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Babel systems at BUT 
Similarly to last year period,  BUT is producing systems with two different toolkits: one set of systems is 

created with the HTK/STK/TNet toolkits – referred to as “STK” systems and one set of systems is 

created with the Kaldi toolkit – referred to as “Kaldi” systems. The STK and Kaldi systems 

described here are the final systems that were used in the development and surprise language 

evaluations in March/April. The details on system development and insights are described in the 

following sections. 

STK systems 

These systems were built mainly using the HTK toolkit (http://htk.eng.cam.ac.uk/) and STK 

(http://speech.fit.vutbr.cz/software/hmm-toolkit-stk/) – an HMM modelling toolkit developed at 

BUT. It provides similar interface and functionality as HTK, while supporting several extensions 

(e.g. re-estimation of linear transformations MLLT, LDA, HLDA within the training process and 

use of recognition networks for training).  

TNet (http://speech.fit.vutbr.cz/software/neural-network-trainer-tnet) is a fast tool for parallel 

training of neural networks (NN) for classification, allowing for the latest NN tricks such as 

convolutive-bottleneck networks with shared weights [Vesely(2011b)] and RBM pre-training by 

Contrastive Divergence algorithm. 

We use the STK systems mainly to build discriminative features based on Neural Networks and 

Region Dependent Transforms – often referred to as “BUT features”. 

These features are based on the concatenation of three feature streams: 

PLP HLDA (39 dimensional). 

Stacked Bottle-Neck Neural Network (SBN) [Grezl et al.(2009)] (30 dimensional) 

which is hierarchical composition of two NN (context-1stageNN and merger-2stageNN) 

followed by MLLT transform for better decorrelation. 

F0 with delta and acceleration coefficient (3 dimensions)  

This results in a 72-dimensional feature stream which is further processed by Region Dependent 

Transforms (RDT) [Zhang et al.(2006)] reducing the dimensionality also from 72 to 69. The 

transformation is generated on the feature stream rotated by a single speaker specific CMLLR 

transform.  

The STK speech recognition systems are HMM-based with cross-word tied-states triphones and 

12 Gaussian mixtures per state. They were trained from scratch using mixing-up maximum 

likelihood (ML) training. Plain SBN systems (no SAT, RDLT) were built for a big part of the 

analysis, they are referred later as STK BN systems. The final word transcriptions are decoded 
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using a 3-gram language model (LM) trained only on the transcriptions of the training data. First, 

the HMM models were trained on PLP features and after that were retrained by single-pass 

retraining to the BUT69 features. Next, 12 ML iterations followed to better fit the HMMs into 

the new feature space. The HMM models trained on PLP features were also used to prepare the 

initial NN training targets by forced-alignment to the transcripts. The alignments are later re-

generated by the full system to re-train the full SBN structure. 

This year, the SBN architecture was extended by adding a speaker adaptive transform between 

the first and second stage NN. These 1st stage SAT features were very successfully used as input 

features for the Kaldi based Deep Neural Net (DNN) system. 

Kaldi systems 

Kaldi [Povey et al.(2011)] is a quickly emerging speech recognition toolkit, which has become 

popular in the research community due to its open spirit and flexibility. It features many 

traditional state-of-the-art techniques as well as the recent ones, such as exact lattice generation, 

subspace Gaussian mixture models (SGMMs) with speaker adaptive and discriminative training 

and Deep Neural Network (DNN) training. A big advantage of Kaldi is that it includes a set of 

recipes to build state-of-the-art speech recognition systems. These were adapted and extended for 

the purposes of our experiments. 

With Kaldi, we initially build a GMM-HMM system using flat-start mixing-up ML training on a 

subset with shorter sentences. The following steps are performed on the full training dataset, we 

add cross-word triphone tied-states (step ”tri3b”), LDA+MLLT transform on a splice of 9 speech 

frames (step ”tri4b”), and speaker dependent fMLLR transform (step ”tri5b”). For both FullLP 

and LimitedLP, we use approximately 4500 tied-states, where each FullLP state is modelled by 

24 Gaussians, in LimitedLP by 6 Gaussians. Both the LDA+MLLT features and fMLLR features 

are 40 dimensional. 

This fMLLR system is later used to define tied-states, produce DNN targets by forced-alignment, 

and provide SAT features for DNN training. The SAT features can eventually be replaced by 

BUT69 features which led to significant performance improvement. Later analysis has shown 

that this was probably an effect of a cross-toolkit combination. 

The DNN training recipe features generative RBM pre-training, frame classification training, 

sequence-discriminative training, and semi-supervised training. A more detailed description of 

the training procedure can be found in chapter 0. 

Stacked Bottle-Neck feature extraction  

SBN structure introduced in [Grezl et al.(2009)] contains two NNs:  the BN outputs from the 

first one are  stacked, down-sampled, and taken as an input vector for the second NN. This 
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second NN has again a BN layer, of which the outputs are taken as input features for 

GMM/HMM recognition system. Our previous study [Vesely(2011a)] has shown that BN 

neurons with linear activation functions provide better performance.  

Mel filter-bank outputs were preprocessed for NN training according to Figure 1. We originally 

used 15 Critical-Band Energies (CRBE), with conversation-side-based mean subtraction applied. 

Next, we stack 11 frames of these features and multiply by Hamming window along the temporal 

axis. Finally, the temporal trajectories are decorrelated by a DCT transform with 0th to 5th basis.   

 

 

 

 

 

 

 

 

 

 

Figure 1: Generating NN input features.  

The Stacked Bottle-Neck architecture involves two NNs:  the BN outputs from the first one are  

stacked, down-sampled, and taken as an input vector for the second NN. This second NN has 

again a BN layer, of which the outputs are taken as input features for GMM/HMM recognition 

system. 

 

 

  

 

 

Figure 2: Stacked Bottle-Neck Neural Network 

More informative SBN input 

One of the first experiments tested richness of the NN input. As mentioned before, we originally 

used 15 Mel-Filter banks energies for 8kHz speech and phoneme-state labels, as it was found 
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sufficient in pre-BABEL NN experiments. Currently, we are using significantly bigger NN, 

therefore a NN can yield from detailed input information. 

 

Input NN features Vietnamese WER[%] 

15FBANK + butF0 + pVoicing 53.8 

24FBANK + butF0 + pVoicing 53.3 

Table 1: Effect of using more wide filter-banks in NN training, STK BN system. 

 

Results on Vietnamese FullLP show that using 24 FBANK gives 0.5% improvement over 15 

FBANK baseline. We also experimented with bigger values and obtained no further 

improvement. Therefore, we switched to 24 FBANKS in later SBN configurations.  

Further improvements in semi-supervised SBN training 

In year 1 BABEL period, we investigated bootstrapping approach of Semi-supervised training 

(SST) of the SBN architecture. The dependence of NN on the quality of 1-best transcripts was 

examined. Using all utterances with confidence higher than 0.5 was found as a safe value for the 

NN training (it covered about 70% of un-transcribed data).  

The strong gain due to semi-supervised training was over 3% abs., it seems that quality of BN 

features is relatively insensitive to accuracy of training targets, as the partially incorrectly 

transcribed sentences were still helpful in training the BN network. 

The BN feature extraction is less sensitive to transcription errors but still too many errors can 

have negative influence on the current performance. Therefore, we experimented with ``fine-

tuning'' of NN trained on Supervised + Unsupervised data by re-training on the Supervised data. 

The learning rate for the ``fine-tuning'' was set to one tenth of its original value. Only the second 

stage NN is tuned to keep the training process simple and fast. Table 2. shows additional ~0.5% 

absolute improvement obtained by this procedure. 

  

System  
Assamese 

WER[%] 

Bengali  

WER[%] 

NN LLP  71.9 72.2 
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NN LLP + unsup   67.6 (-4.3%) 69.0 (-3.2%) 

NN LLP + unsup  -> adapt to LLP 66.7 (-0.9%) 68.4 (-0.6%) 

Table 2: Effect of fine-tuning semi-supervised NN with transcribed data, STK BN system. 

Cleaning the transcripts for fine-tuning 

On Zulu, we also experimented with cleaning the LLP transcripts, which are used to "fine-tune" 

the semi-supervised LLP system. The data was selected according to the highest allowed Oracle 

Error Rate (OER) of the lattices generated by ASR of the training data. 

 

OER[%] All (Inf) 10 20 30 70 

Data size [h] 10.1 7.1 8.8 9.5 9.9 

WER[%] 69.3 69.2 68.9 69.1 69.0 

Table 3: Effect of cleaning supervised transcripts during the fine-tuning from SST, STK BN system. 

 

The table 3 shows 0.4% additional improvement reached by excluding 1.3h of the most 

problematic data (with the highest OER).  

Phone-state targets in SBN  

Next, we experimented with using NN targets based on triphone states instead of phoneme states 

as it is common in DNN-HMM based systems. The triphone-state posteriors are estimated by 

DNN. The results are on Assamese and Bengali (LLP) with using the latest style of SST: 

 

 

 

System  Assamese  

WER[%] 

Bengali 

WER[%] 

NN LLP+unsup -> adapt to LLP 

(phnstate targets) 

66.7  68.4  
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NN LLP+unsup -> adapt to LLP 

(xrwdstate targets) 

65.5 (-1.2%) 68.2 (-0.2%) 

Table 4: Using triphone states as targets in NN based systems, STK BN system.  

Moving from phoneme states to triphone states NN targets gives 1.2% gain on Assamese and 

0.2% gain on Bengali.  

Various F0 input features in SBN architecture. 

Fundamental frequency (F0) is an important feature in speech recognition systems of tonal 

languages. Estimating the pitch in the signal is sensitive to errors, therefore pitch trackers are 

using many techniques like dynamic programming to increase robustness. Precision of F0 

systems can also vary across the processed phonemes, therefore we experimented with using 

more ``complementary'' F0 estimators as an additional features to NN classifier.  

We experimented with 4 fundamental frequency (F0) estimators. The first three are based on 

normalized cross-correlation function.  

• BUT F0 - Our tool which was implemented according to [Talkin 1995]. 

• GetF0 - tool using snack library (http://www.speech.kth.se/snack). 

•  Kaldi F0 - F0 estimation recently implemented in Kaldi [Ghahremani, et al, 1994]. 

• Fundamental Frequency Variations (FFV) provides continuous vector-valued representation 

of F0 variation. It is obtained by comparing the harmonic structure of the frequency 

magnitude spectra of the left and right half of an analysis frame [Laskowski, et al, 2008]. 

An SBN NN was trained on various F0 estimators to investigate the impact of pitch on tonal and 

non-tonal languages.  
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Additive NN input 
Bengali 

WER (%) 

Haiti 

WER (%) 

Lao 

WER (%) 

No F0 70.6 67.0 65.5 

BUT F0 70.9 66.8 64.3 

(B)BUT F0+pVoicing 70.6 66.7 64.2 

GetF0 70.5 66.9 64.4 

KaldiF0 70.1 66.5 63.3 

KaldiF0+pVoicing 69.7 65.7 62.8 

(K) KaldiF0+pVoicing+Delta 69.5 65.6 62.6 

FFV 70.0 66.6 64.2 

(B)+(K) 69.7 65.5 62.3 

(B)+(K)+FFV 69.2 65.4 62.3 

(B)+(K)+FFV+GetF0   69.3 65.4 62.2 

Table 5: Effect of using a various F0 in NN training, STK BN system. 

Table 5. presents dominant effect of Kaldi F0. The NN reads a context of +/- 15 frames, therefore 

it should learn information about variation of F0, interestingly delta F0 is still giving 0.2% 

improvement, probably due to computation of this feature in unnormalized space [Ghahremani, 

et al, 1994], therefore it still contain  complementary information. 

Fusion of all F0 estimators gives 0.1-0.4% absolute improvement over Kaldi F0. Moreover, we 

can clearly see that F0 features are well effective also for non-tonal languages. 

Reiteration of unsupervised transcriptions in SST of SBN system  

Significant improvements coming from SST trained motivated us do one more decoding of 

unsupervised data and retraining of NN, to see a dependency of system performance on a quality 

of unsupervised transcripts.  
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System 
Bengali 

WER (%) 

Haiti 

WER (%) 

Lao 

WER (%) 

LLP  69.5 65.4 61.7 

SST-1 66.2 61.1 56.9 

SST-2 65.6 59.5 55.6 

SST-2 → LLP 65.1 59.1 55.0 

Table 6: Regeneration of unsupervised transcripts,  STK BN system.  

Table 6 presents 3.3-4.6% absolute improvement coming from NN trained on SST data (SST-1). 

For simplicity, the system was evaluated on SBN features only using ML GMM models and LLP 

data. The improvements were encouraging, therefore we experimented with regeneration of 

unsupervised data by system based on SST-1 NN. The new NN SST-2 was trained which gave 

further ~0.5% absolute improvement. 

Speaker adaptation of SBN architecture 

The speaker adaptation of NN is a problem that has not been entirely solved. A typical speaker 

adaptation uses standard cepstral coefficients (PLP or MFCC) together with CMLLR as NN 

input; on the other hand, Mel-filter bank outputs (FBANK) are known to work better with NN 

but their direct adaptation is difficult due to correlations. Our trick to adapt the FBANKS is very 

simple:  

To estimate the adaptation matrix, it is necessary to train a GMM system on the NN input 

features, however, FBANKs are difficult to model by diagonal covariance models due to high 

correlations. This problem is solved by using Discrete Cosine Transform (DCT) in the same way 

as in MFCC computation. Next, the speaker independent GMM HMM system is estimated by 

single-pass retraining with FBANK-DCT appended by derivatives and acceleration coefficients.  

A block-diagonal CMLLR transform is estimated for each speaker and only the first, spectrum 

corresponding, part of the transform is taken for further processing. New features for NN training 

are estimated simply by:  

x̂ (t )= x (t)A
DCT

A
CMLLR

A
invDCT  

Next, we focused on adaptation of the SBN inner part - the first stage NN. A bottle-neck output is 

known not to be highly correlated, therefore the CMLLR can be applied easily. Moreover, 

according to our analysis, the first-stage NN is doing mainly acoustic feature extraction and only 

the second-stage NN is doing processing acoustic clues in wider context. Therefore, it makes 
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sense to use speaker-specific layer in this part as it is common in classical speech recognition 

scenarios (feature extraction, speaker adaptation, acoustic modeling).  

NN adapt level  
Vietnamese  

WER (%) 

No NN adapt  52.3 

CMLLR on FBANK 51.1 

CMLLR on 1stageNN+MLLT 48.9 

CMLLR on 1stageNN 48.9 

Table 7: Effect of using NN adaptation, STK BN system. 

Multilingual SBN systems 

The availability of sufficient amount of data from other BABEL languages motivated us to 

investigate how to use it to improve the performance in the target language. In the first year of 

the Babel program, we already experimented with the training of Multilingual SBN.  

Three main approaches were examined: 

1. “one softmax” - discriminates between all targets of all languages. No mapping or 

clustering of phonemes was done. Thus the resulting NN has quite a large output layer 

containing all phonemes from all languages with “one softmax” activation function. 

2. “block softmax” - divides the output layer into parts according to individual languages. 

During the training, only the part of the output layer corresponding to the language the 

given target belongs to, is activated. This approach was successfully used in [Vesely et 

al.(2012)].  

3. “Convolutive Bottleneck Network” which would allow to re-train the whole structure in 

one step. But the computation expenses to train the multilingual NN and also to adapt this 

network were unacceptable for our scenario where fast adaptation is desired. 
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Figure 3: Block softmax multilingual NN. 

 

This multilingual NN provided the starting point for the final “fine-tuning” to target language. It 

was produced by further NN training but the learning rate in this phase was set to one tenth of its 

original value. 

The combination of “block-softmax” and “Convolutive BN” depending on the language was 

found to be the best approach. This year, we further investigated in optimal “fine-tuning” 

configuration as well as improvements coming from more data and also on implementation of 

Multilingual NN together with CMLLR adaptation introduced above. 

The Multilingual NN was trained without Kaldi F0 as this feature was found at the end of Babel 

period. The results are analyzed on HMM-GMM system trained on BN features only due to 

simplicity.       

Multilingual SBN system – amounts of data 

First set of experiment was focused on the performance of BN features obtained from 

multilingual NNs. The NNs were trained on FLPs of the source languages. To be able to evaluate 

the effect of the number of source languages, we decided to generate two sets of them: 

1. SLs1 - contains three language: Cantonese, Pashto and Turkish. 

2. SLs2 - contains all five languages from year one. 
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Data sets  
Assamese 

WER (%) 

Bengali 

WER (%) 

Haiti 

WER (%) 

Lao 

WER (%) 

Zulu 

WER (%) 

FLP 61.5 62.9 57.2 55.1 68.9 

LLP 68.5 69.7 65.9 63.6 74.2 

SLs1 69.0 69.6 66.8 64.7 74.1 

SLs2 66.8 68.2 64.9 60.7 72.6 

Table 8: Effect of using more data for Multilingual NN training, STK BN system. 

 

The Table 8 presents significant improvement (over 1.4%) coming from using more languages in 

multilingual NN training without any “fine-tuning“.  So, the number of training languages plays 

an important role when the features are generated directly from the multilingual system. The 

“FLP” line present LLP system trained on top of FLP system which is treated as an “upper-

bound”. On the other-side “LLP” shows results of systems with NN trained purely on LLP 

transcripts. Therefore, SLs2 NN presents better performance even no target language was 

presented in NN training. 

Multilingual SBN system – tuning of the configuration 

The SBN system is a hierarchy of two NNs, so the adaptation can take several forms. We can for 

example keep the first NN multilingual and train the second one on the LLP data only. Thus we 

considered the following four scenarios for adaptation of multilingual system: 

• Multi-LLP scenario : keep the first NN multilingual, train the second one on LLP data only. 

• Adapt-LLP scenario : adapt the first NN, train the second one on the LLP data. 

• Multi-adapt scenario : keep the first NN multilingual, adapt the second one.  

• Adapt-adapt scenario : adapt the first and also the second NN. 

The last  “adapt-adapt” scenario might be regarded as not very good idea since the inputs to the 

second NN are changed but, surprisingly, out initial experiments discovered that this scenario is 

not useless. 

Since every multilingual SBN system was adapted according to all four scenarios for each of the 

evaluation languages, showing all results would not provide an easy survey. To be able to 

present the results together, each one is converted to relative WER reduction with respect to 

the corresponding LLP baseline, and averaged over the evaluation languages.  
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For better readability, the results are split into two plots based on the Source Language set used 

to train the multilingual SBN systems. 

 

 

 

 

 

 

 

Figure 
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Figure 5: Average relative WER [%] reduction depending on the adaptation scheme and softmax type in 

multilingual SBN on 5langs. 
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Figs. 5 and 6 show that “multi-LLP” scenario leads to the same performance regardless the 

softmax type in multilingual SBN. This suggests that this scenario cannot take advantage from 

the differently trained SBN. When the first NN is adapted before the training of the second one 

on LLP in “adapt-LLP” scenario, the WER can be further reduced. Note the increased difference 

between different types of softmaxes in multilingual SBN - the adaptation process can benefit 

more from the SBNs trained with “block softmax”.  

In case of training on SLs1, the WER is reduced the least when only the second NN is adapted in 

“multi-adapt” scenario. The last scenario “adapt-adapt” when both NNs in SBN are adapted, 

actually performs about the same as “multi-LLP” scenario. This shows that also the second NNs 

in the hierarchy can be adapted despite its changed inputs by former adaptation of the first NN.  

The picture changes when the multilingual NNs are trained on SLs2. The adaptation of the 

second NN only in ”multi-adapt” scenario outperforms the “adapt-LLP” one and adapting both 

NNs “adapt-adapt” -  leads to systems with the best performance.  

Multilingual SBN - fine-tuning to CMLLR adapted NN features 

Our final system is based on SBN architecture with CMLLR adaptation of 1stageNN as it was 

presented before. Therefore, multilingual 1stageNN was "fine-tuned" into target LLP domain and 

fixed. Next, the CMLLR features were generated for whole LP including unsupervised data. 

These features were used for further “fine-tuning”/training of 2stageNN (Merger). Three 

different scenarios were investigated: 

1. Merger was retrained directly on CMLLR features (mult-LLP). 

2. Fine-tuning of multilingual merger into CMLLR features (mult-adapt). 

3. Fine-tuning of multilingual merger which was already tuned on non-adapted LLP features 

(adapt-adapted). 
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NN system WER [%] 

Assamese Bengali Haiti Zulu Lao 

LLP  

Multi-LLP 62.3 - 58.6 69.0 56.1 

Multi-adapt 62.6 - 58.9 69.9 55.6 

Adapt-adapted 62.3 - 58.7 69.9 55.6 

SST 

Multi-LLP 61.2 - 57.3 68.7 54.4 

Multi-adapt 61.6 - 58.0 69.1 54.4 

Adapt-adapted 61.5 - 57.8 69.1 54.5 

Table 9: Multilingual NN - "fine-tuning" to 1stage CMLLR domain, STK BN systems.  

2StageNN can be retrained on LLP (or SST) data from random initialization which is opposite 

outcome from no-CMLLR SBN.  

Final BUT GMM features 

Final ASR system structure did not change during this period, it still consist from PLP-HLDA 

features concatenated with SBN features and F0 followed by RDT. Main effort was put into SBN 

structure improvement which is the fundamental part of GMM system and BUT features.   

Most of the particular improvements in SBN architecture led into rebuilding of the whole 

system. These feature versions were used across the team: 

• BUTv2 – SST, CMLLR NN, 24FBANKS, 3xF0 (no KaldiF0) 

• BUTv2a + SST->LLP (fine-tuning from SST NN into clean LLP domain) 

• BUTv3 + + reiteration of unsupervised data + Kaldi F0 

 



 

15 

System  WER [%] Normalized 

MTWV [%] 

All (IV/OOV)  

Assamese Zulu Zulu 

BUTv2a 60.4 69.0 - 

BUTv3 59.0  68.5  18.74 (35.31/0) 

Multiling-noSST  59.6 68.6 - 

Multiling-SST 58.8 68.4 18.85 (35.51/0) 

Table 10: Final STK systems in 2014 evaluations. 

Good improvement from multilingual systems over BUTv2a but small improvement over 

BUTv3. It was mainly due to Kaldi F0, but retraining of whole multilingual NN is quite time 

consuming operation. 
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Deep Neural Network Kaldi systems 

In the last 4 years, Deep Neural Networks (DNN) became very popular for acoustic modeling. 

The DNNs are used to compute posterior probabilities of triphone tied-states, which are used as 

emission probabilities in the HMM decoder. This is often called as a ``hybrid’’ system. 

A big advantage of DNNs over GMMs is that DNNs are trained discriminatively to classify 

frames, whereas GMMs are typically trained generatively. Also, in case of DNNs all the states 

share the same hidden layers, which leads to efficient use of parameters and diminishes the risk 

of under-fitting the rare tied-states. Another advantage is that, they DNNs don’t require strong 

assumptions on input features. One can simply splice several speech frames and feed to DNN 

input, which will produce highly correlated features. All these advantages translate into huge 

performance improvements, when comparing a DNN and GMM system trained on the same 

input features. 

On the other hand, to be fair, we have to say that the performance of a GMM can be greatly 

improved when using bottleneck features (called ``tandem systems’’), which make them equally 

as good as DNNs, while still giving complementary outputs. 

To decode the DNN output, we need to convert posteriors into log-likelihoods, this is done 

according to Bayes rule by subtracting the state log-priors. For the decoding, we can use the pre-

softmax activations, as the decoder input is not required to be normalized. This is also the case 

when we decode using GMM likelihoods. 

In the first year of Babel program we applied these training techniques:  

• Generative RBM pre-training, using Contrastive divergence algorithm with 1 Gibbs 

sampling step. 

• Mini-batch Stochastic Gradient Descent optimizing frame-level cross-entropy. Here, we 

first train using GMM alignments and then repeat the training using DNN alignments. 

The triphone tree is inherited from the baseline GMM system. 

• Sequence discriminative training optimizing sMBR criterion - done by Stochastic 

Gradient Descent with per-utterance updates [Vesely et al.(2013)a]. This aims to 

maximize the expected frame accuracy within a population of alternative hypothesis 

represented as a lattice, while the reference path is obtained by forced-alignment. 

• Semi-supervised training – with frame-rejection based on a per-frame confidences 

derived from lattice posteriors selected according to the best path [Vesely et al.(2013)b].   
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Important changes compared to year 1 systems 

In the year 2 of BABEL program, we have been modifying the DNN systems, while looking for 

performance improvements. The interesting and useful techniques were: 

• Adding more states to the system 

• Simplification of semi-supervised training 

• Input features: 

o Replacing the BUT pitch feature by Kaldi pitch features 

o Replacing the Kaldi PLP-fMLLR features with Stacked bottleneck features 

Adding tied-states 

In year 1 LimitedLP systems, we were using 2300 tied-states, however we believed that this can 

limit the space for improvement coming from semi-supervised training. As we have only 10h of 

transcribed data, we decided to keep the number of Gaussians constant while increasing the 

number of tied-states to 4300 (same value as for FullLP systems). The results show a 0.1% 

performance degradation for GMM systems, and 0.2% improvement of DNNs. 

Bengali WER (%) 2300 tied-states 4300 tied-states 

fMLLR GMM 69.7 69.8 

DNN Xent (GMM alignment)  64.7 64.4 

DNN Xent (DNN alignment) 64.3 63.9 

+ sMBR 62.2 62.4 

+ SST (Xent only) 61.8 61.6 

Table 11: Effect of adding more tied-states on semi-supervised DNN system. 

Simplification of semi-supervised DNN training 

In our previous work [Vesely at all (2013b)], we converged into a recipe where the semi-

supervised training is used for frame Cross-Entropy training, while for the sMBR training, the 

transcribed 10 hour dataset is used. In the semi-supervised training, we ended up using all the  

automatically transcribed sentences, repeating the transcribed data 3x, and rejecting 18% of 

frames according to a per-frame confidence threshold tuned to 0.7. We also found that frame-
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weighted training is as good as un-weighted training. Note, that we implement frame-weighted 

training by scaling the gradients in error back-propagation. 

Fig 6: Dependency of real state accuracy on estimated confidence.  

 

In this BABEL period, we continued analyzing of the confidences. In picture 9, we can see the 

state-accuracy as function of the confidence for different lattice-posterior scaling factors, where 

we calculated the fraction of correct frames for 25 bins on the confidence axis. The dashed black 

line is the "ideal confidence" corresponding to the probability that label is correct. The blue line 

corresponds to the original scale 1.0, which corresponds to the setup used in decoding.  This 

picture suggest, that we were previously using an overly ``optimistic'' confidence, which was 

giving a higher confidences compare to the actual state-accuracies. When we scaled down the 

lattice posteriors, we obtained nearly linear dependency between the state-accuracy and the 

confidence, which should be true for the ideal confidence.  

The effect of the lattice-posterior scales on the confidence-weighted training is in table 10. We 

see that for scale 0.02 we get 0.3% lower WER, compared to original scale 1.0. 
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Scaling  1.0 0.5 0.3 0.1 0.02 0.001 

WER (Bengali) 61.3 61.1 61.2 61.1 61.0 61.1 

Table 12: Tuning the lattice-posterior scale during per-frame confidence extraction for frame-weighted 

training. 

Compared to the previous recipe, we found out that it is no longer necessary to tune frame-

rejection threshold, neither to include the supervised data in multiple copies. This is what makes 

the new semi-supervised training more efficient and simpler. 

Kaldi pitch features 

As the team Radical was promoting Kaldi pitch features, while altruistically making them 

available to other teams, we compared the pitch feature to BUT pitch. As can be seen in table 11, 

using Kaldi pitch led to a large 1.7% WER improvement on Bengali which is atonal language: 

Bengali WER (%) BUT pitch Kaldi pitch 

DNN with sMBR training 69.5 67.8 

Table 13: Replacing BUT pitch by Kaldi pitch. 

The BUT pitch is implemented according to [Talkin 1995], it is normalized by mean pitch over 

the entire speaker and linearly interpolated across the unvoiced gaps. Along the pitch also the 

voicing feature is extracted. 

The Kaldi pitch [Ghahremani 2013] is composed of 3 features: the pitch, delta-pitch and voicing 

feature.  The pitch smoothed by dynamic programming without making hard-decision about 

voicing. Further it is normalized by using floating window of 151 frames. The delta-pitch is 

computed from unnormalized pitch.  
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Input features from Kaldi 

Our GMM feature set are PLPs (13 dimensions) concatenated with fundamental frequency 

(Kaldi F0) and probability of voicing. All features (16 dim) were normalized by CMN/CVN and 

then either deltas/double deltas were applied or we splice 9 frames and estimate LDA+MLLT 

transform. In the final SAT stage we estimate per speaker fMLLR transforms (40x40 dim): 

 

Figure 7: Feature extraction pipeline for Kaldi GMM systems 

The fMLLR features are then used as DNN input, here we splice 11 frames (440 dimensions), 

and apply shift and scale so the features have zero mean and unit variance.   

 

Figure 8: Input features for Kaldi DNN/DBN systems 

Using BN features as DNN inputs 

As mentioned above, we used the STK features as front-end to Kaldi DNN. These 80-

dimensional features were extracted from the first stage bottleneck and were rotated by speaker 

specific fMLLR transform. 

These features were concatenated to the standard Kaldi fMLLR front-end, while the bottleneck 

features were processed as in the Stacked-bottleneck network: we concatenated 5 frames with 

temporal offsets of -10, -5, 0, 5, 10 frames w.r.t. the central frame. Using these input features, the 

DNN systems were then built using the same procedure as before, including sequence Minimum 

Bayes Risk (sMBR) and semisupervised training. 
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System 
WER [%] 

Bengali Haiti Lao 

STK GMM: 

BUTv3 60.5 53.8 50.7 

Kaldi DNN, with front-end: 

Stage: Kaldi Kaldi+STK Kaldi  Kaldi+STK Kaldi Kaldi+STK 

Basic 64.4 60.3 59.4 54.0 55.0 50.7 

 + sMBR 62.0 58.5 57.4 52.9 53.2 49.9 

+ +  SST 59.8 56.8 54.4 50.8 50.8 48.3 

Table 14: Using 1Stage BN features in DNN system, ASR results.  

The Table 14 presents the very impressive results. Over 4% absolute improvement is reached in 

final SST system by adding STK features and more than 2.5% absolute improvement over the 

best GMM-SST trained system!! Features used as a DNN input are SST trained therefore both 

techniques are well complementary.  

KWS on Limited LP with using BBN calibration: 

System  MTWV [%] 

Assamese Bengali Haiti Zulu Lao 

GMM 

BUTv3  31.35 32.02 45.38 20.38 45.94 

DNN (PLP CMLLR) 

sMBR + SST   34.00 33.89 42.54 21.45 47.24 

DNN (PLP CMLLR + BN CMLLR) 

sMBR + SST - 37.08 45.47 - 50.20 

Table 15: Using 1Stage BN features in DNN system, KWS results. 
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• Significant gain was observed with new DNN based on adapted BN on all languages. 

We are getting slight gain only on Haitian, which should lead into complementary 

systems. 

Noising the data  

In Surprise evaluation we had to deal with various noises in the data. Artificial noises were added 

into training data to increase a robustness of the system. 10 types of noises were ad-hoc 

generated mostly (v1-v8) by filtering of white-noise: 

• v1 - v4 - low pass filters - where {\bf v1} is close the one we have in data. 

• v5, v6 - one band-pass filter. 

• v7, v8 - several band-pass filters in cascade. 

• v9 - 100Hz hum (sinus). 

• v10 - 50Hz hum (sinus). 
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Figure 9:  Frequency characteristics of noise v1 – v8,  v1 - v4 low pass filter, v5 – v6 band pass, v7 – v8 

multiple band pass.  

Noises were added to the data - according to RMS of the data. We use three noising levels: 

• L1 – 0.35 of RMS of the original signal. 

• L2 – 1.00 of RMS of the original signal. 

• L3 – 3.5 of RMS of the original signal. 

 Therefore, we multiplied our training data by factor 4 (original data + 3 levels of noises). All 

features (PLP, FBANK, F0) were regenerated and NN training target was multiplied from 

clean data. The NN was trained on the new data and the RDT and GMM system was rebuild 

on clean data only which create system called ``BUTv4'' and also on all data - ``BUTv4a''.  

ML trained BN systems  
Tamil 

WER[%] 

Baseline 76.0 

Wiener filter on train/test 76.1 
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Adding additive noise in training data 75.4 

Table 16: Wiener denoising vs. data noising on NN system, STK system. 

Final GMM results: 
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GMM tandem systems  
WER

[%] 

KST normalized MTVW  

All (IV/OOV) [%] 

Baseline 72.1 19.36 (29.93/0.00) 

Added noises to NN only 71.7 19.73 (30.49/0.00)  

Added noises also to RDT-GMM 71.2  20.32 (31.40/0.00) 

Table 17: Adding noises to NN only and also to RDT, STK system. 

Data-noising significantly increases robustness of the system.  

Using noised data for NN training is complementary even it we train GMM on the clean data 

only. 

 

 

SST trained features from 1stageNN trained on noised data were taken as an input into DNN 

(results are with sMBR+SST training).  

HMM-DNN hybrid systems  WER[%] 

Baseline 69.4 

1stageBN on noised data DNN on clean only 68.1 

DNN is trained also on noises 67.7 

Table 18: Feeding 1StageNN CMLLR trained on noises into DNN, STK system. 

 

For the DNN system, artificial noising of the training data is also helpful, both on input 

bottleneck-feature level and the DNN level. 
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BUT Decoding and Keyword spotting  

 

System  Normalized MTWV (IV/OOV) [%] 

Assamese Bengali Haiti Zulu Lao 

Word Lattice 28.6 

(36.7/0) 

29.3 

(38.4/0) 

43.2 

(50.4/0) 

18.8 

(35.4/0) 

42.8 

(47.2/0) 

Word CN 31.8 

(40.8/0) 

31.2 

(40.9/0) 

43.5 

(50.7/0) 

20.9 

(39.3/0) 

42.9 

(47.3/0) 

Table 19: Comparison between lattice and confusion networks for word based systems of dev languages. 

Word Lattice – baseline keyword spotting technique based on word lattice search. This system 

suffers from missing OOV words (term having OOV is not detected – 0.00 TWV for OOV 

terms) and also can suffer from multiple word keywords (in case there is no path in lattice 

representing multiple word in sequence, these keywords are not detected – see improvement 

when going from WRD to WRD CN) 

Word CN – keyword spotting system based on word confusion networks. Standard lattice can be 

converted into confusion network. The improvement going from CN is in better recall over 

multiword keywords. This can be seen in comparison between WRD and WRD CN. 

 

System KST normalized MTWV 

(IV/OOV) 

Oracle TWV (IV/OOV) 

WRD 18.46 (28.53/0.00) 27.17 (41.99/0.00) 

WRD CN 20.32 (31.40/0.00) 29.32 (45.31/0.00) 

MGRAMWBWE 23.86 (25.80/20.72) 35.41 (40.55/26.00) 

MGRAMPHN2PHN CN 23.38 (20.83/28.71) 38.63 (37.64/40.44) 

BBNSYL2PHN CN 23.76 (20.49/29.91) 39.67 (38.26/42.27) 

Table 20: Comparison for several KWS methods on surprise language. 
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• WRD – baseline Word Lattice keyword spotting technique 

• CN – denotes usage of confusion networks 

• MGRAMWBWE – Keyword spotting based on word internal phoneme multigrams 

(length up to 7 phonemes). The keyword is searched as phoneme multigram sequence 

in multigram lattice.  

• *2PHN CN – We implemented new approach for subword search. Here, the STK 

decoder (Svite). The decoder was switched to produce model (triphone) nodes in 

lattice rather than the word nodes. This is independent on the used language model 

(can be word, multigram or phoneme). Then the triphones in lattices were converted 

into phonemes and lattices were stored in (HTK format). Next the phoneme lattice 

was converted to CN and search was performed. Here we found crucial to set up 2 

parameters. The first one was pruning, where the search is stop if accumulated 

posterior of a keyword drops below the threshold (to speed up the algorithm). Next 

we set up a maximum length of skip links in search keyword in CN. Without this, the 

detection can reach theoretically to the length of the whole utterance (and is not 

correct). We found optimal value of the maximum length as 0.1s. 

We can conclude that: 

• MGRAMWBWE is superiors to WRD systems due to its possibility to find OOV terms 

(29.32 → 35.41). 

• When going from multigram search in lattice (MGRAMWBWE)  to phoneme search in 

Confusion Network (*2PHN CN) we lose some precision on IV terms (compared to word 

internal multigrams 40.55 → 38.26), but we gain much on OOV terms (26.00 → 42.27). 

So the overall UBTWV improves twice much the improvement when going from words 

to MGRAMWBWE. 

• The KST normalization is not sufficient enough, because we can see improvement on 

UBTWV (the Oracle TWV) but not on MTWV. This is solved by more complex 

normalization in BBN. 

BUT Decoding and Keyword spotting – further analysis 

 

Baseline systems 
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System MTWV (IV/OOV) Oracle TWV (IV/OOV) # detections 

WRD – 3g LM 28.16 (39.13/0.00) 37.90 (52.67/0.00) 319k 

WRD CN  – 3g LM 31.15 (43.29/0.00) 39.83 (55.34/0.00) 480k 

MGRAMWBWE – 3g LM 31.19 (36.83/16.87) 41.81 (49.68/21.61) 209k 

MGRAM  – 3g LM 31.05 (36.14/18.16) 43.59 (50.26/26.46) 311k 

MGRAM – 2g LM 31.07 (35.74/19.13) 44.40 (50.50/28.75) 368k 

Table 21: comparison of baseline systems on Assamese LLP 

According to the table above, we clearly see that confusion networks are superior to lattices 

(WRD versus WRD CN). It is also represented by higher number of detections. We compare 

subword search based on phoneme multigrams (up to 7 phonemes) on last 3 rows. The 

MGRAMWBWE represents word internal multigrams compared to MGRAM which are word 

external multigrams. The word internal multigrams provides higher accuracy on IV keywords 

while word external multigrams provides higher accuracy on OOV keywords. The OOV 

accuracy can be even higher by going from trigram to bigram LM.  

One can argue, that the number are not comparable due to different number of detections, but our 

experiments shown, that when we set the systems to produce comparable number of detections 

(by decoder pruning), the conclusion is the same. 

 

New subword KWS based on phoneme CNs  

System MTWV 

(IV/OOV) 

Oracle TWV (IV/OOV) # detections 

WRD2PHN CN – 3g LM 21.90 (26.31/10.84) 32.06 (38.10/16.56) 587k 

MGRAMWBWE2PHN CN – 

3g LM 

23.08 (25.52/16.90) 35.50 (39.75/24.60) 746k 

MGRAM2PHN CN – 3g LM 23.92 (26.46/17.59)  36.37 (40.62/25.45) 1072k 
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MGRAM2PHN CN – 2g LM 24.25 (26.90/17.63) 36.63 (40.86/25.75) 1209k 

MGRAM2PHN CN – 3g LM 

less pruned 

30.17 (31.07/28.24) 46.43 (48.80/40.34) 5283k 

Table 22: Comparison of new developed KWS techniques based on phoneme CNs on Assamese LLP 

Please refer the *2PHN CN to above section. 

We conclude, that to produce phoneme lattice from word LM is suboptimal as you can see in the 

second row (WRD2PHN CN). Also the word internal multigrams (MGRAMWBWE) do not 

achieve the accuracy of cross word multigrams (MGRAM). However going from trigram to 

bigram does not improve the accuracy (opposed to the baseline experiments). Finally, we present 

selected cross word multigram system  when the search pruning was relaxed (the last row), 

where huge improvement can be seen.  

 

System combination 

The above experiments are single system (one decoding with single LM and one search). Now 

we aimed at the result, when system combination will be used. BBN run the Learner 

normalization for “MGRAM2PHN CN – 3g LM less pruned” system and combined it with our 

best word based system (WRD CN) 

 

System KST MTWV (IV/OOV) Learner TWV 

(IV/OOV) 

WRD CN 28.61 (36.72/0.00) 33.15 (42.53/0.57) 

MGRAM2PHN CN 29.35 (30.03/27.06) 34.44 (35.92/30.27) 

COMBINATION of the 2 

above 

- 41.39 (44.59/30.20) 

BUT-Kaldi-DNN-wrd-

lattice: 

- 39.68 (44.25/23.78) 

BUT-MLP APN sub (sup) - 30.72 (31.66/27.48) 

36 systems combination - 47.70 (50.47/38.10) 

Table 23: comparison of our new KWS approach on Assamese LLP dev+eval terms and dev data (systems 

submitted to evaluations). 
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Next, we compared the combination to the best single system for IVs (BUT-Kaldi-DNN-wrd-

lattice), best single system for OOVs (BUT-MLP APN sub (sup)), and submitted combination of 

36 systems. As we can see the combination of our 2 systems is superior to the best single system 

on OOVs and comparable to the best single IV system. It looses about 6 point to the 36 system 

combination. 

Babel-related Scholarly Activities including papers published and 

presentations given during this period 

Papers presented at Interspeech 2013 (Lyon, France): 

• K. Vesely, A. Ghoshal, L. Burget, D. Povey: Sequence-discriminative training of deep neural 

networks 

• M. Karafiat,  F. Grezl, M. Hannemann, K. Vesely, J. Cernocky: “BUT BABEL system for 

spontaneous Cantonese” 

Paper presented at ASRU 2013 (Olomouc, Czech Republic)  

• F. Grezl, M. Karafiat and K. Vesely: “Adaptation of Neural Network Feature Extractor for New 

Language” 

• Vesely K., Hannemann M., Burget L.: “Semi-supervised training of deep neural networks” 

Papers presented  ICASSP 2014: 

 

• Karafiat M., Grezl F., Hannemann M., Cernocky J. : BUT Neural Network features for 

spontaneous Vietnamese in BABEL 

• Grezl F., Karafiat M., Vesely K.: “Adaptation of Multilingual Stacked Bottle-Neck Neural 

Network Structure for New Language” 

Papers presented at SLTU 2014: 

 

• Grezl F, Karafiat M: „Adapting Multlingual Neural Network hiearchy to a new language“ 
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GLOSARRY 

ASR Automatic Speech Recognition  

CER, SER, WER: Character-, Syllable-, Word Error Rate 

CN: Confusion Network  

DBN: Deep Belief Network 

DNN: Deep Neural Network 

GMM: Gaussian Mixture Model 

KWS: Keyword Spotting 

LM: Language Model 

MLP: Multi-Layer Perceptron 

ML: Maximum Likelihood 

MMIE: Maximum Mutual Information Estimation 

MTWV: Maximum Term-Weighted Value 

OOV: Out-Of-Vocabulary 

PLP: Perceptual Linear Predictive features 

RBM: Restricted Boltzmann Machine 
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RDT: region dependent transform 

SAT: Speaker Adaptive Training 

SGD: stochastic gradient descent 

SST: Semi-Supervised Training 

STT: Speech-To-Text 

VAD: Voice Activity Detection 

 


