avg. Variance Avg. Variance Avg. Variance Avg. Variance
Logistic Regression (LR) 0.906419 4.00e-08 0.819711 8.24e-08 0.860887 2.92e-08 0.013373 1.06e-09
SVM 0.969702 1.30e-07 0.943646 3.60e-08 0.956541 2.72e-08 0.004659 3.33e-09
DecisionTree (DT) 0.965228 5.73e-08 0.904394 1.76e-08 0.933821 4.75e-09 0.005148 1.39e-09
RandomForest (RF) 0.977666 1.13e-07 0.907915 3.11e-07 0.941500 1.13e-07 0.003277 2.55e-09
AdaBoost (ADAB) 0.970674 5.82e-09 0.957354 1.72e-09 0.963968 1.56e-09 0.004570 1.51e-10
XGBoost (XGB) 0.981501 1.71e-07 0.970540 1.17e-07 0.975990 4.98e-08 0.002890 4.37e-09
LightGBM (LGBM) 0.983007 2.11e-07 0.971004 4.09e-07 0.976968 1.23e-07 0.002652 5.39e-09

many nodes around the world, which is a plausible explanation
for why the number of IPv4 addresses is so important. The
time since the last change of the domain’s RDAP records was
also important and, as we have additionally verified, contains
higher values for benign domains. Higher values indicate that
changes were either less frequent or, in the case of no changes,
that the domain has existed for a longer period of time, which
is also described by the “rdap domain age” feature.

Although not included in the top 20 list, geolocation features
are an important input for the classifier. The highest SHAP
score had the mean latitude, longitude, and hash of countries
in which the domain-related IP addresses had servers. Such
results confirm our assumptions that certain groups of phishers
often operate in different sets of countries. Surprisingly, TLS-
based features had much lower impact than other categories,
as shown in Figure 6. Nevertheless, the most useful was the
negotiated cipher, followed by the certificate chain length.

Compared to existing work, the results look promising.
With XGBoost and LightGBM classifiers, we achieved a much
lower false positive rate (0.29% and 0.27%) than Bilge et
al. [5], who had FPR 1.1% on their dataset. Attempts from
Torroledo et al. [12] and Chatterjee et al. [16] showed precision
and F1 below 0.90. Hason et al. [17] achieved 0.9292 F1. Our
best classifier had 0.9830 average precision and 0.9770 F1
score. Sadique et. al [18] used a method that was closest to
our approach and achieved 90.35% Accuracy with Random
Forest on batch learning test and 87% Accuracy in a real-time
setup. Our best two classifiers both achieved weighted average
accuracy over 99%. Note that the datasets differ amongst the
studies and many were not available publicly. Moreover, the
studies collected different data in diverse ways, making it
hardly possible to conduct a direct comparison.

The performance, stability, and adaptability to imbalance
make LightGBM robust and reliable for the current problem
domain. The proposed classifier, based on a diverse set of
data sources, including DNS records, RDAP servers, TLS
certificates, IP addresses, and GeoIP data, has proven its
applicability in phishing detection. After integrating these
diverse data points into a 143-feature vector and further tuning
the model, the classifier demonstrates remarkable performance
and effectiveness. Thus, our multi-source approach not only
demonstrates possible viability in threat-hunting applications,
but also provides a nuanced understanding of domain-related
attributes essential for identifying phishing activity.

IX. CONCLUSION

We have created a large dataset of domain-related data
from which we have identified attributes that are crucial for
assessing the credibility of the domain. The applicability of our
approach is best demonstrated with boosted ensemble learning
methods, which show high effectiveness and low false positive
rates. Our results also prove that phishing sites can be detected
solely on a domain basis without the need for computationally
expensive scraping of web page data.

Furthermore, as the Internet increasingly embraces en-
crypted communication, it is often infeasible to detect concrete
URLs without possessing the TLS encryption keys. However,
certificate chains are publicly available, and associated phish-
ing indicators are easy to extract. The same is true for RDAP,
DNS, and geolocation information. Our approach can thus be
used not only to secure client machines but also in scenarios
where phishing activity is detected at the network perimeter.
The information about domains contacted is readily available
from passive analysis of DNS traffic without the need to
decrypt the actual HTTPS sessions. Enriching this data with
RDAP, IP, DNS, and geolocation-related information together
provides enough valuable clues to detect phishing attempts
with a low computational effort and a high success rate.

The results of this study not only advance the understanding
of phishing detection techniques but also strengthen the utility
of machine learning in cybersecurity. The proposed methodol-
ogy might be used to deploy classifiers as part of anti-phishing
browser extensions, application firewalls, or broader network
security systems, contributing to a safer online environment.
Nevertheless, practical deployment would require refitting the
models over time to match new emerging threats. Moreover,
more benign domains that are short-living and specific to the
area of deployment shall be used to make classifier withstand
the challenges of a real network traffic.

In the future, we intend to test alternative classification
methods and implement various optimizations to enhance our
classifiers’ performance. Most notably, we aim towards deep
learning, necessitating modifications to our feature vector.
Moreover, we are experimenting with a much larger corpus
of data captured directly from data captured directly from
an ISP’s network. We believe these efforts will improve our
phishing detection techniques and introduce more precise
decisions, taking the false positive rate to even lower levels.
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