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Abstract. Recently, sampling-based path planning algorithms have been im-

plemented in many practical robotics tasks. However, little improvements have 

been dedicated to the returned solution (quality) and sampling process. The aim 

of this paper is to introduce a new technique that improves the classical Rapid-

ly-exploring Random Trees (RRT) algorithm. First, the sampling step is modi-

fied in order to increase the number of possible solutions in the free space. Se-

cond, within the possible solutions, we apply an optimization scheme that gives 

the best solution in term of safety and shortness. The proposed solution, name-

ly, Rapidly-exploring Random Snakes (RRS) is a combination of a modified 

deformable Active Contours Model (called Snakes) and the RRT. The RRS 

takes the advantage of both RRT and deformable Snakes contours, respectively, 

in: rapidly searching new candidate nodes in the free space and circumnavi-

gating obstacles by calculating a safe sub-path in the free space towards the new 

node created by the RRT. In comparison to the classical RRT, the proposed al-

gorithm increases the probability of completeness, accelerates the convergence 

and generates a much safer and shorter open-loop solution, hence, increasing 

considerably the efficiency of the classical RRT. The proposed approach has 

been validated via numerical simulations and experimental results with a mo-

bile robot. 
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1 INTRODUCTION 

Robotic path planning problem has received a considerable amount of attention over 

the last years, where applications involving real robots have increased dramatically 

[1], [2]. The main goal is to drive robots from Initial to Final locations without collid-

ing with any obstacle (safety condition) in a minimum time. Such algorithms are said 

efficient if they are able to find a solution in any complex and cluttered environments. 

Moreover, the computational effort in this finding should be bounded, e.g. the algo-

rithm provides at least one path (if it exists) in a finite amount of time (completeness). 

Cell decomposition [3] and visibility roadmaps [1] are known to guarantee the com-

pleteness. However, in practice these algorithms are computationally expensive. 



More recently, the Sampling-based Motion Planning (SMP) has been introduced 
[1] and became very popular. The main advantage of this algorithm is to rely on ran-
dom exploration to avoid visiting the whole working environment in order to derive an 
acceptable solution. The SMP probes the configuration space following an incremental 
sampling scheme, and uses a collision detector to find feasible paths. The samples not 
verifying the collision-free conditions are not considered and the sampling process 
continues till a solution is found. One of the SMP is the Rapidly exploring Random 
Trees (RRT) [1], which generates random samples called Nodes and builds a Tree from 
the Start to the Goal locations. Numerous variants of this algorithm have been intro-
duced and developed to improve its performances in solving different path planning 
problems, e.g. [4][5],[6],[7],[8],[9]. Unfortunately, some of these algorithms can only 
guarantee asymptotic completeness and no upper bound for the time-to-solution can be 
known a priori. On the other hand, the generated paths are not optimal in length neither 
in safety.   

In this paper we propose a new RRT extension, called the Rapidly-exploring Ran-
dom Snakes (RRS). Our RSS is based on the combination of the classical SMP togeth-
er with a modified Deformable Active Contours Model (known also as Snakes [10]), 
where the later refining the obstacle avoidance process (To the best of our knowledge 
no similar work has been proposed combining deformable Snakes with SMP methods). 
The main idea in this contribution is to increase the number of accepted samples in the 
free space

 
by circumnavigating locally closest obstacles by applying a deformation 

process to the edges not satisfying the RRT free conditions. This combination leads to 
near-optimal path in terms of length, number of probes and safety. Indeed, the number 
of feasible paths is increased for the same computational effort, allowing more opera-
tions towards improving the safety and reducing the lengths of the possible trajectories. 
Moreover, we show trough simulation results that the proposed algorithm maximize 
the probability of finding solution (hereafter it is called the probabilities completeness) 
compared to classical procedures with less computational efforts. 

This paper is organized as follows; we give, first, related to path planning. In the 

second part, we describe the proposed algorithm and its performances compared to 

the classical RRT algorithm. We finish by a conclusion and future works. 

2 Related works 

The fundamental issue in mobile robotics path planning is to drive the system, robust-

ly, from a known initial state Sinit to a final state Sgoal through a feasible trajectory 

within a known environment. Any solution P must fulfill two main conditions: 1) P is 

safe by minimizing the risk of colliding with obstacles, 2) P is a short path by mini-

mizing the traveled distance. For cluttered and complex environments, finding P is 

known to be hard and subject to deadlock situations. Basically, such issue is ad-

dressed in four different classes of path planning approaches: Cell decomposition 

[7],[8], Potential field [11],[12], Probabilistic algorithms [13],[14] and Sampling 

methods [1],[2]. For brevity hereafter we give reference to Sampling methods, which 

are much related to our contribution. 

Sampling based algorithms, avoid the explicit characterization of Cobs and Cfree by 

probing the configuration space C with a sampling schema, followed by a collision 



detection phase. Clearly, the whole map is not visited and only randomly generated 

steps within Cfree are considered. Probabilistic Roadmaps [15] and RRT [16], intro-

duced since 2001 are the most popular sampling based algorithms. Basically, a point 

in the space C is randomly chosen and a free-collision test is performed. For positive 

answers, the nearest point in the tree is connected to this candidate. In addition to the 

advantages cited earlier, the RRT algorithm performs simultaneously the classical 

preprocessing and searching steps, which makes it well adapted for real-time execu-

tions to handle sensory uncertainties. The Box-RRT was proposed by Pepy et al in [6] 

to deal with such uncertainties.  

In general, RRT-like based algorithms are only implemented to find a possible 

path, efficiently, without considering the inherent costs. Recently, a new variant of 

sampling methods based on random tree expansion strategy has been presented in 

[17]. Mainly an utility-guided algorithm guides expansion towards regions having 

higher utility based on local information of the environment. Another method called 

RRT* has been proposed in [7] to improve the returned solution and the internal pro-

cess by increasing the number of samples and reducing the computational costs. Re-

garding to limitations of this method in high dimensional space a heuristics method 

was proposed in [18] to improve the initial path and decrease iteratively the computa-

tional efforts. Also,  the an Obstacle-Based RRT (OBRRT) was proposed in [19]. 

To handle such issues, we investigated a new formulation of the basic RRT. Like 

in the classical RRT algorithm, first we generate a random sample qrand. In addition 

we consider the local effects of obstacles to create a local deformation process of the 

edge to connect the new candidate qrand to the mother tree. This process uses a modi-

fied Snakes algorithm to circumnavigate dynamically the closest obstacles. Further-

more, it handles the safety issues and adds a supplementary constraint to minimize the 

length of the obtained sub-segment. We intend to extend the sampling searching strat-

egy by giving it the possibility of accepting more samples, which are considered un-

reachable by the classical RRT. This increases the probability of completeness and 

minimizes the number of iterations. 

3 Rapidly exploring Random Snakes (RRS) 

The RRS combines the classical RRT and a modified Snakes algorithm in order to 

increase the number of samples which leads to increase the probability of complete-

ness, accelerate the convergence and generate a safer and shorter paths. Hence, its aim 

is to increase the efficiency of the RRT basic algorithm. 

3.1 Applying Active Contour Model for Safe Path Planning 

Snakes algorithm was proposed initially for object boundaries detection in Computer 

Vision [10] and is used in several applications as, for example, [20]. Mainly, it de-

forms closed loop contour under the effects of forces (energy minimization process) 

derived from image grey levels or colors. This contour moves under the influence of 

internal forces coming from the contour itself and external forces computed from the 



data of the image, towards equipotential zones of this last. This allows the contour to 

matches the object boundaries. In our method, this concept is modified to cope with 

the path generation and obstacle avoidance: it allows to circumnavigate obstacles 

keeping a safe distance from them even in cluttered environments.  

The proposed Snakes algorithm calculates the energy model (Eq.1) based on the 

obstacles and the robot path projected on a bright image, which its size represents the 

environment boundaries. Similar to original Snakes model, and based on the energy 

minimization concept, the contour is subjected to the influence of the environment 

and the internal forces of the contour itself. The external forces push the contour far 

from zones having higher collision risk probability (high potential field), the internal 

forces ensure the connectivity and maximize the smoothness of the contour, while the 

optimization force reduces curves bands. Assuming that the path parameters (contour) 

are given by: ))(),(()( sysxsv  . The Snakes energy is defined as follow: 
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where, EInt represents the internal energy of the contour (path), EExt represents the 

external energy of the contour, ECon represents the external force constraints (which is 

not considered in our case) and EOpt represents the energy to optimize the contour 

(stretching the path).  The internal energy is defined as follow:   

         2)(
22
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where the first part (function of  ) of the equation makes the contour act like a 

membrane and the second part (function of  ) makes it act like a thin plate. We mod-

ified the external energy EExt to be repulsive as defined bellow: 
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where Gσ    is a two-dimensional Gaussian function with standard deviation sigma 

 is the gradient operator and I represents the image data (for a complete review 

regarding the Snakes model please see [10]). The Optimization energy is defined as:   
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where  snf


* ,  sn
  represents the normal unitary vector of the curve at 

points v(s) and γ  is a weight; for a large value of γ the curve converges toward a 
straight line very quickly. 

To insure the feasibility of the path, the original RRT algorithm generates a "new 

sample" using a normal distribution where all robots' directions are with equal proba-

bility. This may interfere with the consideration of the robot motions anisotropy (the 

rotation and translation errors). Indeed, the errors in executing rotations and transla-

tions are not uniform. There are many ways to model the uncertainties produced by 

motions and sensors [21]. In our case, we construct a local function to describe the 



probability for the robot to pass by the position (x, y)i while performing a motion step 

(∆trans, ∆α). This function is obtained as the combination of two Gaussians, respec-

tively the translation and the rotation ones (Fig. 1 (a)).  

Likewise and due to the sensing errors, obstacles are transformed into probability 

distributions of being at the expected positions (Fig. 1 (b)).  The product of the motion 

distributions and the sensing ones leads to a landscape representing the probability for 

the robot to hit an obstacle (risk zones in Fig 1.(d)).  

Authors in [21] provide a complete review regarding to motion uncertainties. For 

brevity our method is very simplified. Moreover, an experimental study was per-

formed to model motion and sensor uncertainties using Snakes algorithm in [22]. 

3.2 Active Contour Model for Safe Path Planning 

 
Fig. 1 shows an example of the modified Snakes model applied to the whole path 

generated by RRT (not to the generated samples in real-time as designed for). The 

green dashed path in Fig. 2(d) represents the deformed segments, of the original RRT 

path (close to the two risk zones found). 

3.3 Sampling Active Contour Model: the RRS-Core 

RSS builds a random tree similar to RRT algorithm, however, instead of taking the 

decision about invalid samples (accept or reject) it creates a local deformable Snakes 

contour derived from the curve that links the corresponding sample to the mother tree. 

This contour is expected to circumnavigate local obstacles safely. To this end, a colli-

sion test is performed to judge (accept or reject) the corresponding sample.  
After the initialization, the algorithm starts to generate a random sample qrand in the 

configuration space C (Step 3). The conventional RRT checks if qrand belongs to Cfree 
based on a collision detection algorithm. Samples not belonged to Cfree are rejected, 
while those which satisfy the collision free condition are considered in Step 5. In case 
the sample is rejected, the algorithm processes the next iterations till it finds a feasible 
path. Hence, the collision free condition is satisfied if and only if qrand belongs to Cfree 
and the edge that links qrand to the previous sample qnear (which belong to the mother 
tree) is not colliding with any existing obstacle (Cobs). By modifying locally this condi-
tion, the RRS trays to rescue the current sample, to not be rejected, by creating a set of 
new samples based on the deformable Snakes contour in Cfree circumnavigating close 
obstacles safely. 

                 
 (a)                         (b)                             (c)                                 (d) 

Fig. 1. A simplified probabilistic model of the robot motion and obstacles uncertainties, (a) 

Envelope of the robot performing rotation and translation, (b) Distance sensor uncertainties, 

(c) Obstacles and path primitives that define the Image data I, (d) Collisions risk zones. 

 

 

 

 

 



RRS Algorithm 

Input: Initial and final configurations qinit and qfin, maximum number of samples K, incremental distance ∆q. 

Outputs: RRS graph G,  
1.    Ginit (qinit) 
2.    for k = 1 to K 
3.          qrand ← RAND_CONF() 
4.          qnear ← NEAREST_VERTEX(qrand, G) 
5.          qnew ← NEW_CONF(qnear, ∆q) 
             Create initial curve CVinit (qnear, qnew ) 
             if CVinit(qnear, qnew) lies in Cfree 
          * G.add_vertex(qnew)  
                           * G.add_curve(CVinit)  
             else 
6.                        * Snakes curve deformation process (CVnew =v(s))  
7.             if CVnew lies in Cfree 
                                   * G.add_vertex(qnew)  
                     * G.add_curve(CVnew)    
                            end if 
            end if 
       end for 

8.    return G 

 

Therefore, in step 6 the local Snakes contour starts with an initial curve CVinit(qnear, 

qnew) derived from the edge connecting qnew and qnear. After the deformation, CVinit 
becomes CVnew= v(s) where the new deformed curve will be accepted if it belongs to 
Cfree (step 7). Hence, the sample rejected by the classical RRT is recovered. However, 
the mother tree becomes a function of samples (nodes) and Snakes curves instead of 
edges. It is worth to mention that the Snake algorithm uses terms of the external and 
internal energies, defined above and detailed in [10] to deform curves generated by the 
RRT basic algorithm. While, it uses the optimization energy to reduce curves bands of 
the path. Fig. 2 shows an example of a deformation process of a collided edge (links 
nodes i-1 and i) as an output of our modified Snakes algorithm. The blue color zone 
represents the external force generated around obstacles, while the green color is the 
deformation of the Snakes contour. 

 

4 Simulations 

In this section we present the evaluation schema used in the simulation analysis. 

We considered four different environments to evaluate the performance of RRT and 

RRS (Fig.2). The first one, named Maze-like and it contains a very reduced number of 

      

Fig. 2. Integration of deformable Snakes contours into RRT tree. 



obstacles, the second has a low number of obstacles (17 obstacles), the third is rather 

complicated with a high number of obstacles (48 obstacles), the fourth environment 

have high number of obstacles (potentially cluttered and with potential deadlocks). 

The obstacles number of this environment varies from 50 to 80 and those obstacles 

are placed randomly. Moreover, in this environment Sinit and Sgoal are randomly gener-

ated. 
Similar to [17] we evaluate the performance of both algorithms (Fig.4), according 

to an interval of incremental distance ∆q varying from 30cm to 150cm for each envi-
ronment. Parameters of evaluation are detailed bellow (the average of all parameters is 
calculated over 100 trials). 

 Percentage of the accepted samples:  the ratio of the number of accepted samples 

to the number of generated samples;  

 Cost: the maximal number of iterations to find a solution; 

 Percentage of the completeness probability (convergence):  a metric that quanti-

fy how much the algorithm is capable to find at least one solution; 

 Optimality: the average of path length; 

 Time of convergence: time needed to find the solution as the average of ∆q; 

 Safety: estimated by the minimum distance from obstacles, as the average of ∆q. 

 
Both algorithms have the same test conditions. However,  during the random envi-

ronment evaluation Sinit and Sgoal are generated randomly. Conditions are cited bellow: 

 We consider a solution is accepted if and only if the returned path links Sinit and 

Sgoal without occurring any collision with the environment.   

 If the condition above is not satisfied, we allow both algorithms to reach the max 

iterations number (5000). 

 To minimize the effect of chance, we run each algorithm 100 test. 

 

 

 
             (a)                              (b)                          (c)                            (d) 

Fig. 4. Simulation Environments, (a) Maze-like (3m*3m), (b) Low dense obstacle (4m*3m), 

(c) High dense obstacles (7m*4m), (d) A sample of random obstacles (7m*4m). 

 

 

Fig. 3.    Simulation parameters used to evaluate RSS and RRT. 



5 Results and Discussion 

In this section we present the results of the RRT and RRS evaluation. Basically this 

evaluation is for objective to validate the effectiveness of the proposed algorithm. We 

compare both algorithms' performances according to each test environments. 

 

 
Fig. 5 presents a comparison between the RRT and RRS according to a set of in-

cremental distance ∆q in Maze-like environment. In Fig.4(a) we can see clearly the 
high performances of RRS compared to RRT in term of accepted samples, e.g. at 30cm 
of ∆q the RRS reaches a percentage of 65% while at the same ∆q the RRT remains 
below the 50%. However the overall accepted samples performance decreases when 
the ∆q increases. In the same figure the RRS uses less number of iterations to find a 
solution, it is around 8% from 30cm to 100cm of ∆q, while the percentage is double for 
the RRT; moreover, it increases dramatically in the remaining ∆q interval. E.g. at ∆q = 
65cm the RRS needs 262 iterations (5.32%) while the RRT needs 478 iteration 
(9.56%). 

In term of convergence, the RRS converges in all trials at almost all ∆q intervals 
except at some values from 105cm to 150cm which remains higher than 96%. Howev-
er the RRT dropped down till 70% at some lengths. Since the environment allows the 
passage through, only, one way there is no much differences in term of path length, 
however the RRS returns, slightly, better solutions. 

 

 
The results of the Low Dense Obstacles environment are presented in Fig. 6. This 

environment is low encumbered by obstacles. The RRS performs better in term of 

acceptance samples ratio, which is around 67.07%, and it keeps a value greater than 

 
(a)                                 (b)                                  (c)                                  (d) 

Fig. 6. Comparison between RRT and RRS in Low Dense Obstacles environment, (a) Percent-

age of accepted samples,(b) Percentage of the max number of iterations to find a solution, (d) 

The percentage of convergences, (c) Length of the path. 

 

 
(a)                             (b)                            (c)                              (d) 

Fig. 5. Comparison between RRT and RRS in Maze-like environment, (a) Percentage of accept-

ed samples,(b) Percentage of the max number of iterations to find a solution, (c) The percentage 

of convergences, (d) Length of the path. 



50% during the whole ∆q interval. However, the best percentage for RRT is 18.8%. 

Also there are some difficulties for the RRT to converge in all tests (dropped down 

from 100% to 5% in the last half of ∆q interval) while the RRS succeeded to find a 

solution in all tests (100%). The average of the maximum number of iterations needed 

to find a solution by RRS was much less than the one of RRT (average percentage at 

all ∆q interval is 2% for RRS, and 52% for RRT). Also solutions given by RRS are 

shorter; the average of the length path for all ∆q values is 732.75cm and 554.98cm for 

RRT and RRS respectively. 

Now we add more challenging conditions by increase the number of obstacles (Fig. 

5(c)) as well as the environment size. Always, the RRS presents better performances 

in all compared parameters (Fig. 7). The accepted samples percentage of the RRS 

algorithm is more than 50%, while the best value is 13.24% for RRT (at ∆q = 30cm). 

The maximum number of iterations needed to find a solution is small and it is varying 

from 3.42% (171) to 18.45% (922) for RRS, and from 41.98% (2099) to 99.56% 

(4978) for RRT. For a higher ∆q, RRT uses almost all the available iterations (5000). 

 

 
Within this environment we can see a large difference between RRS and RRT per-

formances in term of convergence percentage, where RRS seems stable (97% to 100%) 
during the whole ∆q

 
interval, while RRT dropped down dramatically after ∆q = 65cm 

till 1%. Moreover, the RRS algorithm presents good results in term of path-length 
considering the average at all ∆q values; the RRS has 1086.85cm as best solution 
where the RRT has 1228.83cm 

 

 
In the 4

th
 environment, we keep the same size, however we increase the number of 

obstacles (vary 50 to 80) and we set the Sinit and Sgoal randomly over each trial. Since 

         
(a)                          (b)                               (c)                         (d) 

Fig. 8.      Random Environment with random Sstart and Sgoal, (a) Percentage of Accepted Sam-

ples,(b) Percentage of the max number of iterations to find a solution, (c) The percentage of the 

Convergences, (d) Length of the path. 

 
                (a)                            (b)                               (c)                              (d) 

Fig. 7. High Dense Obstacles Environment, (a) Percentage of accepted samples,(b) 

Percentage of the max number of iterations to find a solution, (c) The percentage of 

convergences, (d) Length of the path. 



this environment is potentially cluttered, it can be very challenging for both algo-

rithms. 

Regarding the obtained results (Fig. 8), more or less, we have the same reading of 

the accepted samples percentage where RRS is always higher. At some ∆q is more 

than 40% however is less than 5% for RRT. For the maximum number of the iteration 

percentage is almost less than 70% at all q values (except the first values) while is 

more than 70% for RRT. Comparing with the previous environment this percentage 

might show the level of complexity that this environment has. The convergence per-

centage is very stable for RRS (75% to 82%) however is much less for RRT (<44%). 

RRS provide better solution in term of path length and it is stable with all ∆q values. 

 

 
Fig.9 shows the average of the safety distance and the time of convergence respec-

tively. It is noticeable that the proposed algorithm enhances RRT in term of safety and 

speed up the process of convergence. 

6 Real Experiment 

In this section we present an experimental scenario of a Khepera robot following 

two path solutions (selected randomly from 100 trials) of RRS and RRT in a simple 

environment of 500cm by 200cm. The robot is equipped with a Hokuyo URG-04LX-

UG01 Laser Range Finder and running on-board localization module (developed in 

our laboratory). This scenario shows the safety of RRS path compared to RRT one. 

Fig.10 represents both the generated and the real path of the robot. It is obvious that 

the real path of RRS is much safer than the RRT path; as we can see in the RRT path 

the robot is very close to obstacles in 4 areas (even after smoothing its original path). 

 

    
                       (a)                                              (b) 

Fig. 9. Safety distance and time w.r.t each environment, (a) Average of the 

safety distance, (b) Average of the minimum time needed to find a solution 



 

7 Conclusion 

In this paper we proposed a new variant of the RRT algorithm named Rapidly explor-

ing Random Snakes (RRS). The proposed approach combines the RRT and a modi-

fied Active Contour Model (Snakes). This later was modified to cope with path plan-

ning issues. The RRT probes the environment in a relaxed way, while the Snakes 

adjusts the candidate paths following three goals: guarantying safety, increasing the 

probability of accepting samples and shortening the path. Our method performs well 

in all environments of tests, in comparison to the classical RRT algorithm. Indeed, we 

demonstrated how the local deformations of RRS's rigid edges, generated by the 

Snakes, enhance its capabilities of the original sampling algorithm and converge in 

almost all cases and with less number of iterations. Moreover, the retuned solution is 

optimized in terms of traveled distance regarding the RRT solutions. 

Our future works are focusing on kinematic issues. Indeed, we are integrating non-

holonomic constraints and more DOF’s to allow handling more robots, including 

mobile manipulators for real time and real life scenarios with unknown and challeng-

ing environments. 
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