
For submission to the Journal of Automata, Languages and Combinatorics
Created on May 12, 2023

HOW TO DEMONSTRATE CONTEXTFREENESS
BY TREE-RESTRICTED GENERAL GRAMMARS

Alexander Meduna Zbyněk Křivka Martin Havel Ondřej Soukup

Brno University of Technology, Faculty of Information Technology,
IT4Innovations Centre of Excellence, Božetěchova 1/2, 612 00 Brno,

Czech Republic
krivka@fit.vut.cz (Z. Křivka) xhavel44@stud.fit.vutbr.cz (M. Havel)

meduna@fit.vut.cz (A. Meduna)

ABSTRACT
This paper introduces derivation trees for general grammars in Kuroda normal forms.
Within these trees, it defines context-dependent pairs of nodes, which corresponds
to rewriting two neighboring symbols by a non-context-free rule. It proves that the
language generated by a general grammar in Kuroda normal form is context-free if
there is a constant k such that every sentence w in the generated language is the
frontier of a derivation tree in which any pair of neighboring paths contains k or fewer
context-dependent pairs of nodes. The paper explains that this result represents a
powerful tool for showing languages to be context-free. It sketches how to apply this
tool in practice.

Keywords: general grammars, Kuroda normal forms, derivation trees, context-freeness

1. Introduction

Formal language theory has always intensively struggled to establish conditions under
which general grammars generate a proper subfamily of the family of recursively
enumerable languages because results like this often significantly simplify proofs that
some languages are members of the subfamily. To illustrate, consider the well-known
workspace theorem for general grammars, which plays a crucially important role in the
grammatically oriented theory of formal languages as a whole (see Theorem III.10.1
in [14]). This theorem represents a powerful tool to demonstrate that if a general
grammar H generates each of its sentences by a derivation satisfying a prescribed
condition (specifically, this condition requires that there is a positive integer k such
that H generates every sentence y in the generated language L(H) by a derivation
in which every sentential form x satisfies |x| ≤ k|y|), then L(H) is a member of the
context-sensitive language family.

This work was supported by Brno University of Technology grant FIT-S-23-8209.

2 A. Meduna, Z. Křivka, M. Havel , O. Soukup

Concerning context-free languages, there have been achieved some results of this
kind, too. First of all, [9] states that for a grammar, the set of terminal strings
generated by left-to-right derivations is context-free. Second, [10] shows that the
set of terminal strings generated by two-way derivations is context-free, which is
further studied in [4]. Third, [3] demonstrates that a grammar generates a context-
free language if the left-hand side of every rule contains only one nonterminal with
terminal strings as the only context. Fourth, also [3] shows that if every rule of
a general grammar has as its left context a string of terminal symbols at least as
long as the right context, then the generated language is context-free. Fifth, [2]
demonstrates that a grammar generates a context-free language if the right-hand side
of every rule contains a string of terminals longer than any string of terminals between
two nonterminals in the left-hand side.

Finally, the latest and closest result in [5] shows that counting the maximal number
of non-context-free rules in a context-sensitive grammar used in a derivation leads to
a context-free language. Compared to our result, we are able to work with a general
grammar, not just context-sensitive, and we are able to work with an infinite number
of non-context-free rules in a derivation to show the membership in the context-free
language family if the conditions are fulfilled.

Continuing with this important investigation trend in the formal language theory,
the present paper establishes another result of this kind based upon a restriction
placed upon a graph-based representation of derivations in general grammars (note-
worthy, none of the previously mentioned results on this subject has approached it in
terms of the graph theory).

To give an insight into the new result achieved in the present paper, some termi-
nology is first needed to be sketched. Recall that a general grammar G is in Kuroda
normal form (see [8]) if any rule satisfies one of these forms:

AB → CD, A → BC, A → B, A → a, or A → ε,

where A, B, C, D are nonterminals, a is a terminal, and ε is the empty string. We
define the notion of a derivation tree t graphically representing a derivation in G by
analogy with this notion in terms of an ordinary context-free grammar (see Defini-
tion 6.8 on page 92 in [11]). In addition, however, we introduce context-dependent
pairs of nodes in t as follows. In t, two paths are neighboring if no other path occurs
between them. Let p and q be two neighboring paths in t. Let p contain a node k
with a single child l, where k and l are labeled with A and C, respectively, and let q
contain a node m with a single child n, where m and n are labeled with B and D,
respectively. Let this four-node portion of t; consisting of k, l, m, and n; graphically
represents an application of AB → CD. Then, k and m are a context-dependent pair
of nodes (see Fig. 1).

Making use of the terminology sketched above, we are now ready to explain the
main result of this paper. It says that the language of G, L(G), is context-free if and
only if there is a constant k such that every w ∈ L(G) is the frontier of a derivation
tree d in which any pair of neighboring paths contains k or fewer context-dependent
pairs of nodes. Apart from its obvious theoretical value, this result may be of some
interest in practice, too. Specifically, some language processors, such as compiler

How to Demonstrate Contextfreeness by Tree-Restricted General Grammars 3

...

rp q

...

kA

lC

...

...

m B

n D

...

context dependency

Figure 1: Illustration of context dependency in t

parsers, frequently require that the languages processed by them be context-free. As
context dependency is obvious, the result stated above may play a useful role during
the verification of this requirement.

The paper is organized as follows. First, Sections 2 and 3 give all the necessary
terminology. Then, Section 4 establishes the main result of this paper. Finally,
Section 5 closes this paper by showing an application perspective of the main result.

2. Preliminaries

We assume that the reader is familiar with discrete mathematics, including graph
theory (see [1, 7, 6]) and formal language theory (see [11, 14, 13]).

A directed graph G is a pair G = (V, E), where V is a finite set of nodes and
E ⊆ V × V is a finite set of edges. For a node v ∈ V , the number of edges of the form
(x, v) ∈ E, x ∈ V , is called an in-degree of v and is denoted by in-d(v). For a node
v ∈ V , the number of edges of the form (v, x) ∈ E, x ∈ V , is called an out-degree of
v and is denoted by out-d(v). Let (v0, v1, . . . , vn) be an n-tuple of nodes, for some
n ≥ 0, where vi ∈ V , for 0 ≤ i ≤ n, and assume there exists an edge (vk, vk+1) ∈ E,
for every pair of nodes vk, vk+1, where 0 ≤ k ≤ n − 1, then, we call it a path of the
length n. Let (v0, v1, . . . , vn) be a path in G, for some n ≥ 0, and v0 = vn, then we call
it cycle. A graph G is acyclic if it does not contain any cycle. Referring to a n-tuple
of nodes, we sometimes omit brackets and commas if there is no risk of confusion.

For a set W , card(W) denotes its cardinality. An alphabet is a finite nonempty set
—- the elements are called symbols. Let V be alphabet. V ∗ is the set of all strings over
V. Algebraically, V ∗ represents the free monoid generated by V under the operation of
concatenation. The identity of V ∗ is denoted by ε. Set V + = V ∗ −{ε}. Algebraically,
V + is thus the free semigroup generated by V under the operation of concatenation.

4 A. Meduna, Z. Křivka, M. Havel , O. Soukup

For w ∈ V ∗ and a ∈ V , |w| denotes the length of w and #a(w) denotes the number
of occurrences of the symbol a in w. The alphabet of w, denoted by alph(w), is the
set of symbols appearing in w. For i, j ≥ 0, define min(i, j) = i if i < j, otherwise
min(i, j) = j.

Let ⇒ be a relation over V ∗. Define the i-th power of ⇒ as ⇒i, for i ≥ 0. The
transitive and transitive-reflexive closure of ⇒ is denoted by ⇒+ and ⇒∗, respectively.
Unless explicitly stated otherwise, we write x ⇒ y instead of (x, y) ∈ ⇒ throughout.

The families of context-free, context-sensitive, and recursively enumerable lan-
guages are denoted by CF, CS, and RE, respectively.

Furthermore, we assume that the reader is familiar with Turing machines and their
equivalence to general grammars (see [11]).

3. Definitions and Examples

Definition 1. An (oriented) tree is a directed acyclic graph G = (V, E), with a
specified node r̂ ∈ V called root such that in-d(r̂) = 0, and for all x ∈ V − {r̂},
in-d(x) = 1 and there exists a path (v0, v1, . . . , vn), where v0 = r̂, vn = x, for some
n ≥ 1. For v, u ∈ V , where (v, u) ∈ E, v is called a parent of u, and u is called a child
of v, respectively. For v, u, z ∈ V , where (v, u), (v, z) ∈ E, u is called a sibling of z.
A node without children is called a leaf.

Let G = (V, E) be a tree. Define the relation < over V as follows. For a path
α = (m0, m1, . . . , mk), where m0 = r̂, mi < mk, 0 ≤ i ≤ k − 1, mi is called a
predecessor of mk and mk is called a descendant of mi.

An ordered tree t is a tree, where for every set of siblings there exists a linear
ordering. Assume o has the children n1, n2, . . . , nr ordered in this way, where r ≥ 1.
Then, n1 is the leftmost child of o, nr is the rightmost child of o and ni is the direct
left sibling of ni+1, ni+1 is the direct right sibling of ni, 1 ≤ i ≤ r − 1, and for
1 ≤ j < k ≤ r, nj is a left sibling of nk and nk is a right sibling of nj . Let us extend
the ordering according to the transitive closure of parent-children relation. Then, for
a tree t we have a left-to-right ordered sequence of leafs l1, l2, . . . , lk, for some k ≥ 1.

An ordered tree is called labeled, if there exists a set of labels L and a total mapping
l : V → L. Let t be a labeled ordered tree, then the string of labels of all leaves written
in the left-to-right order is called frontier of t and is denoted by frontier(t). In what
follows, we substitute a node of a tree by its label if there is no risk of confusion.

Let t be an ordered tree, and let t contain node o. Let α = (o, m1, m2, . . . , mr) and
β = (o, n1, n2, . . . , ns) be two paths in t, for some r, s ≥ 1, such that o is the parent
of m1 and n1, where

(I) m1 is the direct left sibling of n1;
(II) mi is the rightmost child of mi−1, and nj is the leftmost child of nj−1, 2 ≤ i ≤ r,

2 ≤ j ≤ s.
Then, α and β are two neighboring paths in t, α is a left neighboring path to β, and
β is a right neighboring path to α.

Let us demonstrate the defined notions by the following example.

How to Demonstrate Contextfreeness by Tree-Restricted General Grammars 5

Example 2. The following graph (Fig. 2.) represents a labeled ordered tree t. Since
any two distinct nodes have different labels, we will refer to their labels below. The
root node r̂ is a. It has no parent and two children b and c. Then, b is a sibling of c
and c is a sibling of b. The leftmost child of b is d, while the rightmost is f . The node
d is a left sibling of f , however, it is not the direct left sibling, which is e. The node
f is the parent of k, but k has no child, so it is a leaf node. horksmn = frontier(t).
Consider the node e. The nodes a and b are predecessors of e, while i, j, o, p, and r
are descendants of e’. The nodes c or d are not in predecessor relation with e, as they
are neither predecessors of e, nor descendants of e. The sequence of nodes bejpr is a
path in t. The path bfk is neighboring to bejpr; unlike abfk, eio or bdh.

a

b

d

h

e

i

o

j

p

r

f

k

c

g

l

q

s

m n

Figure 2: Labeled ordered tree t

Definition 3. A general grammar (GG for short) G is a quadruple G = (V , T , P ,
S), where V = T ∪ N is a total alphabet, T is a terminal alphabet, N is a nonterminal
alphabet, P ⊆ (V − T)∗ × V ∗ is a finite set of rules. Instead of p : (x, y) ∈ P , where p
is a unique label, we write p : x → y. A rule and its label are interchangeable. S ∈ N
is a start symbol.

For every u, v ∈ V ∗ and p : x → y ∈ P , ⇒ is the direct derivation relation over V ∗

and we write uxv ⇒ uyv [p] or simply uxv ⇒ uyv. For n ≥ 0, ⇒n denotes the n-th
power of ⇒. Furthermore, ⇒+ and ⇒∗ denote the transitive and transitive-reflexive
closure of ⇒, respectively. Let F (G) = {w ∈ V ∗ | S ⇒∗ w} denotes the set of all
sentential forms of G. The language of G is L(G) = {w ∈ T ∗ | w ∈ F (G)}.

G is context-sensitive if x → y ∈ P implies |x| ≤ |y|. A rule x → y ∈ P is called
context-free if its left-hand side consists of a single nonterminal; otherwise, it is a non-
context-free rule. The grammar G is context-free if it has only context-free rules. In
what follows, unless explicitly stated otherwise, we automatically assume that every
general grammar and context-sensitive grammar is in Kuroda normal form.

GGs, context-sensitive GGs, and context-free GGs characterize RE, CS, and CF,
respectively (see [13]).

Theorem 4. A language L is recursively enumerable iff L = L(G), where G is a
general grammar in the Kuroda normal form.

6 A. Meduna, Z. Křivka, M. Havel , O. Soukup

Proof. A language L is recursively enumerable iff L is generated by general grammar.
Every GG can be converted to the Kuroda normal form (see Chapter 4 in [13]). □

Definition 5. Let t be a labeled ordered tree. The left-bracketed representation of
t denoted by l-rep(t) can be obtained by applying the following recursive rules:

(I) If t has a root labeled r̂ with subtrees t1, . . . , tk ordered in this way, then

l-rep(t) = r̂⟨l-rep(t1), . . . , l-rep(tk)⟩.

(II) If t has a root labeled r̂ with no direct descendants, then l-rep(t) = r̂.

Example 6. Consider labeled ordered tree t from Example 2. The left-bracketed
representation of t is as follows.

a⟨b⟨d⟨h⟩e⟨i⟨o⟩j⟨p⟨r⟩⟩⟩f⟨k⟩⟩c⟨g⟨l⟨q⟨s⟩⟩mn⟩⟩⟩

Definition 7. Let G = (V, T, P, S) be a GG in the Kuroda normal form.
(I) For p : A → x ∈ P , A⟨x⟩ is the rule tree that represents p.

(II) The derivation trees representing derivations in G are defined recursively as
follows:
(A) One-node tree with a node labeled X is the derivation tree corresponding

to X ⇒0 X in G, where X ∈ V . If X = ε, we refer to the node labeled X
as ε-node (ε-leaf); otherwise, we call it non-ε-node (non-ε-leaf).

(B) Let d be the derivation tree with frontier(d) = uAv representing X ⇒∗

uAv [ϱ] and let p : A → x ∈ P . The derivation tree that represents

X ⇒∗ uAv [ϱ] ⇒ uxv [p]

is obtained by replacing the ith non-ε-leaf in d labeled A, with rule tree
corresponding to p, A⟨x⟩, where i = |uA|.

(C) Let d be the derivation tree with frontier(d) = uABv representing X ⇒∗

uABv [ϱ] and let p : AB → CD ∈ P . The derivation tree that represents

X ⇒∗ uABv [ϱ] ⇒ uCDv [p]

is obtained by replacing the ith and (i + 1)th non-ε-leaf in d labeled A and
B with A⟨C⟩ and B⟨D⟩, respectively, where i = |uA|.

(III) A derivation tree in G is any tree t for which there is a derivation represented
by t (see II in this definition).

Note, after replacement in II.C, the nodes A and B are the parents of the new leaves
C and D, respectively, and we say that A and B are context-dependent, alternatively
speaking, we say that there is a context dependency between A and B. In a derivation
tree, two nodes are context-independent if they are not context-dependent.

Then, for any p : A → x ∈ P , G△(p) denotes rule tree corresponding to p. For any
A ⇒∗ x [ϱ] in G, where A ∈ N , x ∈ V ∗, and ϱ ∈ P ∗, G△(A ⇒∗ x [ϱ]) denotes the
derivation tree corresponding to A ⇒∗ x [ϱ]. Just like we often write A ⇒∗ x instead

How to Demonstrate Contextfreeness by Tree-Restricted General Grammars 7

of A ⇒∗ x [ϱ], we sometimes simplify G△(A ⇒∗ x [ϱ]) to G△(A ⇒∗ x) in what follows
if there is no danger of confusion. Let G▲ denotes the set of all derivation trees in
G. Finally, by G△x ∈ G▲, we mean a derivation tree whose frontier is x, where
x ∈ F (G).

If a node is labeled with a terminal, it is called a terminal node. If a node is labeled
with a nonterminal, it is called a nonterminal node.

Let α = (o, m1, m2, . . . , mr) and β = (o, n1, n2, . . . , ns) be two neighboring paths,
where r, s ≥ 0, α is the left neighboring path to β, and mr and ns are terminal
nodes. Then, there is a t-tuple γ = (g1, g2, . . . , gt) of nodes from α and t-tuple
δ = (h1, h2, . . . , ht) of nodes from β, where gp < gq, for 1 ≤ p < q ≤ t, t < min(r, s),
and gi and hi are context-dependent, for 1 ≤ i ≤ t. Let ϱ = p1p2 . . . pt be a string
of non-context-free rules corresponding to context dependencies between γ and δ.
We call ϱ the right context of α and the left context of β or the context of α and
β. Consider a node mi, where 1 ≤ i ≤ r, and two (t − k + 1)-tuples of nodes
σ = (gk, gk+1, . . . , gt) and φ = (hk, hk+1, . . . , ht), where k is a minimal integer such
that mi < gk. Then, a string of non-context-free rules τ = pkpk+1 . . . pt corresponding
to context dependencies between σ and φ is called the right descendant context of mi,
for some 1 ≤ k ≤ t. Analogously, we define the notion of the left descendant context
of a node nj in β, for some 1 ≤ j ≤ s.

Example 8. Let G = (V , T , P , S) be a general grammar, where V = {S, Sa, Sb,
X, Xa, Xb, Za, Zb, A, 1, 2, 3, Ax, a, a, B, Bx, b, b}, T = {a, b}, and P contains the
following rules:

(1) S → SaBx

(2) S → SbAx

(3) Sa → ZaX

(4) Sb → ZbX

(5) X → XX

(6) X → AB

(7) X → BA

(8) X → AXb

(9) X → BXa

(10) Xa → XA

(11) Xb → XB

(12) ZaA → AZa

(13) ZaB → BZa

(14) ZbA → AZb

(15) ZbB → BZb

(16) Za → A

(17) Zb → B

(18) AB → AxB

(19) BA → BxA

(20) BAx → BxAx

(21) AA → a1
(22) 1A → a2
(23) 2A → a3
(24) 3Ax → aa

(25) Ax → a

(26) AAx → aa

(27) 1Ax → aa

(28) 2Ax → aa

(29) BB → bBx

(30) BxB → bBx

(31) BxBx → bb

(32) a → a

(33) b → b

8 A. Meduna, Z. Křivka, M. Havel , O. Soukup

At this point, let us make only an informal observation that L(G) is the language
of all nonempty strings above T consisted of an equal number of as and bs, where
every sequence of as is of a length between 1 and 5 and every sequence of bs is longer
or equal 3. A rigorous proof comes later.

The string aabbba can be obtained by the following derivation:

S ⇒ SbAx [2] ⇒ ZbXAx [4]
⇒ ZbAXbAx [8] ⇒ ZbAXBAx [11]
⇒ ZbAABBAx [6] ⇒ AZbABBAx [14]
⇒ AAZbBBAx [14] ⇒ AABBBAx [17]
⇒ AAxBBBAx [18] ⇒ AAxBBBxAx [20]
⇒ aaBBBxAx [26] ⇒ aabBxBxAx [29]
⇒ aabbbAx [31] ⇒ aabbba [25]
⇒ aabbba [32] ⇒ aabbba [32]
⇒ aabbba [33] ⇒ aabbba [33]
⇒ aabbba [33] ⇒ aabbba [32]

A graph representing G△(S ⇒∗ aabbba) is illustrated on Fig. 3.

S

Sb

Zb

A

a

a

X

A

Zb

A

Ax

a

a

Xb

X

A

Zb

B

B

b

b

B

Bx

b

b

B

Bx

b

b

Ax

Ax

a

a

14

14

18

20

26

29

31

Figure 3: G△aabbba

Let us note that dashed lines, numbers, and double-circle contour only denote the
context dependencies, applied non-context-free rules, and a specific node, respectively,

How to Demonstrate Contextfreeness by Tree-Restricted General Grammars 9

and are not the part of the derivation tree.
Pairs of context-dependent nodes are linked with dashed lines, all the other nodes

are context-independent. Since aabbba = frontier(G△aabbba), all leaves are terminal
nodes. Every other node is a nonterminal node. For a pair of neighboring paths
α = SbZbAaa and β = SbXAZbAAxaa, a string ϱ = 14 26 is their context, it is
the left context of β and the right context of α. Consider the double circled node A.
Then, τ = 26 is the left descendant context of A and φ = 14 18 is the right descendant
context of A.

4. Results

Theorem 9. A language L is context-free iff there is a constant k ≥ 0 and a general
grammar G such that L = L(G) and for every x ∈ L(G), there is a tree G△x ∈ G▲
that satisfies:

(I) any two neighboring paths contain no more than k pairs of context-dependent
nodes;

(II) out of neighboring paths, every pair of nodes is context-independent.

Proof. Construction. Consider any k ≥ 0. Let G = (V, T, P, S) be a GG such that
L(G) = L. Set N = V − T . Let Pcs ⊆ P denote the set of all non-context-free rules
of G. Set

N ′ = {Al|r | A ∈ N, l, r ∈ (Pcs ∪ {ε})k}.

Construct a grammar G′ = (V ′, T, P ′, Sε|ε), where V ′ = N ′∪T . Set P ′ = ∅. Construct
P ′ by performing I through IV given next.

(I) For all A → B ∈ P , A, B ∈ N , and l, r ∈ (Pcs ∪ {ε})k, add Al|r → Bl|r to P ′;
(II) for all A → a ∈ P , A ∈ N , a ∈ (T ∪ {ε}), add Aε|ε → a to P ′;

(III) for all A → BC ∈ P , where A, B, C ∈ N , and r, l, x ∈ (Pcs ∪ {ε})k, add
Al|r → Bl|xCx|r to P ′;

(IV) for all p : AB → CD ∈ P , A, B, C, D ∈ N , x, z ∈ (Pcs ∪ {ε})k, and y ∈
(Pcs ∪ {ε})k−1, add Ax|py → Cx|y and Bpy|z → Dy|z to P ′.

Basic idea. Notice nonterminal symbols. Since every pair of neighboring paths of G
contains a limited number of context-dependent nodes, all of its context-dependencies
are encoded in nonterminals. G′ nondeterministically decides about all context-
dependencies while introducing a new pair of neighboring paths by rules III. A new
pair of neighboring paths is introduced with every application of

Al|r → Bl|xCx|r,

where x encodes a new descendant context. Context dependencies are realized later
by context-free rules IV.

Since P ′ contains no non-context-free rule, G′ is context-free. Next, we proof L(G) =
L(G′) by establishing Claims 1 through 3. Define the new homomorphism γ : V ′ → V ,
γ(Al|r) = A, for Al|r ∈ N ′, and γ(a) = a otherwise.

10 A. Meduna, Z. Křivka, M. Havel , O. Soukup

Claim 1. If S ⇒m w in G, where m ≥ 0 and w ∈ V ∗, then Sε|ε ⇒∗ w′ in G′, where
w′ ∈ V ′∗ and γ(w′) = w.

Proof. We prove this by induction on m ≥ 0.

Basis. Let m = 0. That is S ⇒0 S in G. Clearly, Sε|ε ⇒0 Sε|ε in G′, where
γ(Sε|ε) = S, so the basis holds.

Induction Hypothesis. Suppose that there exists n ≥ 0 such that Claim 1 holds for all
0 ≤ m ≤ n.

Induction Step. Let S ⇒n+1 w in G. Then, S ⇒n v ⇒ w, where v ∈ V ∗, and there
exists p ∈ P such that v ⇒ w [p]. By the induction hypothesis, Sε|ε ⇒∗ v′, where
γ(v′) = v, in G′. Next, we consider the following four forms of p.

(I) Let p : A → B ∈ P , for some A, B ∈ N . Without any loss of generality,
suppose l and r are a left descendant context and a right descendant context
of A. By the construction of G′, there exists a rule p′ : Al|r → Bl|r ∈ P ′,
where Al|r, Bl|r ∈ v′. Then, there exists a derivation v′ ⇒ w′ [p′] in G′, where
γ(w′) = w.

(II) Let p : A → a ∈ P , for some A ∈ N and a ∈ T ∪{ε}. Since a is a terminal node,
it has empty descendant contexts. By the construction of G′, there exists a rule
p′ : Aε|ε → a ∈ P ′, where Aε|ε ∈ v′. Then, there exists a derivation v′ ⇒ w′ [p′]
in G′, where γ(w′) = w.

(III) Let p : A → BC ∈ P , for some A, B, C ∈ N . Without any loss of generality,
suppose l and r are a left descendant context and a right descendant context
of A, and x ∈ (Pcs ∪ {ε})k is a context of neighboring paths beginning at this
node. By the construction of G′, there exists a rule p′ : Al|r → Bl|xCx|r ∈ P ′,
where Al|r, Bl|r, Cx|r ∈ v′. Then, there exists a derivation v′ ⇒ w′ [p′] in G′,
where γ(w′) = w.

(IV) Let p : AB → CD ∈ P , for some A, B, C, D ∈ N . By the assumption stated
in Theorem 9, A and B occur in two neighboring paths denoted by α and β,
respectively. Without any loss of generality, suppose that a context of α and
β is a string c ∈ (Pcs ∪ ε)k, where c = pcf , and l is a left descendant context,
r is a right descendant context of A, B, respectively. By the construction of
G′, there exist two rules

p′
l : Al|pcf

→ Cl|cf
, p′

r : Bpcf |r → Dcf |r ∈ P ′,

where Al|pcf
, Cl|cf

, Bpcf |r, Dcf |r ∈ v′. Then, there exists a derivation v′ ⇒2

w′ [p′
lp

′
r] in G′, where γ(w′) = w.

Notice (IV). The preservation of the context is achieved by nonterminal symbols.
Since the stored context is reduced symbol by symbol from left to right direction in
both α and β, G′ simulates the applications of non-context-free rules of G.

We covered all possible forms of p, so the claim holds. □□

How to Demonstrate Contextfreeness by Tree-Restricted General Grammars 11

Claim 2. Every x ∈ F (G′) can be derived in G′ as follows.

Sε|ε = x0 ⇒d1 x1 ⇒d2 x2 ⇒d3 · · · ⇒dh−1 xh−1 ⇒dh xh = x,

for some h ≥ 0, where di ∈ {1, 2}, 1 ≤ i ≤ h, so that
(I) if di = 1, then xi−1 = uAl|rv, xi = uzv, xi−1 ⇒ xi [Al|r → z], where u, v ∈ V ′∗,

z ∈ {Bl|r, Cl|xDx|r, a}, for some Al|r, Bl|r, Cl|x, Dx|r ∈ N ′, a ∈ (T ∪ {ε});

(II) if di = 2, then xi−1 = uAx|pyBpy|zv, xi = uCx|yDy|zv, and

uAx|pyBpy|zv ⇒ uCx|yBpy|zv [Ax|py → Cx|y] ⇒ uCx|yDy|zv [Bpy|z → Dy|z],

for some u, v ∈ V ′∗ and Ax|py, Bpy|z, Cx|y, Dy|z ∈ N ′.

Proof. Since G′ is context-free, without any loss of generality in every derivation of
G′ we can always reorder applied rules to satisfy Claim 2. □□

Claim 3. Let Sε|ε ⇒d1 x1 ⇒d2 · · · ⇒dm−1 xm−1 ⇒dm xm in G′ be a derivation that
satisfies Claim 2, for some m ≥ 0. Then, S ⇒∗ w in G, where γ(xm) = w.

Proof. We prove this by induction on m ≥ 0.

Basis. Let m = 0. That is Sε|ε ⇒0 Sε|ε in G′. Clearly, S ⇒0 S in G. Since
γ(Sε|ε) = S, the basis holds.

Induction Hypothesis. Suppose that there exists n ≥ 0 such that Claim 3 holds for all
0 ≤ m ≤ n.

Induction Step. Let Sε|ε ⇒d1 x1 ⇒d2 · · · ⇒dn−1 xn−1 ⇒dn xn ⇒dn+1 xn+1 in G′ be
a derivation that satisfies Claim 2. By the induction hypothesis, S ⇒∗ v, v ∈ V ∗,
where γ(xn) = v, in G. Divide the proof into two parts according to dn+1.

(A) Let dn+1 = 1. By the construction of G′, there exists a rule p′ ∈ P ′ such that
xn ⇒dn+1 xn+1 [p′]. Next, we consider the following three forms of p′.

(I) Let p′ : Al|r → Bl|r ∈ P ′, for some A, B ∈ N and l, r ∈ (Pcs ∪ {ε})k. By
the construction of G′, rule p′ was introduced by some rule p : A → B ∈ P .
Then, there exists a derivation v ⇒ w [p], where γ(xn+1) = w.

(II) Let p′ : Aε|ε → a ∈ P ′, for some A ∈ N and a ∈ T ∪ {ε}. By the
construction of G′, rule p′ was introduced by some rule p : A → a ∈ P .
Then, there exists a derivation v ⇒ w [p], where γ(xn+1) = w.

(III) Let p′ : Al|r → Bl|xCx|r ∈ P ′, for some A, B, C ∈ N and l, r, x ∈ (Pcs ∪
{ε})k. By the construction of G′, rule p′ was introduced by some rule
p : A → BC ∈ P . Then, there exists a derivation v ⇒ w [p], where
γ(xn+1) = w.

12 A. Meduna, Z. Křivka, M. Havel , O. Soukup

(B) Let dn+1 = 2. Then, xn ⇒dn+1 xn+1 is equivalent to

u1Ax|pyBpy|zu2 ⇒ u1Cx|yBpy|zu2 [p′
1] ⇒ u1Cx|yDy|zu2 [p′

2],

where xn = u1Ax|pyBpy|zu2, xn+1 = u1Cx|yDy|zu2, and

p′
1 : Ax|py → Cx|y, p′

2 : Bpy|z → Dy|z ∈ P ′,

for some u1, u2 ∈ V ′∗ and Ax|py, Bpy|z, Cx|y, Dy|z ∈ N ′. By the construction
of G′, rules p′

1 and p′
2 were introduced by some rule p : AB → CD ∈ P , Then,

there exists a derivation v ⇒ w [p], where γ(xn+1) = w.

We covered all possibilities, so the claim holds. □□

By Claims 1 and 3, S ⇒∗ w in G iff Sε|ε ⇒∗ w′ in G′, where γ(w′) = w. If S ⇒∗ w
in G and w ∈ T ∗, then w ∈ L(G). Since γ(w′) = w′ = w, for w ∈ T ∗, w′ ∈ L(G′).
Therefore, L(G) = L(G′) and Theorem 9 holds. □

Consider Theorem 9. Observe that the second condition is superfluous whenever
G is context-sensitive. Since a grammar is in the Kuroda normal form and no symbol
can be erased, all context dependencies are within pairs of neighboring paths.

Theorem 10. A language L is context-free iff there is a constant k ≥ 0 and a
context-sensitive grammar G such that L = L(G) and for every x ∈ L(G), there is
a tree G△x ∈ G▲, where any two neighboring paths contain no more than k pairs of
context-dependent nodes.

Proof. Prove this by analogy with the proof of Theorem 9. □

5. Use

In this section, we explain how to apply the results achieved in the previous sec-
tion in order to demonstrate the contextfreeness of a language, L. As a rule, this
demonstration follows the next three-step proof scheme.

(I) Construct a general grammar G in the Kuroda normal form.
(II) Prove L(G) = L.

(III) Prove that G satisfies conditions from Theorem 9 or Theorem 10, depending on
whether G is context-sensitive.

Reconsider the grammar G from Example 8. Following the proof scheme sketched
above, we next prove that L(G) ∈ CF.

Consider G constructed in Example 8. Next, we show that for G,
L(G) = {w ∈ (A ∪ {ε})(BA)∗(B ∪ {ε}) | #a(w) = #b(w),

A = {ai | 1 ≤ i ≤ 5}, B = {bi | i ≥ 3}, and |w| > 0}.

Without any loss of generality, every terminal derivation of G can be divided into
the following 5 phases, where each rule may be used only in a specific phase:

How to Demonstrate Contextfreeness by Tree-Restricted General Grammars 13

(a) 1–4 (b) 5–11 (c) 12–17 (d) 18–31 (e) 32–33
Next, we describe these phases in a greater detail.

(a) First, we generate one of the following two strings by rules 1 through 4.

ZaXBx, ZbXAx

Possibly applicable rule 25 may be postponed for phase (d) without affecting the
derivation, since rules in the previous phases cannot rewrite Ax.

(b) The rules 5 through 11 are the only with X, Xa, or Xb on their left-hand sides,
therefore we can group all their applications in a sequence to get a sentential
form from

{Za, Zb}{A, B}∗{Ax, Bx}.

(c) The rules 12 through 17 possibly shift Za or Zb to the right and rewrite it to A
or B, respectively. Since these rules are the only with Za, Zb on their left-hand
sides, they can be always prioritized before the rest of rules without any loss of
generality.

{A, B}∗{Ax, Bx}

(d) All the remaining rules may be applied in this phase. However, we can exclude
rules 32 and 33, so we get a sentential form from

{a, b}∗.

(e) Since rules 32 and 33 are context-free and produce terminal symbols, they can
be always postponed until the end of any successful derivation.

{a, b}∗ = T ∗

Let us add a few remarks concerning (a) through (e).
Phase (a) is very straightforward. Only notice that it is decided whether the

generated string finally ends with a or b and the paired symbol is stored in Za or Zb

for phase (c).
In phase (b) an arbitrary string of As and Bs is generated from the initial symbol

X. However, for every A, one B is generated and vice versa, so their numbers are
always kept equal.

In phase (a) the grammar decides about the last symbol and stores the paired one,
which, however, need not to be the first one. Therefore phase (c) determines its final
position, while possibly shifting it to the right and finally rewriting to A or B.

Phase (d) is the most tricky. It starts with a sentential form wc, where w ∈ {A, B}∗,
c ∈ {Ax, Bx}. Informally speaking, it consists of the sequences of As which should be
at most 5 symbols long, and Bs which should be at least 3 symbols long. Rules 18

14 A. Meduna, Z. Křivka, M. Havel , O. Soukup

through 31 are designed to ensure these restrictions. To give an example, suppose wc
is as follows.

wc = AAAABBBBABBBAAx

First, by rules 18 through 20 the last symbol in every sequence is marked with index
x. Otherwise, rules 24 through 28 and rule 31 never become applicable and all the
unmarked sequences become permanent resulting into an unsuccessful derivation. The
last sequence is already marked.

AAAABBBBABBBAAx

⇒ AAAAxBBBBABBBAAx [18]
⇒ AAAAxBBBBAxBBBAAx [18]
⇒ AAAAxBBBBxAxBBBAAx [20]
⇒ AAAAxBBBBxAxBBBxAAx [19]

Notice, one symbol sequence of As is legal. Then, every sequence of As is processed in
left-to-right direction by rules 21 through 24, but can be successfully rewritten earlier
by rules 25 through 28, in the case it consists of less than 5 symbols. Thus, a longer
sequence leads to an unsuccessful derivation.

AAAAxBBBBxAxBBBxAAx

⇒ a1AAxBBBBxAxBBBxAAx [21]
⇒ aa2AxBBBBxAxBBBxAAx [22]
⇒ aaaaBBBBxAxBBBxAAx [27]
⇒ aaaaBBBBxaBBBxAAx [25]
⇒ aaaaBBBBxaBBBxaa [26]

If the processing does not start from the leftmost symbol in the current sequence, it
remains permanent. Every sequence of Bs is processed by applying rule 29, zero or
multiple times rule 30, and finally rule 31. It ensures the lengths of sequences of Bs
are at least 3 symbols.

aaaaBBBBxaBBBxaa

⇒ aaaabBxBBxaBBBxaa [29]
⇒ aaaabbBxBxaBBBxaa [30]
⇒ aaaabbbbaBBBxaa [31]
⇒ aaaabbbbabBxBxaa [29]
⇒ aaaabbbbabbbaa [31]

Notice, it depends on the order of applied rules only within one sequence. Multiple
sequences may be processed at random without affecting the derivation.

In phase (e), a resulting terminal string is generated by rules 32 and 33.

aaaabbbbabbbaa ⇒∗ aaaabbbbabbbaa

How to Demonstrate Contextfreeness by Tree-Restricted General Grammars 15

Therefore, if the derivation is terminating, we achieve a string with an equal number
of as and bs, where every sequence of as is at most 5 symbols long and every sequence
of bs is at least 3 symbols long.

Grammar G is obviously a context-sensitive grammar in the Kuroda normal form.
Let us now show that for any x ∈ L(G), there is G△x ∈ G▲, where any two neigh-
boring paths contain no more than 2 pairs of context-dependent nodes.

Every pair of context-dependent nodes in G△x corresponds to one non-context-free
rule in S ⇒∗ x. Consider the six phases sketched above. Observe that phases (a),
(b), and (e) contain only context-free rules, so we have only to investigate (c) and
(d). On the other hand, (c) and (d) contain no rule of the form A → BC, thus the
number of neighboring paths remains unchanged.

In (c) by rules 12 through 17 the derivation may proceed in left-to-right direction
through the whole sentence form (except the rightmost symbol) introducing a context
dependency between every pair of neighboring paths.

In (d), first, the context dependency is introduced between all neighboring paths
representing the borders between the sequences of As and Bs by rules 18 through
20. Second, every sequence of As or Bs is processed in the left-to-right direction by
non-context-free rules 21 through 31 introducing a context dependency between all
neighboring paths representing symbols inside the sequences of As and Bs.

No other non-context-free rule is applied, therefore, no other context-dependent
pair of nodes can occur. Then, every pair of neighboring paths may contain at most
one context-dependent pair of nodes introduced in phase (c) and one introduced in
phase (d).

Since G is a context-sensitive grammar in the Kuroda normal form, where for
every x ∈ L(G), there is G△x ∈ G▲, where any two neighboring paths contain no
more than 2 pairs of context-dependent nodes, by Theorem 10, L(G) ∈ CF.

As a concluding result, we evaluate the results and discuss the decidability of a
problem whether a given general grammar satisfies the properties from Theorem 9.
Since Theorem 9 proves the equivalence, it suffices to prove that it is undecidable to
say whether a given general grammar generates a context-free language.

Theorem 11. The problem of the membership to the family of context-free languages
for a general grammar is undecidable.

Proof. Any language generated by a general grammar can be generated by a Turing
machine. Therefore, for this nontrivial semantic property, Rice’s theorem (see [12])
proves that it is undecidable. □

Observe that the main result does not try to provide a general solution. The
algorithm is a tool for proving that a subset of general grammars can be converted to
context-free grammars. This algorithm applied to a general grammar with a certain
condition met, where proof and conversion are not trivial, provides a powerful tool
to show the membership to a context-free languages, which is filling another gap in
the theory of formal languages. The results have also an application perspective such
as context-free grammars are more compatible with compilers designs, parsing, and
natural language processing.

16 A. Meduna, Z. Křivka, M. Havel , O. Soukup

References

[1] A. Aho, J. Ullman, The Theory of Parsing, Translation, and Compiling. Prentice-
Hall, Series in Automatic Computation, 1972.

[2] B. S. Baker, Non-context-free grammars generating context-free languages. Informa-
tion and Control 24 (1974) 3, 231–246.

[3] R. V. Book, Terminal context in context-sensitive grammars. SIAM J. Comput. 1
(1972) 1, 20–30.

[4] R. V. Book, On the structure of context-sensitive grammars. International Journal of
Computer & Information Sciences 2 (1973), 129–139.

[5] H. Bordihn, V. Mitrana, On the degrees of non-regularity and non-context-freeness.
Journal of Computer and System Sciences 108 (2020), 104–117.

[6] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms (Appendix B.5).
McGraw-Hill, 2002.

[7] M. A. Harrison, Introduction to Formal Language Theory. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1978.

[8] S.-Y. Kuroda, Classes of languages and linear-bounded automata. Information and
Control 7 (1964), 207–223.

[9] G. Matthews, A note on asymmetry in phrase structure grammars. Information and
Control 7 (1964) 3, 360–365.

[10] G. Matthews, Two-way languages. Information and Control 10 (1967) 2, 111–119.
[11] A. Meduna, Formal Languages and Computation: Models and Their Applications.

Taylor & Francis, New York, 2014.
[12] H. G. Rice, Classes of recursively enumerable sets and their decision problems. Trans-

actions of the American Mathematical Society 74 (1953), 358—-366.
[13] G. Rozenberg, A. Salomaa, Handbook of Formal Languages, Vol. 1: Word, Lan-

guage, Grammar . Springer-Verlag, New York, 1997.
[14] A. Salomaa, Formal Languages. Academic Press, London, 1973.

	1 Introduction
	2 Preliminaries
	3 Definitions and Examples
	4 Results
	5 Use
	References

