
RRS: Rapidly-exploring Random Snakes a New Method

for Mobile Robot Path Planning

K. Baizid
1
, R. Chellali

2
, R. Luza

3
, B. Vitezslav

3
 and F. Arrichiello

1

1University of Cassino and Southern Lazio, Via G. Di Biasio 43, 03043 Cassino (FR), Italy

baizid@unicas.it
2Fondazione Instituto Italiano di Technologia (IIT), via Morego 30, Genova, Italy

3University of Technology Brno (BUT), Czech Republic

Abstract. Recently, sampling-based path planning algorithms have been im-

plemented in many practical robotics tasks. However, little improvements have

been dedicated to the returned solution (quality) and sampling process. The aim

of this paper is to introduce a new technique that improves the classical Rapid-

ly-exploring Random Trees (RRT) algorithm. First, the sampling step is modi-

fied in order to increase the number of possible solutions in the free space. Se-

cond, within the possible solutions, we apply an optimization scheme that gives

the best solution in term of safety and shortness. The proposed solution, name-

ly, Rapidly-exploring Random Snakes (RRS) is a combination of a modified

deformable Active Contours Model (called Snakes) and the RRT. The RRS

takes the advantage of both RRT and deformable Snakes contours, respectively,

in: rapidly searching new candidate nodes in the free space and circumnavi-

gating obstacles by calculating a safe sub-path in the free space towards the new

node created by the RRT. In comparison to the classical RRT, the proposed al-

gorithm increases the probability of completeness, accelerates the convergence

and generates a much safer and shorter open-loop solution, hence, increasing

considerably the efficiency of the classical RRT. The proposed approach has

been validated via numerical simulations and experimental results with a mo-

bile robot.

Keywords: Path planning, Active Counter Model, Sampling algorithms, Snake

1 INTRODUCTION

Robotic path planning problem has received a considerable amount of attention over

the last years, where applications involving real robots have increased dramatically

[1], [2]. The main goal is to drive robots from Initial to Final locations without collid-

ing with any obstacle (safety condition) in a minimum time. Such algorithms are said

efficient if they are able to find a solution in any complex and cluttered environments.

Moreover, the computational effort in this finding should be bounded, e.g. the algo-

rithm provides at least one path (if it exists) in a finite amount of time (completeness).

Cell decomposition [3] and visibility roadmaps [1] are known to guarantee the com-

pleteness. However, in practice these algorithms are computationally expensive.

More recently, the Sampling-based Motion Planning (SMP) has been introduced
[1] and became very popular. The main advantage of this algorithm is to rely on ran-
dom exploration to avoid visiting the whole working environment in order to derive an
acceptable solution. The SMP probes the configuration space following an incremental
sampling scheme, and uses a collision detector to find feasible paths. The samples not
verifying the collision-free conditions are not considered and the sampling process
continues till a solution is found. One of the SMP is the Rapidly exploring Random
Trees (RRT) [1], which generates random samples called Nodes and builds a Tree from
the Start to the Goal locations. Numerous variants of this algorithm have been intro-
duced and developed to improve its performances in solving different path planning
problems, e.g. [4][5],[6],[7],[8],[9]. Unfortunately, some of these algorithms can only
guarantee asymptotic completeness and no upper bound for the time-to-solution can be
known a priori. On the other hand, the generated paths are not optimal in length neither
in safety.

In this paper we propose a new RRT extension, called the Rapidly-exploring Ran-
dom Snakes (RRS). Our RSS is based on the combination of the classical SMP togeth-
er with a modified Deformable Active Contours Model (known also as Snakes [10]),
where the later refining the obstacle avoidance process (To the best of our knowledge
no similar work has been proposed combining deformable Snakes with SMP methods).
The main idea in this contribution is to increase the number of accepted samples in the
free space

by circumnavigating locally closest obstacles by applying a deformation

process to the edges not satisfying the RRT free conditions. This combination leads to
near-optimal path in terms of length, number of probes and safety. Indeed, the number
of feasible paths is increased for the same computational effort, allowing more opera-
tions towards improving the safety and reducing the lengths of the possible trajectories.
Moreover, we show trough simulation results that the proposed algorithm maximize
the probability of finding solution (hereafter it is called the probabilities completeness)
compared to classical procedures with less computational efforts.

This paper is organized as follows; we give, first, related to path planning. In the

second part, we describe the proposed algorithm and its performances compared to

the classical RRT algorithm. We finish by a conclusion and future works.

2 Related works

The fundamental issue in mobile robotics path planning is to drive the system, robust-

ly, from a known initial state Sinit to a final state Sgoal through a feasible trajectory

within a known environment. Any solution P must fulfill two main conditions: 1) P is

safe by minimizing the risk of colliding with obstacles, 2) P is a short path by mini-

mizing the traveled distance. For cluttered and complex environments, finding P is

known to be hard and subject to deadlock situations. Basically, such issue is ad-

dressed in four different classes of path planning approaches: Cell decomposition

[7],[8], Potential field [11],[12], Probabilistic algorithms [13],[14] and Sampling

methods [1],[2]. For brevity hereafter we give reference to Sampling methods, which

are much related to our contribution.

Sampling based algorithms, avoid the explicit characterization of Cobs and Cfree by

probing the configuration space C with a sampling schema, followed by a collision

detection phase. Clearly, the whole map is not visited and only randomly generated

steps within Cfree are considered. Probabilistic Roadmaps [15] and RRT [16], intro-

duced since 2001 are the most popular sampling based algorithms. Basically, a point

in the space C is randomly chosen and a free-collision test is performed. For positive

answers, the nearest point in the tree is connected to this candidate. In addition to the

advantages cited earlier, the RRT algorithm performs simultaneously the classical

preprocessing and searching steps, which makes it well adapted for real-time execu-

tions to handle sensory uncertainties. The Box-RRT was proposed by Pepy et al in [6]

to deal with such uncertainties.

In general, RRT-like based algorithms are only implemented to find a possible

path, efficiently, without considering the inherent costs. Recently, a new variant of

sampling methods based on random tree expansion strategy has been presented in

[17]. Mainly an utility-guided algorithm guides expansion towards regions having

higher utility based on local information of the environment. Another method called

RRT* has been proposed in [7] to improve the returned solution and the internal pro-

cess by increasing the number of samples and reducing the computational costs. Re-

garding to limitations of this method in high dimensional space a heuristics method

was proposed in [18] to improve the initial path and decrease iteratively the computa-

tional efforts. Also, the an Obstacle-Based RRT (OBRRT) was proposed in [19].

To handle such issues, we investigated a new formulation of the basic RRT. Like

in the classical RRT algorithm, first we generate a random sample qrand. In addition

we consider the local effects of obstacles to create a local deformation process of the

edge to connect the new candidate qrand to the mother tree. This process uses a modi-

fied Snakes algorithm to circumnavigate dynamically the closest obstacles. Further-

more, it handles the safety issues and adds a supplementary constraint to minimize the

length of the obtained sub-segment. We intend to extend the sampling searching strat-

egy by giving it the possibility of accepting more samples, which are considered un-

reachable by the classical RRT. This increases the probability of completeness and

minimizes the number of iterations.

3 Rapidly exploring Random Snakes (RRS)

The RRS combines the classical RRT and a modified Snakes algorithm in order to

increase the number of samples which leads to increase the probability of complete-

ness, accelerate the convergence and generate a safer and shorter paths. Hence, its aim

is to increase the efficiency of the RRT basic algorithm.

3.1 Applying Active Contour Model for Safe Path Planning

Snakes algorithm was proposed initially for object boundaries detection in Computer

Vision [10] and is used in several applications as, for example, [20]. Mainly, it de-

forms closed loop contour under the effects of forces (energy minimization process)

derived from image grey levels or colors. This contour moves under the influence of

internal forces coming from the contour itself and external forces computed from the

data of the image, towards equipotential zones of this last. This allows the contour to

matches the object boundaries. In our method, this concept is modified to cope with

the path generation and obstacle avoidance: it allows to circumnavigate obstacles

keeping a safe distance from them even in cluttered environments.

The proposed Snakes algorithm calculates the energy model (Eq.1) based on the

obstacles and the robot path projected on a bright image, which its size represents the

environment boundaries. Similar to original Snakes model, and based on the energy

minimization concept, the contour is subjected to the influence of the environment

and the internal forces of the contour itself. The external forces push the contour far

from zones having higher collision risk probability (high potential field), the internal

forces ensure the connectivity and maximize the smoothness of the contour, while the

optimization force reduces curves bands. Assuming that the path parameters (contour)

are given by:))(),(()(sysxsv . The Snakes energy is defined as follow:

 dssvEdssvEdssvEdssvEE OptConExtIntSnakes

1

0

1

0

1

0

1

0

 (1)

where, EInt represents the internal energy of the contour (path), EExt represents the

external energy of the contour, ECon represents the external force constraints (which is

not considered in our case) and EOpt represents the energy to optimize the contour

(stretching the path). The internal energy is defined as follow:

 2)(
22

svssvssEInt (2)

where the first part (function of) of the equation makes the contour act like a

membrane and the second part (function of) makes it act like a thin plate. We mod-

ified the external energy EExt to be repulsive as defined bellow:

)()*1()(
22 svIGsEExt

 (3)

where Gσ is a two-dimensional Gaussian function with standard deviation sigma

 is the gradient operator and I represents the image data (for a complete review

regarding the Snakes model please see [10]). The Optimization energy is defined as:

 yxfsEOpt ,)(

 (4)

where snf

* , sn
 represents the normal unitary vector of the curve at

points v(s) and γ is a weight; for a large value of γ the curve converges toward a
straight line very quickly.

To insure the feasibility of the path, the original RRT algorithm generates a "new

sample" using a normal distribution where all robots' directions are with equal proba-

bility. This may interfere with the consideration of the robot motions anisotropy (the

rotation and translation errors). Indeed, the errors in executing rotations and transla-

tions are not uniform. There are many ways to model the uncertainties produced by

motions and sensors [21]. In our case, we construct a local function to describe the

probability for the robot to pass by the position (x, y)i while performing a motion step

(∆trans, ∆α). This function is obtained as the combination of two Gaussians, respec-

tively the translation and the rotation ones (Fig. 1 (a)).

Likewise and due to the sensing errors, obstacles are transformed into probability

distributions of being at the expected positions (Fig. 1 (b)). The product of the motion

distributions and the sensing ones leads to a landscape representing the probability for

the robot to hit an obstacle (risk zones in Fig 1.(d)).

Authors in [21] provide a complete review regarding to motion uncertainties. For

brevity our method is very simplified. Moreover, an experimental study was per-

formed to model motion and sensor uncertainties using Snakes algorithm in [22].

3.2 Active Contour Model for Safe Path Planning

Fig. 1 shows an example of the modified Snakes model applied to the whole path

generated by RRT (not to the generated samples in real-time as designed for). The

green dashed path in Fig. 2(d) represents the deformed segments, of the original RRT

path (close to the two risk zones found).

3.3 Sampling Active Contour Model: the RRS-Core

RSS builds a random tree similar to RRT algorithm, however, instead of taking the

decision about invalid samples (accept or reject) it creates a local deformable Snakes

contour derived from the curve that links the corresponding sample to the mother tree.

This contour is expected to circumnavigate local obstacles safely. To this end, a colli-

sion test is performed to judge (accept or reject) the corresponding sample.
After the initialization, the algorithm starts to generate a random sample qrand in the

configuration space C (Step 3). The conventional RRT checks if qrand belongs to Cfree
based on a collision detection algorithm. Samples not belonged to Cfree are rejected,
while those which satisfy the collision free condition are considered in Step 5. In case
the sample is rejected, the algorithm processes the next iterations till it finds a feasible
path. Hence, the collision free condition is satisfied if and only if qrand belongs to Cfree
and the edge that links qrand to the previous sample qnear (which belong to the mother
tree) is not colliding with any existing obstacle (Cobs). By modifying locally this condi-
tion, the RRS trays to rescue the current sample, to not be rejected, by creating a set of
new samples based on the deformable Snakes contour in Cfree circumnavigating close
obstacles safely.

 (a) (b) (c) (d)

Fig. 1. A simplified probabilistic model of the robot motion and obstacles uncertainties, (a)

Envelope of the robot performing rotation and translation, (b) Distance sensor uncertainties,

(c) Obstacles and path primitives that define the Image data I, (d) Collisions risk zones.

RRS Algorithm

Input: Initial and final configurations qinit and qfin, maximum number of samples K, incremental distance ∆q.

Outputs: RRS graph G,
1. Ginit (qinit)
2. for k = 1 to K
3. qrand ← RAND_CONF()
4. qnear ← NEAREST_VERTEX(qrand, G)
5. qnew ← NEW_CONF(qnear, ∆q)
 Create initial curve CVinit (qnear, qnew)
 if CVinit(qnear, qnew) lies in Cfree
 * G.add_vertex(qnew)
 * G.add_curve(CVinit)
 else
6. * Snakes curve deformation process (CVnew =v(s))
7. if CVnew lies in Cfree
 * G.add_vertex(qnew)
 * G.add_curve(CVnew)
 end if
 end if
 end for

8. return G

Therefore, in step 6 the local Snakes contour starts with an initial curve CVinit(qnear,

qnew) derived from the edge connecting qnew and qnear. After the deformation, CVinit
becomes CVnew= v(s) where the new deformed curve will be accepted if it belongs to
Cfree (step 7). Hence, the sample rejected by the classical RRT is recovered. However,
the mother tree becomes a function of samples (nodes) and Snakes curves instead of
edges. It is worth to mention that the Snake algorithm uses terms of the external and
internal energies, defined above and detailed in [10] to deform curves generated by the
RRT basic algorithm. While, it uses the optimization energy to reduce curves bands of
the path. Fig. 2 shows an example of a deformation process of a collided edge (links
nodes i-1 and i) as an output of our modified Snakes algorithm. The blue color zone
represents the external force generated around obstacles, while the green color is the
deformation of the Snakes contour.

4 Simulations

In this section we present the evaluation schema used in the simulation analysis.

We considered four different environments to evaluate the performance of RRT and

RRS (Fig.2). The first one, named Maze-like and it contains a very reduced number of

Fig. 2. Integration of deformable Snakes contours into RRT tree.

obstacles, the second has a low number of obstacles (17 obstacles), the third is rather

complicated with a high number of obstacles (48 obstacles), the fourth environment

have high number of obstacles (potentially cluttered and with potential deadlocks).

The obstacles number of this environment varies from 50 to 80 and those obstacles

are placed randomly. Moreover, in this environment Sinit and Sgoal are randomly gener-

ated.
Similar to [17] we evaluate the performance of both algorithms (Fig.4), according

to an interval of incremental distance ∆q varying from 30cm to 150cm for each envi-
ronment. Parameters of evaluation are detailed bellow (the average of all parameters is
calculated over 100 trials).

 Percentage of the accepted samples: the ratio of the number of accepted samples

to the number of generated samples;

 Cost: the maximal number of iterations to find a solution;

 Percentage of the completeness probability (convergence): a metric that quanti-

fy how much the algorithm is capable to find at least one solution;

 Optimality: the average of path length;

 Time of convergence: time needed to find the solution as the average of ∆q;

 Safety: estimated by the minimum distance from obstacles, as the average of ∆q.

Both algorithms have the same test conditions. However, during the random envi-

ronment evaluation Sinit and Sgoal are generated randomly. Conditions are cited bellow:

 We consider a solution is accepted if and only if the returned path links Sinit and

Sgoal without occurring any collision with the environment.

 If the condition above is not satisfied, we allow both algorithms to reach the max

iterations number (5000).

 To minimize the effect of chance, we run each algorithm 100 test.

 (a) (b) (c) (d)

Fig. 4. Simulation Environments, (a) Maze-like (3m*3m), (b) Low dense obstacle (4m*3m),

(c) High dense obstacles (7m*4m), (d) A sample of random obstacles (7m*4m).

Fig. 3. Simulation parameters used to evaluate RSS and RRT.

5 Results and Discussion

In this section we present the results of the RRT and RRS evaluation. Basically this

evaluation is for objective to validate the effectiveness of the proposed algorithm. We

compare both algorithms' performances according to each test environments.

Fig. 5 presents a comparison between the RRT and RRS according to a set of in-

cremental distance ∆q in Maze-like environment. In Fig.4(a) we can see clearly the
high performances of RRS compared to RRT in term of accepted samples, e.g. at 30cm
of ∆q the RRS reaches a percentage of 65% while at the same ∆q the RRT remains
below the 50%. However the overall accepted samples performance decreases when
the ∆q increases. In the same figure the RRS uses less number of iterations to find a
solution, it is around 8% from 30cm to 100cm of ∆q, while the percentage is double for
the RRT; moreover, it increases dramatically in the remaining ∆q interval. E.g. at ∆q =
65cm the RRS needs 262 iterations (5.32%) while the RRT needs 478 iteration
(9.56%).

In term of convergence, the RRS converges in all trials at almost all ∆q intervals
except at some values from 105cm to 150cm which remains higher than 96%. Howev-
er the RRT dropped down till 70% at some lengths. Since the environment allows the
passage through, only, one way there is no much differences in term of path length,
however the RRS returns, slightly, better solutions.

The results of the Low Dense Obstacles environment are presented in Fig. 6. This

environment is low encumbered by obstacles. The RRS performs better in term of

acceptance samples ratio, which is around 67.07%, and it keeps a value greater than

(a) (b) (c) (d)

Fig. 6. Comparison between RRT and RRS in Low Dense Obstacles environment, (a) Percent-

age of accepted samples,(b) Percentage of the max number of iterations to find a solution, (d)

The percentage of convergences, (c) Length of the path.

(a) (b) (c) (d)

Fig. 5. Comparison between RRT and RRS in Maze-like environment, (a) Percentage of accept-

ed samples,(b) Percentage of the max number of iterations to find a solution, (c) The percentage

of convergences, (d) Length of the path.

50% during the whole ∆q interval. However, the best percentage for RRT is 18.8%.

Also there are some difficulties for the RRT to converge in all tests (dropped down

from 100% to 5% in the last half of ∆q interval) while the RRS succeeded to find a

solution in all tests (100%). The average of the maximum number of iterations needed

to find a solution by RRS was much less than the one of RRT (average percentage at

all ∆q interval is 2% for RRS, and 52% for RRT). Also solutions given by RRS are

shorter; the average of the length path for all ∆q values is 732.75cm and 554.98cm for

RRT and RRS respectively.

Now we add more challenging conditions by increase the number of obstacles (Fig.

5(c)) as well as the environment size. Always, the RRS presents better performances

in all compared parameters (Fig. 7). The accepted samples percentage of the RRS

algorithm is more than 50%, while the best value is 13.24% for RRT (at ∆q = 30cm).

The maximum number of iterations needed to find a solution is small and it is varying

from 3.42% (171) to 18.45% (922) for RRS, and from 41.98% (2099) to 99.56%

(4978) for RRT. For a higher ∆q, RRT uses almost all the available iterations (5000).

Within this environment we can see a large difference between RRS and RRT per-

formances in term of convergence percentage, where RRS seems stable (97% to 100%)
during the whole ∆q

interval, while RRT dropped down dramatically after ∆q = 65cm

till 1%. Moreover, the RRS algorithm presents good results in term of path-length
considering the average at all ∆q values; the RRS has 1086.85cm as best solution
where the RRT has 1228.83cm

In the 4

th
 environment, we keep the same size, however we increase the number of

obstacles (vary 50 to 80) and we set the Sinit and Sgoal randomly over each trial. Since

(a) (b) (c) (d)

Fig. 8. Random Environment with random Sstart and Sgoal, (a) Percentage of Accepted Sam-

ples,(b) Percentage of the max number of iterations to find a solution, (c) The percentage of the

Convergences, (d) Length of the path.

 (a) (b) (c) (d)

Fig. 7. High Dense Obstacles Environment, (a) Percentage of accepted samples,(b)

Percentage of the max number of iterations to find a solution, (c) The percentage of

convergences, (d) Length of the path.

this environment is potentially cluttered, it can be very challenging for both algo-

rithms.

Regarding the obtained results (Fig. 8), more or less, we have the same reading of

the accepted samples percentage where RRS is always higher. At some ∆q is more

than 40% however is less than 5% for RRT. For the maximum number of the iteration

percentage is almost less than 70% at all q values (except the first values) while is

more than 70% for RRT. Comparing with the previous environment this percentage

might show the level of complexity that this environment has. The convergence per-

centage is very stable for RRS (75% to 82%) however is much less for RRT (<44%).

RRS provide better solution in term of path length and it is stable with all ∆q values.

Fig.9 shows the average of the safety distance and the time of convergence respec-

tively. It is noticeable that the proposed algorithm enhances RRT in term of safety and

speed up the process of convergence.

6 Real Experiment

In this section we present an experimental scenario of a Khepera robot following

two path solutions (selected randomly from 100 trials) of RRS and RRT in a simple

environment of 500cm by 200cm. The robot is equipped with a Hokuyo URG-04LX-

UG01 Laser Range Finder and running on-board localization module (developed in

our laboratory). This scenario shows the safety of RRS path compared to RRT one.

Fig.10 represents both the generated and the real path of the robot. It is obvious that

the real path of RRS is much safer than the RRT path; as we can see in the RRT path

the robot is very close to obstacles in 4 areas (even after smoothing its original path).

 (a) (b)

Fig. 9. Safety distance and time w.r.t each environment, (a) Average of the

safety distance, (b) Average of the minimum time needed to find a solution

7 Conclusion

In this paper we proposed a new variant of the RRT algorithm named Rapidly explor-

ing Random Snakes (RRS). The proposed approach combines the RRT and a modi-

fied Active Contour Model (Snakes). This later was modified to cope with path plan-

ning issues. The RRT probes the environment in a relaxed way, while the Snakes

adjusts the candidate paths following three goals: guarantying safety, increasing the

probability of accepting samples and shortening the path. Our method performs well

in all environments of tests, in comparison to the classical RRT algorithm. Indeed, we

demonstrated how the local deformations of RRS's rigid edges, generated by the

Snakes, enhance its capabilities of the original sampling algorithm and converge in

almost all cases and with less number of iterations. Moreover, the retuned solution is

optimized in terms of traveled distance regarding the RRT solutions.

Our future works are focusing on kinematic issues. Indeed, we are integrating non-

holonomic constraints and more DOF’s to allow handling more robots, including

mobile manipulators for real time and real life scenarios with unknown and challeng-

ing environments.

Acknowledgment

This research received funding from the European Community’s 7th Framework

Programme under grant agreement n. 287617 (IP project ARCAS - Aerial Robotics

Cooperative Assembly System).

References

1. LaValle, S. M., Planning algorithms. University of Illinois 1999–2004.

2. J.C. Latombe, “Robot Motion Planning”, Norwell, MA: Kluwer, 1991.

3. B. Chazelle. Approximation and decomposition of shapes. In J. T. Schwartz and C. K.

Yap, editors, Algorithmic and Geometric Aspects of Robotics, pages 145-185. Lawrence

Erlbaum Associates, Hillsdale, NJ, 1987.

 (a) (b) (c) (d)

Fig. 10. Two examples of robot path following, (a) A smoothed RRT solution and the real

robot trajectory, (b) A snapshot of the real robot following the RRT path, (c) RRS solution and

the real robot trajectory, (d) A snapshot of the real robot following the RRS path.

4. Kuffner, J.J.; LaValle, S.M., "RRT-connect: An efficient approach to single-query path

planning," IEEE International Conference on Robotics and Automation, vol.2, no., pp.995-

1001, 2000.

5. Ryad Chellali, Emmanuel Bernier, Khelifa Baizid, Mohamed Zaoui, "Interface for Multi-

robots Based Video Coverage", International Conference on Human-Computer Interac-

tion, Vol.6769, 2011, pp 203-210.

6. R. Pepy and M. Kieffer and E. Walter, “Reliably Safe Path Planning Using Interval Analy-

sis”, Progress in Industrial Mathematics at ECMI 2008, Mathematics in Industry 2010, pp

583-588.

7. Karaman, S., Frazzoli, E.: Sampling-based Algorithms for Optimal Motion Planning.

IJRR 30(7), 846–894, 2011.

8. Bry, A.; Roy, N., "Rapidly-exploring Random Belief Trees for motion planning under un-

certainty," Robotics and Automation (ICRA), 2011 IEEE International Conference on ,

vol., no., pp.723,730, 9-13 May 2011.

9. Garcia, I.; How, J.P., "Improving the Efficiency of Rapidly-exploring Random Trees Us-

ing a Potential Function Planner," 44th IEEE Conference on Decision and Control and Eu-

ropean Control Conference, vol., no., pp.7965,7970, 12-15 Dec. 2005.

10. M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active contour models", Int. J. Com-

puter Vision, vol. 1, pp.321 -331 1988.

11. Khatib, O., "Real-time obstacle avoidance for manipulators and mobile robots," Interna-

tional Conference on Robotics and Automation. Proceedings., vol.2, no., pp.500,505, Mar

1985.

12. Warren, C.W., "Global path planning using artificial potential fields," International Con-

ference on Robotics and Automation, 1989. Proceedings., , vol., no., pp.316,321 vol.1, 14-

19 May 1989.

13. Bhattacharya, P.; Gavrilova, M.L., "Roadmap-Based Path Planning - Using the Voronoi

Diagram for a Clearance-Based Shortest Path," Robotics & Automation Magazine, IEEE ,

vol.15, no.2, pp.58,66, June 2008.

14. Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. 2008.

Computational Geometry: Algorithms and Applications, TELOS, Santa Clara, CA, USA.

15. Kavraki, L.E.; Svestka, P.; Latombe, J.-C.; Overmars, M.H., "Probabilistic roadmaps for

path planning in high-dimensional configuration spaces," IEEE Transactions on Robotics

and Automation, vol.12, no.4, pp.566,580, Aug 1996.

16. S. M. Lavalle and J. J. Kuffer, "Rapidly-exploring Random Trees: Progress and prospects",

Workshop on the Algorithmic Foundations of Robotics, 2000.

17. Burns, B.; Brock, O., "Single-Query Motion Planning with Utility-Guided Random Trees,"

International Conference on Robotics and Automation, , vol., no., pp.3307,3312, 10-14

April 2007.

18. Akgun, B.; Stilman, M., "Sampling heuristics for optimal motion planning in high dimen-

sions," International Conference on Intelligent Robots and Systems (IROS), , vol., no.,

pp.2640,2645, 25-30 Sept. 2011.

19. Samuel Rodriguez, Xinyu Tang, Jyh-Ming Lien and Nancy M. Amato, "An Obstacle-Based

Rapidly-Exploring Random Tree," Proceedings of the 2006 IEEE International Confer-

ence on Robotics and Automation, vol. pp.895-900, Orlando, Florida - May 2006.

20. Chenyang Xu; Prince, J.L., "Snakes, shapes, and gradient vector flow," IEEE Transactions

on Image Processing, vol.7, no.3, pp.359,369, Mar 1998.

21. Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT press.

22. Khelifa Baizid, PhD thesis (2011) "Multi-robots Tele-operation Platform: Design and Ex-

periments" Italian Institute of Technology & University of Genova, Italy.

http://link.springer.com/search?facet-author=%22Ryad+Chellali%22
http://link.springer.com/search?facet-author=%22Emmanuel+Bernier%22
http://link.springer.com/search?facet-author=%22Khelifa+Baizid%22
http://link.springer.com/search?facet-author=%22Mohamed+Zaoui%22

