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Abstract — many situations exist where data fusion of 

different sensor provides more accurate solutions than 

just a single sensor measurement. Short introduction 

of LIDAR and camera sensors is provided in order to 

understand the utilization of the data fusion from those 

sensors. Three diametrically different fusion ap-

proaches are described and compared in this paper. 

1 INTRODUCTION 

Sensory information, such as processed data from vid-

eo-sensors, LIDAR, RADAR, etc. is traditionally used 

to obtain knowledge about the environment in many 

applications. Multimodal fusion can enrich such in-

formation and is used due to a number of factors. The 

frequently mentioned reasons are complementariness 

and redundancy of sensors. Better accuracy can be 

achieved due to complementariness. The rich input of 

required sensor data leads to a better and more appro-

priate decisions. Redundancy is used in situation when 

failures of one sensor can be critical. 

As the progress of autonomous robots is growing, 

many new methods of fusion have been introduced and 

describe. This paper introduces different methods of 

fusion. The fusion is generally always advantageous. It 

can provide more accurate data used for the decision 

of autonomous robots. 

This paper describes three used approaches of fus-

ing LIDAR and camera, which were published in 

[1,2,3]. LIDAR and Camera sensors and their impor-

tant characteristics are defined in chapter 2. Chapter 3 

contains three parts describing different approaches of 

LIDAR and camera fusion. 

First example could be understood as model verifi-

cation using fusion, second method describes one of 

the most used applications of the LIDAR and the cam-

era fusion – fusion of its occupancy grid maps and 

third example shows fusion of LIDAR and camera da-

ta using statistical methods and algorithms from field 

of machine learning. 

2 SENSORS 

Fusion of sensor deals with different sensor inputs. 

Methods of fusion have to produce reliable outputs – 

estimates and environment models which can be used 

by other navigation subsystems. In this sense of fusion 

it is integrating different sensor data for object detec-

tion, self-location, motion planning etc. 

There are two different sensors described in this pa-

per are LIDAR and camera. 

2.1 LIDAR sensor 

Abbreviation LIDAR means Light Detection and 

Ranging, is generally defined as the integration of 

technologies into a single system capable of acquiring 

data to provide knowledge about surrounding envi-

ronment. These technologies are LRF – laser range 

finder, the Global Positioning System (GPS), and iner-

tial navigation systems (INS). Combined, they allow 

on high degree of accuracy creation of model of the 

surrounding environment. 

LRF enables accurate and instantaneous distance 

measurement of noncooperative targets from several 

tens of centimeters to several tens of kilometers. LRF 

is nowadays one of the most precise system for rang-

ing. Due to its characteristics it is used in many 

branches of industry. From the view of application use 

is LIDAR often used in DMT - Digital Model Terrain 

gathering, 3D model of robots area reconstruction or 

for obstacle detection. 

Because the described approaches do not use any 

information from GPS nor INS, LIDAR is reduced to 

LRF. 

LRF sends out a pulse of light. The return of the 

pulse creates a point with an XYZ position in the real 

world. LRF works with principles of time-of-flight 

measurement. With nanosecond pulses and fast opto-

mechanical beam scanning, LIDAR provides linear, 

unidirectional and parallel scan lines. 

LIDARs can be divided into subcategories accord-

ing to possible field of view. There are numerous types 

of range finder LIDAR. The most basic ones are direc-

tional fixed. These can provide range sensing only for 

one point. Other types have rotating mirror, which can 

provide more than one range sensing in some amount 

of time in horizontal or also in both horizontal and ver-

tical directions. 

The used wave lengths differ according to the ap-

plication of LIDAR. In the environment where eye-

safety is needed less powerful lasers are used, or lasers 

with wider beam divergence. The laser safety is signif-

icantly enhanced if the operating wavelength of the la-

ser is shifted beyond 1400nm where it would be effec-



tively absorbed by the ocular media or to approximate-

ly 1540nm, the so called 'eye-safe' band [4]. 

2.2 Camera sensor 

Digital camera sensors use CMOS or CCD chips. 

These chips transform incident light into electrical 

charge. Vision can be generally divided in two catego-

ries, monocular and stereovision. 

In monocular vision the data that is processed is still 

deeply investigated for many purposes. Filtering and 

transformations are done in the image processing 

layer, while classification, detection, etc. are part of 

the computer vision layer. Generally algorithms for 

object detection are important in monocular vision, 

while in stereovision the epipolar geometry or tech-

niques based on disparity image are used. Calibration 

of cameras in stereovision is crucial. 

Camera sensor can be described by its resolution, 

speed of incident light processing – frame per second 

and possibility of monochromatic - chromatic light re-

ceiving. 

3 APPROACHES OF LIDAR AND CAMERA 

FUSION 

The following approaches describe the data fusion of 

LIDAR and camera. These approaches can be divided 

according to the type of the data they are fusing. We 

consider 3 levels of processed data, the fusion of low 

level features – intensities of pixels, range of point in 

space but also specific image descriptors and feature 

vectors made from LIDAR data, high level features – 

fusion of classifiers, etc. and the main principle of fu-

sion in robotics – the fusion of occupancy grid maps 

obtained from camera and LIDAR. 

Exceptions exist, which can‟t be classified in these 

categories, for example, the first described approach. 

3.1 Validation of 3D model 

This approach of data fusion was introduced in [1]. 

The authors describe the data fusion as a method of 

model validation. LIDAR and stereovision is used. 

This method is usable in the indoor conditions accord-

ing to its assumptions. The approach is divided in two 

main steps. Creating and evaluating 3D model. 

LIDAR is used for mapping the robots environment. 

LIDAR provides distance information in the horizon-

tal plane. 3D points are obtained and have to be 

processed to create 3D model.  Authors assume the 

simple condition, that every obstacle can be described 

as vertical plane with infinite height. The obtained 3D 

points are grouped into the line segments. These line 

segments are afterwards evaluated as obstacles. Then 

the 3D model of environment is created. 

The phase of 3D model evaluation is processed 

thanks to the stereovision. Pixels obtained by one of 

the cameras are ray-traced into the 3D model. This 

evaluation provides 3D position of every pixel. Now 

image of the second camera can be used for validation. 

All projected pixels from the first camera are re-

projected to the second camera. If the model is correct, 

then the re-projected and real image of the second 

camera has to be the same. Comparison is done by lo-

cal crosscorelation of intensities or color values. 

If the model is not correct, the depth information is 

extracted using the stereovision – epipolar geometry. 

There are many difficulties in using this approach. 

Poor texture information, the lightening, etc. are often 

the problem. 

This approach of fusion can be used for obstacle 

avoidance and mapping the robots surrounding envi-

ronment. As it was mentioned, this approach is better 

for indoor. 

3.2 Fusing grid cost maps of LIDAR and camera  

 In robotics and especially in branches such as map-

ping, localization and path planning the concept of oc-

cupancy grid map is often used. Grid occupancy map 

contains cells which define presence of an obstacle, 

free place, or unknown area. There is plethora of ap-

proaches how to obtain grid occupancy map. The me-

thod always depends on a type of a sensor. 

Authors Moghadam et al. used fusion of two grid oc-

cupancy maps in [2]. Obtaining the LIDAR occupancy 

grid map is quite straightforward. The authors use 

LIDAR which scans environment of the robot in 360° 

degreese. Occupancy grid map is constructed accord-

ing to the distance of returned point. 

To obtain occupancy grid map from stereovision, there 

are different approaches mentioned according to place 

of use the robot. Generally spoken, the dual-lens cam-

era provides complementary 3D information in a nar-

row field of view (66 degree) over a relatively short 

range (5 - 8m) in the environment. These observations 

provide measurements of objects of various heights 

and positions that permit the classification of the ter-

rain into „traversable‟ and „nontraversable‟ regions 

taking into consideration the dimensions of the robot. 

The obtained 3D structures and obstacle information 

are transformed into the 2D occupancy grid map. 

The fusion process of these 2D occupancy grid 

maps can be done by many less or more sophisticated 

methods. Authors choose the method of minimizing 

the probability of any failure due to omitted obstacle. 

 They used the maximum of the two obtained occu-

pancy grid maps to get the resultant value (empty – 

traversable, obstacle – nontraversable and unknown). 

The results of this method were successful. The 

principle of fusion was used for improvement of map-

ping and robot path planning. The examples showed 

that sometimes the 3D information derived from ste-

reovision can detect obstacles which were not detected 

by the LIDAR. On the other hand, the distance of the 



measurement of the stereovision is quite short, while 

LIDAR can mitigates this weakness. 

3.3 Feature vectors fusion of LIDAR and Image 

data 

In 2009, the comparison of methods of machine 

learning for LIDAR and camera data fusion was pub-

lished [3]. The Authors, Premebida et al. investigated 

the robustness of two possible ways of what and how 

to fuse. They evaluated the measurement on the sys-

tem of pedestrian detection using LIDAR and monocu-

lar camera. The two tested ways of fusion are the cen-

tralized and decentralized method. The centralized me-

thod works with low level features while the decentra-

lized works with high level features. 

15-dimensional feature vector was defined for 

LIDAR data. The features are for example: 
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― Linearity: this feature measures the straightness of 

the segment and corresponds to the residual sum 

of squares to a line xl,n fitted into the segment in 

the least-squares sense, where np is number of 

points.  

The full definition of LIDAR feature vector can be 

found in [3]. Data from LIDAR are first projected into 

the 2D occupancy grid map in Cartesian or polar 

space. Then feature vectors are extracted from the de-

fined segments Sk – often some kind of ROI. If vertical 

information is available, it has to be projected into the 

2D map. This feature vector is understood as a low 

level feature in terms of fusion.  

HOG - histogram of gradients and COV - cova-

riance matrix descriptor are used for image data. HOG 

descriptor‟s parameters were adapted and finally 81-

dimensional feature vector was used. 

COV was also utilized according to data. More de-

tails can be found in [3]. In the end 180-dimensional 

feature vector was used. 

3.3.1 Centralized fusion 

Feature vectors of LIDAR data and vision data were 

combined into one 276-dimensional feature vector, 

which was used as input for classification algorithms 

(Fishers LDA, RBF–SVM and MCI–NN). According 

to the authors, the best classifier - Fishers LDA pro-

vide 0.8 true positive by 0.1 false positive on the ROC 

curve. 

3.3.2 Decentralized fusion 

Feature vectors from LIDAR and vision were passed 

as unique inputs into different classifiers. The most ac-

curate methods were chosen just for the one type of 

feature vector and their results were fused by classifi-

cation method. In another words, results of single clas-

sification are inputs in to the main classifier which 

makes the decision. Fishers LDA, Naive Bayes, 

GMM, SVM and NN were used for single classifica-

tion. The most accurate single classifiers were naive-

Bayes for LIDAR data and Fishers LDA for visual da-

ta. It seems to be logical to fuse results of these most 

accurate single classifiers, but authors confirmed, ac-

cording to experiments, that for fusion is better so 

called “RMR - minimal-redundancy-maximal-

relevance” strategy. According to the MRMR strategy 

the GMM for LIDAR data and the Fishers LDA for 

visual data were chosen. Results were fused by GMM 

with accuracy 0.912 true positive by 0.1 false positive 

on the ROC curve. 

4 CONCLUSIONS 

The fusion of LIDAR data and vision data can be gen-

erally divided into: 

― Fusion of low level features 

― Fusion of high level features 

― Fusion of occupancy grid maps 

Often used for path planning and mapping 

― Fusion as model verification 

Rare described as first example of fusion 

Nowadays the autonomous robots and vehicles are ex-

panding from first prototypes into industry and com-

mon life. It is challenge to move the technology step 

ahead. Fusion is expectable aspect of providing more 

accurate input data for deciding, avoiding of critical 

sensor failures etc. 

This text describes three different methods of the 

LIDAR and the vision data fusion. Fusion as verifica-

tion is the first usable approach. 

Current and common approach is shown in the 

second example, where the fusion is built up on getting 

information from occupancy grid maps together. These 

are often used for defining robot surrounding envi-

ronment. 

The final approach uses feature extraction of both, 

LIDAR and visual data, to fuse them by trainable or 

nontrainable methods of machine learning. 

The goal of the summary is to provide a general 

overview of today‟s possibilities of data fusion, espe-

cially of LIDAR and vision data. 

It is not so common to use the data fusion for path 

planning, as it was described in the first example. On 

the other side, the approach of construction of the sim-



ple 3D indoor model seems to be appropriate for tasks 

where main basic model of surrounding walls is im-

portant and needed. 

The LIDAR and camera data fusion of the occupan-

cy grid maps is nowadays the most common approach 

of robot environment mapping and path planning. The 

application of the approaches built on combining oc-

cupancy maps seems to be effective and it is appropri-

ate for tasks of path planning and mapping. 

The third example of the LIDAR and camera data 

fusion shows measurable results of combining the in-

formation. The benefit is also in the use of the LIDAR 

features then the raw data from LIDAR, as it was de-

scribed in previous examples. 
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