
Pi-calculus-based Resource-access Analysis
of High-level Petri Nets 1

Martin Kunštátský
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Abstract: One of many possible uses of coloured Petri nets, is the use
for modelling complex resource-accessing systems. In this article a resource-
access analysis method, based on translation of Petri net model to a complex
pi-calculus process, is presented.

The use of coloured Petri nets for modelling resource-accessing systems,
suggests an enhancement of the Petri net formalism with a resource data
type, which is also described in this work.

A correct-resource-access checking method for the pi-calculus has been
known for several years This article shows, how to use this method for
analysing static high-level Petri nets.

1 Introduction and Motivation

High-level Petri nets, in the sense of ”individual token” nets, belong among
the most used means of modelling of discrete concurrent systems.

Possibly the most prominent class of high-level Petri nets are the Coloured
Petri nets (abbreviated in the rest of the article as ’CPNs’) [2].

As being very strong means of modelling, high-level nets are in general
very hard to analyse. In particular, CPNs are usually analysed by construct-
ing a state space graph, which is often problematic, because in almost all
practical cases, the state space is extremely large or even infinite [2].

CPNs can be used for modelling of a large class of systems. This article is
concerned with analysis of (computer) systems accessing resources, such as
files or hardware devices – printers, scanners, etc. The use of CPNs to model
such resource accessing systems suggests a variant of CPNs enhanced with a

1This work has been supported by the European Regional Development Fund in the
IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), by BUT FIT grant
FIT-11-1, and by the Ministry of Education, Youth and Sports under the contract MSM
0021630528.
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resource data type (or resource colour set), which represents (references to)
resources, together with specifying resource accessing primitives.

The method for analysis of CPNs enhanced with a resource data type,
suggested in this article is, unlike most of contemporary-used methods of
CPN analysis, not based on constructing a state-space graph; it is based on
constructing a pi-calculus process simulating the original Petri net instead.

The goal of this article is to show, that a pi-calculus analysis method
described in 2006 article by N. Kobayashi, K. Suenaga and L. Wischik Re-

source Usage Analysis for the pi-calculus [3] can be used to analyse CPNs
too.

For simplicity, only non-hierachical CPNs are considered in this article.
Conclusions, presented here, can be easily used for hierarchical CPN too.

The pi-calculus belongs among the most prominent process algebrae,
which are in general mathematic tools for describing systems consisting of
concurrent processes communicating over channels. The pi-calculus was
defined by R. Milner, J. Parrow and D. Walker in the late eighties and
early nineties of the 20th century [6] [5]. The most peculiar feature of the
pi-calculus is that it allows channel mobility among processes.

The principle of this method of CPNs analysis is following: The CPN is
translated into an equivalent pi-calculus process, which is then analysed by
the pi-calculus analysis method.

The method of translating CPN into a complex pi-calculus process, in-
troduced in this work, has a great potential to be used for other methods of
analysis.

The content of this article is following: in section 2 there are definitions
of the basic formalisms used in this work. Section 3 decribes the method of
translation of a restricted variant of CPN to pi-calculus. Section 4 describes
succinctly the pi-calculus analysis method defined in [3], its use to analyse
CPNs and gives an example. Section 5 concludes.

1.1 Relation to other works

According to authors’ knowledge, only a little of research on the relations
of the pi-calculus and Petri nets was done so far, and no pi-calculus-based
Petri net analysis method was suggested so far.

Xu and Zhang issued an article on business process modelling with both
Petri nets and pi-calculus, where they introduced a method of integration
of these two business process models together [9].

It has been also known for a long time, that at least a simplified form of
pi-calculus (CCS) may be modelled by Petri nets [7].

It has already been mentioned, that the article by Kobayashi et al. [3]
was an important source for this work.
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2 Formalism definitions

In this section, succinct formal definitions of various formalisms, which are
used in this work, are given. Besides Coloured Petri nets and pi-calculus,
which are substantial for this work, also CCS is mentioned, which is used
in the pi-calculus analysis method as a behavioural type of processes. For
more detailed definitions, an interested reader should see the literature.

2.1 Coloured Petri Nets

Here, only a brief definition of non-hierarchical Coloured Petri nets is given,
which is sufficient for the purpose of this work, more detailed definition,
including definition of hierarchical coloured Petri nets can be found in liter-
ature (the most prominent book about CPNs is [2]).

Only structural definition of Coloured Petri nets is given here, for de-
scription of dynamical behaviour of the formalism, a reader should see the
literature [2].

The definition of CPNs is based on the definition od more primitive clases
of nets (place-transition nets), which are notoriously known, and whose def-
inition is outside the scope of this article – the definition can be found in
literature (e.g. [8] and hunderds of others). CPNs can be considered as an
extension of place-transition nets with types, where each token is labelled
with so called ’colour’, which is a data value represented by the token.

Note, that the definition of CPNs given in this section (which is a stan-
dard definition of CPNs) is somewhat more complex, than that of the Petri
nets variant, for which the resource-access analysis method is designed – a
simplified variant of CPNs will be used as the object of the analysis.

The set of variables used in a CPN model N is denoted with VN . A
set of expressions provided by the CPN’s inscription language is denoted by
EXPR. For each expression e ∈ EXPR:

• Type[e] denotes the type of the expression.

• V ar[e] denotes the set of free variables appearing in the expression.

EXPRW , where W ⊂ V , denotes a set of inscription language expressions,
such that ∀e ∈ EXPRW : V ar[e] ⊆ W .

Thus a non-hierarchical CPN is a 9-tuple:

N = (P, T,A,Σ, V, C,G,E, I)

where

• P is a finite set of places

• T is a finite set of transitions, P ∩ T = ∅
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• A is a set of directed arcs, A ⊆ (P × T ) ∪ (T × P )

• Σ is a finite set of non-empty colour sets (or types)

• V is a finite set of typed variables

• C is a colour set (or type) function, C : P → Σ, specifying a type of
each place (i.e. the type of tokens, which may be present in the place).

• G is a guard function G : T → EXPR, such that ∀t : Type[G(t)] =
Bool

• E is an arc expression function E : A → EXPR, which specifies for
each arc a ∈ A the expression E(a) defining the values transfered over
this arc.

• I is an initialisation function I : P → EXPR∅, specifying the initial
values of each place.

Note, that these symbols can be subscribed with N , when necessary (thus
for example a set of colour sets of a net N can be denoted as ΣN ).

A marking of a CPN is a function

M : P → ΣMS

mapping each place p ∈ P into a multiset of values (called tokens). It has
to hold, that M(p) ∈ C(p)MS. (Note, that MS subscript denotes a multiset)

Also presets and postsets of places and transitions are denoted in stan-
dard way as •x and x• respectively (here x stands for the place or transition,
whose preset or postset is considered).

For more detailed description of standard CPNs, which is out of the scope
of this article, an interested reader should look into specialised literature (e.g.
famous book Coloured Petri Nets by Jensen and Kristensen [2]).

2.2 Basic pi-calculus

This subsection gives a succinct definition of the basic pi-calculus, note, that
the variant given in this subsection is not exactly the one, which is used for
Petri net analysis – an enhancement for resource access will be given in
chapter 4.

The pi-calculus belong among the most popular process algebrae. It
serves for describing systems consisting of concurrent communicating pro-
cesses.

There are many variants of the pi-calculus: monadic (that is: transfering
only a single value over a channel at a time) [6], polyadic (allowing to transfer
tuples of values over a channel at once) [5]. There are also many variants of
the pi-calculus extended with typing information [1]. There are also many
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definitions of the monadic pi-calculus, which differ from each other subtly.
In this work a variant of monadic pi-calculus with replication is used.

For the purpose of high-level Petri net analysis, monadic pi-calculus is
sufficient, no polyadicity is needed.

Suppose we have an infinite set of names N , individual names are de-
noted with a, b, . . . x, y, z. The purpose of names is twofold: (1) they rep-
resent channels serving for communication between processes and (2) they
serve as transferred data values – this is the principle allowing channel mo-
bility

The set of pi-calculus processes P is defined by following grammar:
P ::=

0 inert process
|x(a).P input prefix
| τ.P unobservable action prefix
|x〈a〉.P output prefix
|P |P parallel composition
|P + P summation
| (νx)P restriction
| ∗ P replication

Note, that at the right side of each rule, there is specified the name of
the rule (which usually serves as the name of the corresponding operator
too).

Inert process 0 denotes a process with no behaviour(or a process, whose
behaviour has finished). Final 0 is usally omitted – e.g. x(y).y〈z〉.0 should
be written as x(y).y〈z〉.

Whereas parallel composition of processes, P |R, is used in all variants of
pi-calculus definition for denoting a process consisting of two subprocesses
running in parallel. This is not the case for summation: P + R denotes a
process, which can behave either as P or as R, with the choice between the
variants being non-deterministic.

Input prefix, x(a).P denotes a process which receives a value denoted
with a over a channel x, and then continue behaving like P . Similarly output

prefix, x〈a〉.P , denotes a process, that sends a value a over a channel x and
then continue behaving like P . Since the communication is synchronous,
both processes, preforming input and output prefix, are blocked until the
value transfer is performed. Unobservable action τ , is an action, that cannot
be observed from outside of the process (i.e. an action taking place inside
the process on a hidden channel serving as a ’null’ step).

Replication of a process denotes a potentially infinite number of copies
of the process running in parallel. Replication of a process P is in major-
ity of pi-calculus literature denoted with !P . But the exclamation mark is
sometimes used for denoting the output prefix (i.e. x!a.P instead of x〈a〉.P ),
which may potentially cause confusion. This is the reason why the kleene-
star-like notation is used for replication in this work.
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Communication is possible only between two processes runnung in paral-
lel, one of which runs an input prefix, while the other runs an output prefix,
both communication actions have to be performed over a channel, which is
shared between the two processes; e.g.

x(a).P |x〈b〉.R

This process reduces in one step into a process

P [a 7→ b]|R

where P [a 7→ b] denotes a process P , where all occurences of name a have
been replaced by name b.

(νx)P denotes a creation of a ’fresh’ channel x for a process P . The
creation of a channel can be also wieved as an allocation of a new chan-
nel. For the new channel, it is guaranteed, that no other process except
(subprocesses of) P will interfere into communication over x.

It is possible to enhance the basic untyped calculus with typing. In this
case, each name n has its type T , which is denoted as n : T . The typed
pi-calculus may use different forms of input prefix and restriction, where the
type of the name is specified.

|x(a : T ).P input prefix
| (νx : T )P restriction

Structural equivalence relation of processes 2 ≡ is defined as follows (P
denotes the set of all pi-calculus processes):

1. (P, |, 0) forms abelian monoid:

P |Q ≡ Q|P (1)

P |(Q|R) ≡ (P |Q)|R (2)

P |0 ≡ P (3)

2. rules for restriction

(νx)0 ≡ 0 (4)

(νx)(νy)P ≡ (νy)(νx)P (5)

(νx)P |Q ≡ (νx)(P |Q) if x not free in Q (6)

2Note, that this structural relation is sometimes defined as a quasiorder (e.g. [3]),
allowing only one-directional transformations. For the purpose of Petri Nets analysis, its
definition as an equivalence is sufficient.

E.g. the often problematic translation of ∗P |P to ∗P , which is correct in untyped pi-
calculus, but may cause problems in typed pi-calculus, is not a problem in pi-code obtained
by translation of a Petri net (two different nodes within a single net cannot be represented
by the same pi-code).
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3. rule of replication
∗P ≡ P | ∗ P (7)

Some additional notation:

• Let
∑

i∈{1,...,n} Pi be a shorthand notation for P1 + · · ·+ Pn.

• Let
∏

i∈{1,...,n} Pi be a shorthand for P1| . . . |Pn.

So far, only monadic variant of the pi-calculus was described. The
polyadic variant differs by the fact, that tuples of names are sent over chan-
nels, i.e. the input and output prefixes have the form

P ::=
|x(a1, . . . an).P input prefix
|x〈a1, . . . , an〉.P output prefix

The polyadic variant of the pi-calculus is mentioned here only for com-
pleteness, in the main part of this article, it is mentioned only briefly.

More precise definition of the pi-calculus can be found in [6], [5].

2.3 CCS

The calculus of communicating systems (CCS) can be described as a sub-
language of the pi-calculus, where there is a single ’null’ name, denoted
for the purpose of this article with ε, which is the only value, that can be
transferred via other channels. The null name cannot be used as a channel
transfering other names. All pi-calculus rules are applicable in CCS except
replication.

Since the ε is the only value, that can be transferred in CCS, there is
no need to specify the transferred value at all, i.e. x.P and x.R are used to
represent x〈ε〉.P and x(ε).R, respectively.

The greatest difference from the pi-calculus is that the channels trans-
fering other channels cannot be transfered between processes, which implies
that CCS does not support channel mobility among processes.

The only reason, why CCS was mentioned in this section, is that it will
be used as a behavioural type of pi-calculus processes in section 4.

3 Translation

In this section, the method of translation of a CPN model to an equivalent
pi-calculus model is described. The pi-calculus code in fact simulates the
CPN.

This method serves for creation of equivalent pi-calculus code for a re-
stricted CPN. The obtained code can be then used for analysis of the original
CPN. There are possibly many pi-calculus analysis methods applicable for
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the pi-code representing the original CPN. One of these method (resource-
access analysis) is decribed in the next section.

The variant of CPNs considered in this section is very restricted:

• It does not use transition guards

• The initial marking is not considered (i.e. the net is initially empty)
– the lack of initial marking can be alleviated easily by a special ini-
tialising transition, which puts the ’initial’ values to each place of the
net.

• Each arc of the CPN is allowed to transfer only one value at a time.
Since in general CPNs a multiset of values can be transfered over an
arc at a time, this condition leads to the possible use of parallel arcs.

Let x be an object from a CPN (place, transition, arc, etc.). Then x̂
denotes a sentence of pi-calculus code representing x.

Let’s also denote for any node (transition or place) of a CPN:

• by ∗x the set of arcs leading into the node x (i.e. ∗x = {(y, x)|y ∈ •x});

• by x∗ the set of arcs leading from the node x (i.e. x∗ = {(y, x)|y ∈ x•}).

It will be also ’forgotten’ for the rest of this article, that an arc is a
2-tuple, and it will be treated it as an atomic value.

The process of translation of a CPN into a pi-code can be decomposed
into several parts: translation of the structure of the net and representa-
tion of colour sets – these parts will be described in following subsections,
also, since no proof of equivalence between the original CPN and its pi-
representation exists so far, an argumentation for correctness of the method
will be given.

3.1 Net Structure

First note, that a pi-calculus channel and a Petri net arc behave in very
similar manner, that is: both serve as one-directional connection for infor-
mation transfer between two entities (i.e. processes in the case of pi-calculus
and places or transitions in the case of a Petri net). This suggests, that arcs
in Petri net can be directly and very faithfully modelled by pi-calculus chan-
nels. Petri net nodes (i.e. places and transitions) have to be modelled by
special pi-calculus processes.

Since we consider only a simplified variant of the CPNs, where each arc
can transfer a single value at a time, the target pi-calculus code can be
strictly monadic.(It would be possible to use polyadic pi-calculus, where an
arc transfering a multiset of n items would be modelled by a n-adic channel
(that is a channel transfering n-tuples of names, but this would lead to
complications while defining the processes representing CPN nodes).

8



Thus for each Petri net arc a, there is an equivalent pi-calculus channel
denoted as â. In cases, when it is clear whether a represents arc or channel,
the ’wedge’ (or ’hat’) ˆ diacritic mark can be omitted.

Each place p ∈ P can be modelled by a pi-calculus code:

p̂ = ∗





∑

â∈∗p

â(v)



 .



Cell[v].
∑

b̂∈p∗

b̂〈v〉



 (8)

Where Cell[v] denotes a memory cell keeping one value (v) appearing in the
place. Input arcs are iterated with â, output arcs are iterated with b̂.

Whenever a new value is received from any of input channels â, a new
copy of Cell[], keeping the value, is created. Each copy of Cell[] is always
followed with representations of output arcs of the place. Note, that a
representation of a place keeping some values is a group of Cells keeping
individual values runing in parallel.

Note, that Cell[v] is not needed, after the value kept in the place was
substituted for v in the following code, so after the substitution, the code
Cell[] can be erased.

Each transition t ∈ T , can be modelled by a pi-calculus code:

t̂ = ∗

(

∏

â∈∗t

â(va)

)

.Copy(. . . ).





∏

b̂∈t∗

b̂〈vb〉



 (9)

Where va denotes a single value transfered over the arc a, Copy(. . . ) denotes
a function computing output-arc values vb from the input-arc values va.
Obviously a process representing a transition can be run only if each of the
processes representing input places of the transition have Cell[v], where v
is a bound variable.

A Petri net N = (P, T,A), where P = {p1, . . . , pn} and T = {t1, . . . , tm}
will be translated into a pi-calculus code

N̂ = p̂1| . . . |p̂n|t̂1| . . . |t̂m

3.2 Colour sets

In general, tokens of the original CPN are represented by names of the
pi-calculus (which, in CPNs do not serve as channels transfering values,
but note, that in modelling more dynamic variants of high-level nets like
reference nets [4], the feature of channel mobility can be utilized).

There are basically two ways, how to represent colour sets:

• In the case of finite colour sets, the situation is very simple – all func-
tions operating over these sets are finite and thus can be represented
by table-like representation. The values of the finite colour set can be
represented simply by allocating a name for each value or the colour
set.

9



• Another possibility to represent a colour set in pi-calculus, is by means
of typing. Each colour set T ∈ ΣN of the original CPN N will be
represented by a pi-calculus type T̂ .

If a place p has type (colour set) T , then its representation in typed
pi-calculus is

p̂ = ∗





∑

â∈∗p

â(v : T̂ )



 .



Cell[v : T̂ ].
∑

b̂∈p∗

b̂〈v〉





3.3 Argumentation for correctness

In this subsection an argumentation for correctness of the translation, in-
stead of formal proof of equivalence between an original CPN and its repre-
sentation in pi-calculus, is given.

Let’s have a place p with p∗ = {a1, . . . , an} and p• = {t1, . . . , tn} (such
that for each ti there is ai ∈

∗ti). Presence of a token with value b in the
place p is represented by pi-calculus code Cell[b].(a1〈b〉+ · · ·+an〈b〉), where
b is a nonfree variable (i.e. a name bearing the value b). Since b is a nonfree
name, there is no need to keep the Cell[b] piece of code, so we can simply
represent the presence of the token in the place as

a1〈b〉+ · · ·+ an〈b〉

Let’s have a marking M of a net N , such that marking of a place p ∈ PN

isM(p) = {b1, . . . , bn}MS . Let’s also denote the piece of pi-code representing
p following the Cell[b] as cont〈b〉 = a1〈b〉+ · · ·+an〈b〉. The place p with the
marking M(p) is represented as

M̂(p) = p̂|cont〈b1〉| . . . |cont〈bn〉

Note that p̂ serves only for acception of new values (i.e. reception of new
tokens by the place) and thus creation of new cont pieces of code.

Thus if a CPN N has PN = {p1, . . . , pn} a marking of the net M is
represented by

M̂(p1)| . . . |M̂(pn)

(Note, that for representation of the whole net, there must be also represe-
nations of all transitions in parallel to this.)

Because transitions are the only active elements in this restricted variant
of CPNs, the equivalence of transition behaviour between the original CPN
and its representation in pi-calculus should be sufficient for equivalence of
the whole net and its representation.

It should be clear from the definition of translation of transitions and
nodes (equations 9 and 8) , that the structure of the representation of a
CPN is equivalent to the original CPN.
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In CPNs an occurence of a transition t removes some tokens (which are
specified by bindings of its variables) from all places in •t and adds some
tokens (also specified by bindings) into all places in t•.

If the function Copy from the representation t̂ (equation 9) of the tran-
sition is specified correctly, it should be clear that the behaviour of the rep-
resentation of the transition t̂ is equivalent to the behaviour (i.e. marking
change) caused by occurence of the original transition.

4 Resource Usage Analysis

This part describes resource usage analysis of CPNs, enhanced with a re-
source data type. The method of the analysis is straightforward: translate
the analysed CPN to an equivalent pi-calculus model (which was described
in the previous section), which shall be then analysed with a method de-
scribed in [3].

Note that no proof of correctness of this method is given, since the
original method of pi-calculus analysis was justified enough in the original
article [3].

Our models (i.e. CPNs and the pi-calculus) are enhanced with the notion
of resources: the set of resources will be denoted with R; the same symbol
will be used also for the resource data type (the distinction should be clear
from the context).

Each resource r ∈ R has a set of operations Σr, (also known as a set of
access labels), which describe possible operations with the resource. Each
resource has also access protocol (trace set) Φ, which is a regular set 3

describing possible access sequencies of operations to the resource.

Example: for a file there is Σ = {r, w, i, c}, denoting operations ”read”,
”write”, ”initialise” and ”close”, respectively. And the access protocol for the file
is

Φ = i(r + w)∗c

which means, that a file have to be first initialised (that is: opened), then it can

be read or written arbitrarily times in arbitrary order and in the end it must be

closed.

We suppose a variant of CPNs enhanced with a resource data type R,
where each transition may perform an accessing operation ξ to a resource
r ∈ R, this access operation is denoted with an inscription accξ(r). Besides
resource access, there is also a need of resource allocation operation (NΦr),

3Note, that the method does not require the access protocol to be a regular set. In
fact, the access protocol could belog to any class of languages, which it is sufficiently easy
to manipulate with. Since the class of regular languages is an example of such sufficiently
easy-to-manipulate language class, and at the same time it it seems to be complex enough
for most practical cases, we recommend the access protocol to be always a regular set.
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which allocates a new resource r with specification of its accessing protocol
Φ.

This method uses a variant of the pi-calculus and CCS enhanced with
primitives for creating and accessing resources (which are very similar to the
the operations used within CPNs; the set of resources R can be considered
a subset of names N ). This adds two new rules to the grammar for the
pi-calculus process:

P ::=
accξ(x).P resource accessing prefix
| (NΦx)P resource restriction

In this definition ξ ∈ Σx is an acess label and x ∈ R is a resource. Re-
source restriction denotes creation (or allocation) of a new resource together
with the specification of its access protocol Φ. The resource restriction is
similar to the common name restriction of the basic pi-calculus.

An access to the resource removes the first symbol from the trace set:

(Nξ·Φx)accξ(x).P ≡ (NΦx)P (10)

where ξ ∈ Σ and Φ ∈ Σ∗

The principle behind the pi-calculus analysis method described in [3]:
each channel is labelled with so-called ’behavioural type’, which is in fact a
CCS sentence describing the behaviour of the receiver process, after receiving
the value (or the continuation of the receiving process). This behavioural
description is then distributed over the system, in the end the behaviour of
the entire pi-calculus code is ”subtracted” from the access protocol Φ at the
restriction of the resource, leaving only empty set.

There are two categories of types:

• value types (of names N )

• behavioural types (of processes and channels)

The behavioural type of a process is a CSS process approximating the
behaviour of the process, where the transfered values were abstracted. The
grammar of the behavioural type:

A ::= 0 | x.A | x.A | xξ.A | τ.A |

A|A | A+A | ∗ A | A ↑S | A ↓S | 〈x/y〉A

Where S is a set of names. x.A, x.A, xξ.A, τ.A represent input prefix,
output prefix, resource accessing prefix and unobservable prefix, respectively.
The meaning of A|B, A+B, ∗A is straightforward,

A ↑S describes a process behaving like A, removing those actions, that
work with some member of S (i.e. actions working with some member of S
are replaced with τ); A ↓S represents a process behaving like A, where those
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actions not working with some member of S are replaced with τ . 〈x/y〉A is
a type A, where all occurences of x were substituted with y.

For the behavioural types, there is defined a subtyping relation A1 ≤ A2,
which denotes, that A2 simulates A1 (i.e. a process, whose behaviour is
approximated by A1, can be also viewed as being approximated by A2).

Besides process types, there are also value types of names, which are
basically the same as colours in CPN. The only exception is the channel type:
chan〈val; behav〉,which represents names representing channels transfering
values (i.e. those channels representing arcs of the original CPN), where val
is a type of the transferred value and behav is the behavoural type of the
receiving process. Moreover, there is also resource type R (note, that the
same symbol is used for the type of resources and the set of resources; the
distinction should be clear from the context) – a name, which has resource
type represents a resource.

Type environment Γ is a mapping from the set of variables to types.
Γ, y : σ denotes Γ∪{y 7→ σ} (i.e. adding statement, that variable y has type
σ to the type environment).

Althought quite straightforward, the transition relation on behavioural

types is of some theoretical importance, it is denoted as
l
−→, where the label

l may be
l ::= x | x | xξ | τ

The labels specify the forms of access to a name x: x and x denote reception
and sending a value (respectively) on a channel x; xξ denotes access to a
resource x. Complete definition of this relation may be found in [3].

Let also ⇒xξ
denote

τ
−→

∗ xξ

−→
τ
−→

∗
(
τ
−→

∗
denote reflexive and transitive clo-

sure of
τ
−→).

The set tracesx(A) is the set of all possible access sequences on a re-
source x ∈ R described by behavioural type A.

tracesx(A) = {ξ1, . . . , ξn|A ↓{x}⇒
xξ1 · · · ⇒ xξn}

Critically important is the type judgment relation Γ ⊲ X : Y . There are
two kinds of type judgments:

• Γ ⊲ v : σ for variables, which states that according to Γ, variable v has
type σ, i.e. Γ(v) = σ

• Γ⊲P : A for processes, which states, that a process P behaves according
to behavioural type A.

The type judgment relation is inferred using rules from table 1. 4

4All these rules were taken from [3], except T-sum, which was missing in the paper,
possibly by a mistake.
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Γ ⊲ 0 : 0 T-zero
Γ⊲P :A2 Γ⊲x:chan〈y:σ;A1〉Γ⊲v:σ

Γ⊲x〈v〉.P :x.(〈v/y〉A1 |A2)
T-out

Γ,y:σ⊲P :A2 Γ⊲x:chan〈y:σ;A1〉A2↓{y}≤A1

Γ⊲x(y).P :x.(A2↑{y})
T-in

Γ⊲P1:A1 Γ⊲P2:A2

Γ⊲P1|P2:A1|A2
T-par

Γ⊲P1:A1 Γ⊲P2:A2

Γ⊲P1+P2:A1+A2
T-sum

Γ⊲P :A
Γ⊲∗P :∗A T-rep

Γ,x:chan〈y:σ;A1〉⊲P :A2

Γ⊲(νx)P :(νx)A2
T-new

Γ⊲P :AΓ⊲x:R
Γ⊲accξ(x).P :xξ.A

T-acc

Γ,x:R⊲P :A tracesx(A)⊆Φ
Γ⊲(NΦx)P :A↑{x}

T-newR

Γ⊲P :A′ A′≤A
Γ⊲P :A T-sub

Table 1: Table of rules for type judgment relation.

Theorem: When it is possible for a process P to derive ⊲P : 0, the
process accesses all its resources correctly [3]. 5

A limitation of this method is, that it cannot deal with channel mobility,
which implies, that it can be used to analyse static nets like CPNs, but it
cannot be used to analyse more dynamic classes of Petri nets like Reference
nets ( [4]).

Figure 1: Simple Petri Net from the example

5More details about this method may be found in article [3], including description
of the type inference algorithm. Since the article was issued under Creative Commons
licence, it should be easily and freely available.
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4.1 Example

Let’s have a simple Petri net N = ({p}, T,A), where T = {ti, tr, tc} and
A = {i = (ti, p), a = (p, tr), b = (tr, p), c = (p, tc) }. This net is performing
actions with a resource x ∈ R, which has operations

Σx = {i, r, c}

denoting ”initialise”, ”read” and ”close”, respectively and the access proto-
col is

Φ = ir∗c

The net is shown on figure 1.
Each transition ta ∈ T is performing corresponding action a ∈ Σx. The

transition ti creates a new resource x and performs acci(x), similarly tr and
tc perform accr(x) and accc(x) respectively.

Each arc performs straightforward transfer of resource. tr neither tc does
not make any change with the transfered resource, except the access to it.

Note, that access only to one resource is considered – the fact, that ti
can anytime create another resource and put it into the place, is ignored.

The behavour of tr and tc implies, that we can simplify the pi-calculus
code for the two transitions (9) by unifiing the input and output name,
omiting the Copy function and adding the resource access, thus yielding

t̂r = ∗â(v).accr(v).b̂〈v〉

t̂c = ∗ĉ(v).accc(v)

Of course, the initialising transition must have different code

t̂i = (Nir∗cx)acci(x).̂i〈x〉

which is equivalent to (using 10)

t̂i = (Nr∗cx)̂i〈x〉

The pi-code for the sole place p (straightforwardly from 8):

p̂ = ∗(̂i(v) + b̂(v)).Cell[v].(â〈v〉 + ĉ〈v〉)

The typing environment is:

Γ = x : R,

î : chan〈x : R;Cell[x].(a+ c)〉,

â : chan〈x : R;xr.b〉,

b̂ : chan〈x : R;Cell[x].(a + c)〉,

ĉ : chan〈x : R;xc〉
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Thus we need to analyse (pi-calculus code equivalent to the original petri
net)

Γ ⊲ p̂|t̂i|t̂c|t̂r

Because the variable in Cell in p̂ is free, t̂r and t̂c are not enabled, so t̂i
has to be run first (let’s also denote the process t̂i|p̂ as Q):

Q = t̂i|p̂ = (Nr∗cx)i〈x〉| ∗ (i(v) + b(v)).Cell[v].(a〈v〉+ c〈v〉)|p̂

which is equivalent to (using 6, 7 and T-out)

Q = (Nr∗cx) ((a〈x〉+ c〈x)〉|p̂)

Note, that we do not need to use Cell[x] anymore, since in the whole fol-
lowing code x was substituted for all occurences of v.

The process Q has type:

Γ ⊲ Q : Cell[x](a+ c)| ∗ (i+ b).Cell.(a+ c)

Let’s follow with processes t̂r and t̂c

Q|t̂r|t̂c = (Nr∗cx)
(

((a〈x〉+ c〈x〉)|p̂| ∗ a(x).accr(x).b〈x〉| ∗ c(x).accc(x)
)

)

Let’s denote the process following the resource restriction as

R = (a〈x〉+ c〈x〉)|p̂| ∗ a(x).accr(x).b〈x〉| ∗ c(x).accc(x)

So, we are analysing
Γ ⊲ (Nr∗cx)R

Since there is a cycle in the original CPN graph, we have to use a sub-
stitution: let A denote behaviour of the process after leaving p on x. Thus
we get

A = (a+ c)

and using the types of channels â, b̂, ĉ (note that behaviour of continuation
of b̂ is equivalent to A) together with rule T-out:

A = xrA+ xc

This implies
tracesx(A) = r · tracesx(A) + c

This equation has a single solution:

tracesx(A) = r∗c

Note, that tracesx(A) ⊆ r∗c holds, so by using rule T-newR, we get ⊲R : 0.
Thus we conclude, that the net accesses the resource correctly.
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5 Conclusion

In this work, a method of resource-access analysis of coloured Petri nets
based on the pi-calculus was described. Although it does not present exact
mathematical proofs of its claims, authors of this article believe, that this
article will find its practical realisations and will facilitate a new direction
of research.

For the purpose of resource-access analysis, also a method for creating
a complex pi-calculus process simulating a given coloured Petri net was de-
scribed. This method can potentially be used together with various methods
of pi-calculus analysis as a means of analysis of Petri nets. The resource-
access-analysis method described in this article, is in fact an example of such
pi-calculus-based Petri nets analysis. Other methods of such pi-calculus-
based Petri nets analysis can be objects of futher research.
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