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Abstract. Iterative image reconstruction with accurate acoustic simu-
lation shows promising potential for 3D photoacoustic tomography. To
obtain images of high resolution and quality, the employed acoustic simu-
lation method needs to support a wide frequency spectrum and accurate
models of both the sensors and the heterogeneous acoustic properties of
the tissue. However, in particular simulating a broad frequency spectrum
requires considerable computational resources and time and iterative im-
age reconstruction methods run multiple of such simulations sequentially.
To reconstruct an image of a human breast at a resolution of 0.2mm, the
computations may take from a couple of days to several weeks to finish
even on large CPU clusters. We compare the performance and compu-
tational cost of an iterative image reconstruction method using different
computational grids supporting frequencies up to 0.31, 0.61 and 1.13
MHz corresponding to grid spacings of 0.8, 0.4 and 0.2 mm, respec-
tively. Even though the highest possible resolution is desired, potential
advantages and utilization of the coarser grids are discussed, including
multi-grid approaches that could significantly speed up the reconstruc-
tion process.

Keywords: Photoacoustic tomography · large-scale computing.

1 Introduction

Photoacoustic tomography (PAT) is based on the fact that chromophores in
tissue, such as haemoglobin in veins and tumours, absorb light. Since tissue
is usually highly optically scattering, imaging to high resolution using purely



2 G. Bordovský et al.

optical means is difficult beyond a few optical scattering lengths. However, for
acoustic waves, even up to tens of megahertz, the scattering is considerably lower.
In PAT, the absorbed energy generates an acoustic wave as it thermalises, and
this can be captured by an array of ultrasound sensors surrounding the object.
The goal in PAT image reconstruction is to construct an image from this data
showing the source of the detected ultrasound (US) waves, which will be propor-
tional to the absorbed optical energy density. Therefore PAT combines the high
resolution of ultrasound (hundreds of microns) with the high contrast offered by
optical absorption [4]. Several PAT devices are in development, with a variety
of geometries [6, 5, 2, 8]. Our work concerns bowl-shaped whole-breast scanners
which surround the breast with acoustic sensors, and provide enough data for
a 3D image. To construct a scanner with a fine sensor density - high enough
for sub-millimetre resolution - without losing sensitivity is technologically diffi-
cult. One workaround is to use larger, more sensitive, sensors, and then move
the sensor array to capture multiple measurements/views. We can combine the
measurements and work with a virtual sensor array with much higher sensor den-
sity than we are currently able to construct. This approach brings experimental
challenges such as the prevention or compensation of patient movement.

In our setup, a hemispherical scanner with radius of 10 centimeters is consid-
ered. This scanner employs 512 evenly distributed US detectors to gather the
signal generated by 40 optical fibres outputs providing homogenous illumina-
tion by the laser light. Furthermore, the scanner rotates around the vertical axis
around the breast and scans at 1000 position to provide denser coverage. The
breast will be held in position by a cup which allows all the measurements to be
combined and considered as a single measurement by a scanner with 512,000 US
detectors. The work described in this paper is not limited to this geometry and
will work with different kinds of scanners using similar coverage of the breasts
such as ring arrays or cylindrical scanners.

A huge amount of measured photoacoustic data (tens to hundreds of GB)
is required to produce a detailed 3D breast image with a resolution under 0.5
mm. The 3D image itself using single precision datatype occupies over 2 GB of
memory on 0.2 mm resolution. This represents only one from over 10 matrices
of same size used during the computation and renders use of the computational
graphics cards cumbersome. There are currently no graphic cards available with
sufficient on-board memory to manage such computations.

The image reconstruction used here is a variational, optimization-based, ap-
proach, chosen for its generality and flexibility. An k-space pseudo-spectral time
domain acoustic wave solver is used as the forward model in the optimization
problem, in which the difference between the measured acoustic data recorded
by the scanner and the signal predicted from the reconstructed image is min-
imized [11]. This optimization requires multiple evaluation of this error func-
tional, and therefore many ultrasound simulations. Furthermore, the photoa-
coustic effect generates a broadband spectrum of frequencies with the fine details
of the image carried by high frequencies. Typically, the bandwidth of the gen-
erated signals is wider that the US detector bandwidth, so the simulations have
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to support the full frequency range of the detectors, ie. the computational grid
spacing must be less than half the shortest detectable wavelength. Since the vol-
ume of interest is quite large, tens of centimetres, and the shortest wavelengths of
the order of hundreds of microns, the reconstruction process is computationally
expensive.

In this article, we investigate the trade-off between the quality of the recon-
structed image and the computational cost given by the number of core-hours
used, using simulated data. Aside from the frequency content determining the
minimum spacing of the computational grid, other factors affect the required
resources. One is the technological limit of the parallel I/O system used. The
computational grid has to cover the volume of 20×20×13 cm including both the
scanner and the chest wall above. We computed the reconstruction with three
different grids with spacing between points 0.2 mm, 0.4 mm and 0.8 mm, and
analyzed the artefacts in the resulting images.

2 Photoacoustic Tomography

Wherever the optical energy from the laser is absorbed, it is transformed into
heat which is accompanied by a corresponding increase in pressure. This pres-
sure, called the initial acoustic pressure distribution, p0, then propagates in the
form of an acoustic wave to an array of sensors which record ultrasound signals,
f . This can be written as

f = Ap0 + ε, (1)

where A is the forward operator and ε is noise. A models the physics of acoustic
wave propagation, sampling of the wavefield, and any sensor effects such as fre-
quency and directional response. The aim of photoacoustic image reconstruction
is to estimate p0 given the data f and an approximation of the forward operator
A ≈ A. Eq. (1) could be rewritten as

f = Ap0 + ε̂, (2)

where ε̂ = (A−A)p0 + ε now contains the modelling error as well as the noise.
It has been shown [12] that p0 can be recovered from f in principle so long as
the sensors are placed such that the support of p0 lies in a ‘visible region’. A
point is ‘visible’ when rays passing through it in all directions eventually reach
sensors. For example, the interior of a closed measurement surface is therefore
a visible region, as is the convex hull of a bowl-shaped measurement surface.
When sufficient data has been measured, in this sense, and when A is a good
approximation to A, then the inverse problem of finding a good estimate of p0
from f is well-posed. However, this does not guarantee that there is a simple
algorithm for estimating p0 given f . For instance, linear back-propagation-type
algorithms typically assume that the measurements are made on a surface com-
pletely surrounding supp(p0). Instead, we will formulate the reconstruction as a
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least-squares optimization problem

pimage ∈ argmin
p

{
‖Ap− f‖22

}
(3)

One way to solve Eq. (3) for pimage, is by iterating a gradient descent scheme

p(k+1) = p(k) − ηA∗(Ap(k) − f) (4)

where A∗ is the adjoint operator to A and η is a step-size. The step η ∈ (0, 2/θ)
with θ being the largest singular eigenvalue of the normal operator A∗A ensures
the convergence towards a minimizer (see [3]).

In practice, A may not be a good approximation of A. For example, the
model A may assume that the sound speed is constant everywhere when it
isn’t, or that the sensors are omni-directional or broadband when they aren’t, or
that the measurement surface has a particular geometry when it doesn’t quite.
In addition, the data measured may be insufficient to determine pimage due to
undersampling or the limited aperture problem. Then, Eq. (3) does not have a
unique solution and/or may be ill-conditioned. In such cases, regularizing the
problem by supplying additional a-priori information on the solution can help.
In variational regularization, one amends Eq. (3) by a functional J (p) that
penalizes undesired features of p such as noise-like high frequency components:

pimage = argmin
p

{
‖Ap− f‖22 + βJ (p)

}
, (5)

where β, the regularisation parameter, controls the balance between the empha-
sis put on the data and on the prior. If J (p) is differentiable, the regularised
problem can be solved by adding its gradient to Eq. (4). In the very common
case that it is convex but not differentiable, a more general framework called
proximal gradient descend has to be used [3]

p(k+1) = proxηβJ

{
p(k) − ηA∗(Ap(k) − f)

}
(6)

where the proximal operator proxγJ solves the sub-problem

proxγJ (y) = argmin
x

{
γJ (x) + 1

2‖x− y‖
2
2

}
. (7)

Here, we will only use the prior information that p0 cannot be negative which
follows from physical arguments. Then, the proximal operator becomes a projec-
tion Π+ onto the non-negative reals, RN≥0, and the iteration becomes a projected
gradient descent :

p(k+1) = Π+

{
p(k) − ηA∗(Ap(k) − f)

}
. (8)

An accelerated form of the gradient descent was proposed by Nesterov [9, 3] in
which a combination of the last two image approximations are used as the latest
estimate:

p(k+1) = Π+(y − ηA∗(Ay − f)), y = p(k) +
k − 1

k + 2
(p(k) − p(k−1)). (9)
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Eq. (9) can be rewritten as

p(k+1) = Π+(y − ηA∗Ay + ηA∗f), (10)

where the last term can be pre-computed and the normal operator A∗A can
sometimes be implemented more efficiently as one operator rather than as sep-
arate calls to A and A∗.

Here, the k-Wave toolbox [11] was used to apply both the forward operator
A and its adjoint A∗. The number of computed timesteps, T , was set to ensure
the waves had time to propagate from one corner of the simulation domain to
the opposite corner.

The signals corresponding to the grid points belonging to the scanner surface
are mapped to the individual sensors with a specific position, size and geometry.
These pressure time series were then filtered by the sensor frequency response.
For the adjoint evaluation, the signals were re-ordered in time (see Appendix A
in [1]), then mapped from the individual sensors to the scanner surfaces and the
simulated as an additive pressure source. The pressure field present in the whole
domain after T timesteps is then returned.

3 Reconstruction Setup

The reconstruction requirements are determined by several factors, mainly by
the scanner geometry and the frequency response of the sensors. In our case,
the scanner is a hemispherical US detector array with a radius of 10 cm. Since it
is desired to provide imaging close to the chest wall we add additional 3 cm to
get dimensions 20×20×13 cm. This volume is transformed into a computational
grid with spacing between grid points fulfilling the Nyquist–Shannon sampling
theorem of at least two points per shortest detectable wavelength. This corre-
sponds to the highest frequency which is expected in the tissue and which the
sensors are able to measure. In our case, sensors with 0.5 MHz central frequency
and 100% bandwidth are chosen, sensitive up to 1.13 MHz. To provide at least
two grid points per wavelength in the computational grid representing tissue
with fat (which has the slowest sound speed, 1470 m s−1) we would need the dis-
tance between grid points to be 0.647 mm. Since two points per wavelength are
at the edge of the sampling theorem not all effects of the acoustic wave prop-
agation are accurately represented. Based on an acoustic reconstruction done
in [10] we chose 0.2 mm which is slightly over six points per wavelength. To use
the pseudo-spectral simulation methods on a non-periodic domain we use the
perfectly matched layer constructed by adding a few points on each side of the
grid. Using finer resolution than 0.2 mm should not provide any benefits for PAT
using such sensors.

We compare reconstructions using this native/exact computational grid with
0.2 mm spacing against grids with spacings of 0.4 mm and 0.8 mm. These grids
are not able to cover the full measured frequency range, so the question is how
much this impacts the reconstructed pressure field and how much faster are we
able to obtain an image. To maintain the same CFL number, each grid size
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requires a different number of timesteps to simulate the wave propagation: the
finer the spacing between points, the more timesteps required. Table 1 shows
the dimensions of each grid in terms of the number of grid points, N{x,y,z}, the
number of timesteps Nt, and maximum frequency supported at three grid points
per wavelength, Fmax.

Table 1: Computational grid dimensions in number of points and the maximal
supported frequency considered with six points per wavelength.

Nx, Ny Nz Nt Fmax [MHz]

0.2 mm 1024 672 5220 1.13
0.4 mm 528 350 2616 0.61
0.8 mm 280 192 1320 0.31

One of the challenging parts of the computation is managing the signals
produced by the simulation. The signals are composed of the pressure at the
position of the scanner surface in each timestep. The captured signals can be
represented as a 2D array with one dimension being timesteps Nt and the second
being the number of grid points used to describe the scanner’s hemispherical
sensor array. The memory required to store the captured pressure on the sensor
array is displayed in the Table 2. The signals are then mapped from grid points

Table 2: Memory requirements for signals produced during forward simulation
before mapping to sensors.

Nt # of points Size [GB]

0.2 mm 5220 1 882 836 36.6
0.4 mm 2616 786 395 7.7
0.8 mm 1320 218 487 1.1

to sensors. This mapping is required as the resolution of the reconstruction and
simulations is sub-millimetre but the size of the sensor is larger. In our case,
we model each sensor by a disc with a radius of 3 mm. We use 512 sensors
for 1000 measurements which are then combined into one virtual sensor array
with 512,000 overlapping sensors. The size of the mapped signal is displayed in
Table 3.

The signal mapping from the grid point space to the sensor space is done as
a matrix multiplication with a sparse mapping matrix. The size of the matrix
itself is negligible at a couple of megabytes. Due to insufficient support for sensors
larger than the grid resolution, the signals produced by the simulation have to be
post-processed using sufficient computational resources. The mapping of signals
reduces the required memory footprint 3.6 times for 0.2 mm and a native support
in the simulation binaries could lead to a reduction of output files and therefore
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reduction of I/O operations. On the other hand, for a coarse computational grid,
the mapped signal is more than two times larger and such support could have a
negative effect.

Table 3: Memory requirements for signals mapped on sensors.
Nt # of sensors Size [GB]

0.2 mm 5220 512 000 10
0.4 mm 2616 512 000 5.0
0.8 mm 1320 512 000 2.5

One of the shortcomings of the acoustic solver used is in its implementation
of I/O. Due to the usage of MPI-I/O the size of any dataset is limited by the
number of MPI processes used. As the MPI limits the I/O operations to 2 GB per
process we can compute how many MPI processes are required for the simulation.
The other limitation is the use of the Fast Fourier Transform operating best on
the number of processes with low prime factors. The closest higher power of 2
was therefore used for 0.2 mm simulation. The number of processes used for the
coarser grids is scaled with its spacing dx.

The simulation setup uses one MPI process per CPU. The supercomputer
cluster Salomon was used, equipped with two CPUs per computational node
with a total of 24 cores. The number of core-hours billed for each computation
hour is shown in the last column of the Table 4.

Table 4: Computational requirements given by I/O subsystem.

dx size req. MPI used MPI
core-

hours/hour

0.2 mm 36.6 GB 19 32 768

0.4 mm 7.6 GB 4 16 384

0.8 mm 1.1 GB 1 8 192

4 Measurements

Our reconstruction framework takes measured time series from the scanner as an
input. The series are resampled to match the number of samples of the ultrasound
computational grid (Nt in the Table 1). The adjoint of the resampled signal A∗f
is pre-computed. The reconstruction follows Eq. (10) and after each forward
simulation, A, the signal produced is compared against the resampled measured
signal. The normalized difference of these two signals we call normalized relative
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residuum and it is a metric of convergence of the iterative reconstruction. The
residuum is smaller if the signal generated by p(k) is closer to the measured one.

We evaluated 25 iterations of Eq. (10) and compared the residuum and the
images produced. The workload for each iteration is divided into five parts rep-
resenting the tasks for the supercomputer. These tasks are classified as either
memory intensive, requiring a huge amount of RAM on single node, or compu-
tationally intensive using many computational nodes. The jobs doing simulation
are computationally intensive and use a parallel solver with the computational
requirements described by Table 4. The remaining jobs require more than the
128 GB of memory available on the common computational node of Salomon
supercomputer for native resolution 0.2 mm, and have to employ the fat node
with 3 TB of memory. The table below contains the average time for each work-
load.

Table 5: Time required to process each part of the simulation. Total time for all
25 iterations and the cost of the reconstruction in core–hours.

Workload 0.2 mm 0.4 mm 0.8 mm

Forward preparation 3 min 45 s 1 min 50 s 30 s
Forward simulation 4 h 36 min 1 h 23 min 8 min 15 s
Adjoint preparation 31 min 5 s 16 min 20 s 3 min
Adjoint simulation 4 h 15 min 1 h 24 min 8 min 5 s
Post-processing 4 min 15 s 4 min 45 s 3 min 45 s

Per iteration 9 h 30 min 5 s 3 h 9 min 55 s 21 min 20 s

Per 25 iterations 9.89 d 3.33 d 8.9 h

Price [core-hours] 182 292,48 30 849,12 1708,8

Initially only 25 iterations were computed with each grid. The image recon-
struction for the native resolution required almost ten days of computational
time on dedicated computational resources. In case of shared resources of the
supercomputer, the reconstruction time varied greatly depending on the activity
of other users. The fat node proved to be the bottleneck of our reconstruction as
other users could allocate it fully for up to two days which caused the time per
iteration to extend up to a week. This issue could be prevented in the future by
separating memory-intensive computations manually so they would fit into the
regular computation node.

The convergence of the normalized relative residuum for each grid is displayed
in the Figure 1. The result on the computational grid with spacing 0.2 mm in 25
iterations was similar to the result on 0.4 mm so we ran another 5 iterations to
emphasize its potential to further provide a better result.

From the figure the 0.4 mm grid converges to residuum around 20 % when
0.8 mm around only 70 %. An interesting observation came from the simulation
with native resolution, which achieved the same residuum in 25 iterations as
the 0.4 mm grid. The trend of the residuum suggested the potential to progress
further towards better match with the original signal. Therefore another 5 iter-



Large-scale Photoacoustic Tomography 9

0 5 10 15 20 25 30

Iteration number

10

20

30

40

50

60

70

80

90

100

R
e
la

tiv
e
 r

e
si

d
u
u
m

 [
%

]

0.2 mm

0.4 mm

0.8 mm

Fig. 1: The normalized residuum of the image reconstruction in iteration of the
accelerated gradient descent.

ations were computed to demonstrate the potential. The question of how far is
the native grid able to converge the residuum remains, but due to limited time
and excessive computational requirements this was not pursued.
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Fig. 2: The normalized residuum of the reconstructed image in time correspond-
ing to figure 1 and scaled by the iteration time of each computational grid. The
native grid is cut off for clarity.
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(a) Original (b) 0.2 mm

Fig. 3: Frontal maximum intensity projections on the pressure distribution used
for generating the acoustic signal and the reconstructed picture using 0.2 mm
computational grid.

The convergence of the residuum in time is displayed in Figure 2. (A com-
parison by the total computational cost would look similar to Figure 2.) The
0.4 mm grid takes 3 times less time to reach 20 % residuum and uses half of the
resources. This makes it 6 times cheaper. The grid with the lowest resolution is
then 9 times faster against the 0.4 mm grid, but does not progress below 69 %
of residuum. It again uses only half of the resources and is therefore 18 times
cheaper.

The metric of the residuum in the generated signal does not say much about
the image quality itself. Other metrics also do not provide adequate comparison
between the true and the reconstructed images, mostly due to the noise and
artefacts in the reconstructions. We choose an area of 64 × 64 mm around the
centre of each reconstructed image to demonstrate the results. Figure 3 displays
maximum intensity projections of the image of initial pressure distribution when
the image was reconstructed on the native grid. The initial pressure field was
generated by simulating the optical absorption of a breast phantom derived from
MRI scans [7] with an artificially placed tumour.

This image was used to generate the data used in the reconstruction. The
loss of higher frequencies causes the image to be more blurred. Even the native
resolution is not able to represent a sharp interface between blood veins and
the surrounding. This is not directly related to the grid spacing. The frequency
response of the used sensors does not cover the high frequencies necessary to
generate such sharp interfaces. The other difference noticeable in the image at
right is the ”halo” around the reconstructed veins. For example, the vein going
from the top edge down has aside from the main vein structure another line fol-
lowing it, which is not present in the original pressure field. These halos could be
caused by the imperfect geometry of the used scanner, insufficient representation



Large-scale Photoacoustic Tomography 11

of sensors in the computational grid or some other yet unknown aspects. This
needs further investigation. An image post-processing technique, such as im-
age filters, can be further used to reduce the noise in the reconstructed pressure
distribution. These post-processing techniques are expected to have insignificant
computational cost against the reconstruction itself and are not discussed here.

Figure 4 compares the images produced on all three computational grids.
The top line represents frontal and lateral views. As expected, the image re-
constructed on the grid with the more coarse resolution is blurred as a result of
neglecting the high-frequency component of the signal. For the 0.4 mm grid, veins
are less visible, their contrast against the background is lower (mainly in lateral
view) and it is getting harder to distinguish between true position of the vein
and the phantom vein. The lateral view also shows more noise in the two-thirds
of the picture towards the left edge. This could be caused by the positioning of
the scanner which covers the breast from the left side. The tumour is still fairly
visible in 0.4 mm reconstruction.

The right-most image raises the question of whether it would still be possible
to notice the tumour. As these 2D images are the maximum intensity projections

(a) Original (b) 0.2 mm (c) 0.4 mm (d) 0.8 mm

(e) Original (f) 0.2 mm (g) 0.4 mm (h) 0.8 mm

Fig. 4: Maximum intensity projections of the pressure distribution in frontal (a-d)
and lateral (e-h) view. The original pressure distribution used for generating of
the measured signal and reconstructed pictures using 25 iterations. The images
display an area of 6.4 cm around the centre of the reconstruction containing the
tumor phantom and partially vein system. See Appendix-A for full images. The
peak-signal-to-noise ratio (PSNR) in the reconstructed pictures is 46.4 dB for
grid using 0.2 mm. The original pressure was re-sampled to match the other two
reconstructions and compared. The PSNR is 29.6 dB and 11.9 dB for 0.4 mm and
0.8 mm reconstruction grid, respectively.
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of the 3D images, the noise from the whole domain reduces the visibility of the
tumour contours. On the other hand, the tumour is located in the middle of the
domain and the noise is distributed over a larger area. Suitable image filtering
and/or threshold could improve its visibility. Each of the used reconstructed
images is generated using 25 iterations of the reconstruction framework. For
comparison between 25 and 30 iterations on the native resolution and bigger
images see appendix A.

5 Conclusion

The required computational cost for PAT image reconstruction of whole breast
using an iterative approach is high. We presented a reconstruction using a com-
putational grid able to represent all the frequencies present in the data, and
evaluated 25 iterations of an accelerated gradient descent scheme. The image
produced sufficiently represents the original pressure distribution used for signal
generation. It contains some noise and artefacts but the veins and tumour are
visible in the frontal and lateral maximal projection of the 3D image. These im-
purities could potentially be reduced by the use of an appropriate image filtering.
We have also shown results of reconstruction with the use of the computational
grids with larger grid spacings. These provided worse images, with the expected
blurring and increased levels of background noise. The veins are still visible, but
their size and position are not exact. The visibility of the tumour in the coarsest
computational grid is low.

These results were related to two cost metrics. The first is the time required
to reconstruct the images, which is of interest to the physicians. The native
computational grid with point spacing 0.2 mm required 9.89 days of computation
time to produce the final image. The coarser computational grid provided the
result in only 3.3 days. This image is without doubt a worse representation of
the true solution, but important features as tumour and veins are still visible.
The crudest computational grid required less than 10 hours to produce the final
image. The tumour is no longer easily visible but the placement of the veins is still
noticeable. In term of the computational cost, the exact reconstruction requires
more than 180 thousand core-hours. The reconstruction using the 0.4 mm grid
uses only half of the CPUs for a third of the time and requires 30 thousand
core-hours. The worst image was generated consuming 1 708 core-hours which is
more than 100 times less than the best image. The reconstruction using 0.4 mm
achieved similar relative residuum towards the measured signal as the native
reconstruction, but the image does not reflect this and is worse. This could be
caused by the initial down-sampling of the input signal to the number of samples
matching the computational domain resulting in slightly different references for
residuum estimation. This needs further investigation.

Both insufficiently spaced computational grids were used to their maximal
potential. The reconstruction with them does not converge fast enough after the
25 iterations to be worth any further computation. The convergence limit of the
native resolution was not found in 30 iterations. Due to the difference in the
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computational costs, one of our next goals is to investigate the usability of the
progressive grid refinement. We would start with coarse grid and use its output
for the finer grid progressively moving towards the one with spacing supporting
all frequencies. This could reduce the cost of the reconstruction while achieving
good results.

Other planned works include reduction of the I/O operation and support of
GPUs to accelerate the reconstruction. GPUs have great computational power
but are usually equipped with limited memory. This rules them out for usage
with full computational grid, covering the whole scanner and supporting all
captured frequencies. The reduced images could still be computed reasonably
fast and used as seed for the full reconstruction and/or to establish if the costly
reconstruction is indeed needed.
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7 Appendix A: Full Images

(a) Original pressure frontal view (b) lateral view

(c) 0.2 mm, 25 iterations, frontal view (d) lateral view

(e) 0.2 mm, 30 iterations, frontal view (f) lateral view

Fig. 5: Maximum intensity projection of the initial pressure distribution used for
generating of the measured signals. The maximal acoustic pressure caused by
the illumination is 9.3 kPa. After 25 iteration, the maximal pressure reaches up
to 4.5 kPa. The image after 30 iteration look similar to the one after 25 iteration,
but its maximal value 4.9 kPa is closer to the true solution.
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(a) 0.2 mm, frontal view (b) lateral view

(c) 0.4 mm, frontal view (d) lateral view

(e) 0.8 mm, frontal view (f) lateral view

Fig. 6: Maximum intensity projection of reconstruction result after 25 iterations
on different computational grids.


