
VTApi: an Efficient Computer Vision Data
Management Framework

Petr Chmelar1,2, Martin Pesek2, Tomas Volf2, and Jaroslav Zendulka1,2

1 IT4Innovations Centre of Excellence,
2 Faculty of Information Technology, Brno University of Technology

Bozetechova 1/2, 612 66 Brno, Czech Republic
{chmelarp,ipesek,ivolf,zendulka}@fit.vutbr.cz

Abstract. VTApi is an application programming interface designed to
fulfill the needs of specific distributed computer vision systems and to
unify and accelerate their development. It is oriented towards processing
and efficient management of image and video data and related metadata
for their retrieval, characterization and intelligent analysis with the spe-
cial emphasis on their spatio-temporal nature in real-world conditions.
VTApi is a free extensible framework based on progressive and scalable
open source software as OpenCV for high-performance computer vision
and pattern recognition, PostgreSQL for efficient data management, in-
dexing and retrieval extended by similarity search and geography/spatio-
temporal data manipulation.

Keywords: VTApi, computer vision, data management, similarity search,
API, methodology, OpenCV, PostgreSQL, spatio-temporal

1 Introduction

Ever expanding multimedia content necessitates the research of new technologies
for content understanding and the development of a wide variety of academic,
commerce and government applications [10]. For that purpose, we have submit-
ted a project (referred to as VideoTerror) to the Ministry of the Interior research
programme, whose objectives are to increase national security using new tech-
nology, knowledge and other outcomes of applied research in the field of iden-
tification, prevention and protection against illegal activities affecting citizens,
organizations or infrastructure and against natural or industrial disasters.

The main objective of the VideoTerror (VT) project is to define, explore
and create a prototype of a system warehousing image and video accomplished
with computer vision and analytics based on a computer cluster. The basic re-
quirements include image and video feature extraction, storage and indexing to
enable (content-based) retrieval, summarization and characterization together
with video analytics in the meaning of object detection and recognition in an in-
teractive and iterative process.

In addition to the technology, we also target usual aspects of the research –
to unify and accelerate it by choosing an appropriate design methodology and



architectural framework for the composition of domain and application specific
tools focusing on open source software. In particular, we propose a solution
that will enable the development and adaptation of a complex computer vision
application at a reduced cost in terms of time and money. We target this goal by
(re)using and integrating tool chains of (CV) methods and (multimedia) data
and metadata in an arbitrary combination as simple and versatile as possible.

The VT methodology is based on the fact, that most methods of the same
purpose have similar types of inputs and outputs, so there may be a base class for
each of them. Moreover, the input of a process (a running instance of a method)
can be seen as another process’s output (e.g., annotation, feature extraction,
classification) including media data creation, which has the null input. Methods
are generally not included in the API self, they are created by developers using
the API. In this way, methods and their chains can be created and reused on
multimedia data and metadata for specific applications by providing a unified
platform (API) for processing and management of both video and still image
sets using custom methods. This is illustrated in Fig. 1. The VT project is
not limited to a specific kind of data as Internet archives of image and video
or closed-circuit television, so the framework can be used to support any CV
evaluation campaign.

Fig. 1. The illustration of a position of the VTApi and a concept of methods’ chaining.

In this paper, we present the most general part of the system and metodol-
ogy – VTApi1 (VideoTerror API), open source in C++ and Python. At the mo-
ment, VTApi is technologically based on a (remote) file-system media storage
(with multimedia scraping capability) and PostgreSQL2 database for metadata
management extended by our vector-based simililarity search (distance) metrics,
originaly developed for efficient local (invariant) features search (pgDistance).

1 http://gitorious.org/vtapi/pages/Home
2 http://www.postgresql.org/



We have integrated GEOS3 and PostGIS4 to be able of multi-dimensional in-
dexing of the geography/spatio-temporal nature of real-world multimedia data
acquired by (phones’ and surveillance) cameras and appearing objects (trajecto-
ries). OpenCV5 is used as the primary vision framework. In the future, we plan
to integrate other technologies.

2 State of the Art

In the past decade multimedia technology has become ubiquitous. There is an in-
stantly growing tendency of multimedia data produced by many applications in
today’s world. It requires to organize and manage this data and to provide sup-
port for its processing. First, image processing and data management have been
a great challenge for researchers. So far, OpenCV supports only (XML/YAML)
file storages, which are flexible, but not really efficient. Content-based image
retrieval (CBIR) emerged as an important area in computer vision and informa-
tion retrieval. Later, the support for video data management systems (VDBMS)
and processing have attracted a great attention.

The need to store multimedia data in databases was reflected in SQL/MM
standard. Its Part 5 Still Image provides structured user-defined types both for
still images and their features that allow to store images into a database, retrieve
them, modify them and to locate them by applying various “visual” predicates
[9]. These data types are implemented in several commercial database products,
e.g., in Oracle Multimedia and IBM DB2 Image Extender. There are also some
extensions to open source database products to facilitate CBIR system develop-
ment. For example, PostgreSQL-IE [6] extends the architecture of PostgeSQL.
It includes more flexibility with respect to creation and definition of new feature
descriptors. Such support can be understood as an elementary support for CBIR
system development.

Many CBIR systems have been developed in last years6. One of them is
Cortina [5]. Besides large scale image search, retrieval, classification and dupli-
cate detection, it also offers the face detection, image annotation and segmenta-
tion tools and relevance feedback. Image database of the system contains images
collected from the web. MySQL database is used here to store some metadata
of images.

MPEG-7 standard (Multimedia content Description Interface [8]) published
in 2002 has brought a standard model of multimedia content. However, most
of XML-enabled and native XML databases treat simple elements as text, al-
though their interpretation should be, e.g., time interval, vector and matrix,
which the MPEG-7 defines as the extent to the XML. The MPEG-7 model has
been adopted or supported by several multimedia database management sys-
tems.

3 http://trac.osgeo.org/geos/
4 http://www.postgis.org/
5 http://opencv.willowgarage.com/wiki/
6 e.g., our TrecvidSearch http://www.fit.vutbr.cz/research/view product.php.en?id=73



For example, BilVideo-7 is an MPEG-7 compatible system to support mul-
timodal queries in a video indexing and retrieval framework [1]. BilVideo is
a representative of a video database management system, which was designed
to provide full support for spatio-temporal queries. The query can contain any
combination of spatial, temporal, object-appearance, trajectory-projection and
similarity-based object-trajectory conditions.

MPEG-7 Multimedia Database System (MPEG-7 MMDB) [4] is another ex-
ample. It is based on extensibility services of Oracle 10g. It maps MPEG-7
schema types to database types and introduces new indexing and querying sys-
tem, a query optimizer, and libraries that simplify application development. The
core of the system includes Multimedia Indexing Framework, which provides
various index structures as SR- and SS-trees and LPC-files for fast execution
of similarity and exact search.

The above system adopts the Generalized Search Tree (GiST) framework
[7] originally developed by Hellerstein et al. It is an index structure supporting
an extensible set of queries and data types to be indexed in a manner supporting
queries (operations) natural to the types. It is unifying structures such as B+
trees and R-trees in a single piece of code and opening the application of search
trees to the general extensibility. It has been adopted by PostgreSQL and our
project too.

3 Concepts and Specifications

The VTApi is an API to unify and accelerate the development and evaluation of
various computer vision applications. For that purpose, we have introduced a set
of terms based on best practices both in computer vision and data management:

– Dataset is a named set of (multimedia) data along with metadata (descrip-
tive data). Datasets can be organized hierarchically, i.e., one may be based
on several others. Each dataset contains sequences.

– Sequence is a named ordered set of frames referred to as Video or Images.
The ordering of frames in video is time-based. There may be their intervals
defined for a sequence.

– Interval is any subsequence of Video or Images whose elements share the
same metadata. For example, it can be a video shot or any sequence of frames
containing the monitored object in the video or scene. Metadata of an inter-
val are created by a process.

– Process (task or operation) is a named run of Method. Method defines the
custom algorithm and the structure of metadata consumed and produced by
a Processes – a running instance of this type. Process then defines (inserts
and modifies) data according to its inputs (created by other processes, media
data) and it represents all activities of the proposed framework. Implemen-
tation of a specific method is generally not included in the API, it is created
by developers using the API.

– Tag is an indexing term representing an ontology class (in hierarchy). Tags
are assigned to the multimedia data as description or annotation of a scene,
object or action.



– Selection is a subset of logically related metadata, appropriately chosen,
so that operations (processes) are effective and allow the natural chaining
of processes (input, output of a process or media data). Common examples
of selections are Interval and Tag. This concept is related to the effective
implementation and access to the metadata in the database.

In VTApi, all these concepts are mapped to classes as it is shown in Fig. 2.
Our approach is not based directly on MPEG-7 XML descriptors and description
schemes, because they do not provide the flexibility of an efficient streaming
and database storage and they are tree structured. Thus, we focus more on
the BiM (Binary Format for MPEG-7). Assuming data in the binary form, we
generally support all structures of descriptors including operations as the first
order temporal interpolation, spatial transformation and coordinate mapping,
including their indexing using GiST and GIN [7]. The same states about MPEG-
A (Multimedia application format) Part 10: Surveillance application format.

Fig. 2. The simplified class diagram of VTApi.

3.1 Data Model

The very simplified class diagram of VTApi is illustrated in Fig. 2. It follows
the concepts given in the previous section and operations that logically belong to.
Most classes inherit from KeyValues that provides the basic operations needed
to manage key-value pairs (associative array), on which the VTApi model is
based. KeyValues class is the crucial to ensure the functionality and generality



of the API by the main function next(), which performs most operations of the
API, except constructors. It performs the database queries similarly to JDBC.
It also allows to change the values of object’s variables and commits the values
changed using setters and it inserts values using our adders methods. Moreover,
it uses the lazy approach, hiding the functionality necessary, doing it efficiently
when needed by using caches and batches if possible.

The VTApi is strongly typed, the following description uses notation of X
referring to any data type implemented (integers, floating points, strings, 4D
geometry points, lines and polygons and their structures, vectors, arrays and
(OpenCV) matrices). For instance, getX (k) or setX (k,v) operates key k and its
value v of type X.

The entry point to the application is the VTApi class based on the config
file and command-line arguments7. All other classes, denoted as C, are derived
from KeyValues, and they inherit its operations and attributes:

– Commons class provides a very basic functions such as loading configura-
tion file and command line parameters (using GNU Gengetopt), it provides
a connection to the database (PostgreSQL), a data storage (remote file sys-
tem) and it uniformly manages error reports and other statements (log).
Commons is a shared object, usually created by the VTApi class.

– Select class is used to construct queries that after the first call of the function
next() retrieve information from the database. There are special functions to
simplify the construction of queries, so that it is basically mostly satisfactory
to use the constructor for most of them. Other functions simplify the work
with selections, keys and their values to filter queries, use functions and
indexes.

– Insert class provides insertion of defined data where possible using the func-
tion addX (k,v). There are 2 general ways of inserting – immediate (addEx-
ecute()) or batch (implicitly) by calling next().

– Update class similarly allows the modification of values of the current element
using the the typed family of functions setX (k,v).

Classes derived from KeyValues contain only a minimum of functionality
programmed, so it is easy to create a new derived class C if needed. Above all,
they take care of consistency of data and provide simple accelerator functions.
For instance, getName() for their identifier or getLocation() for the physical data
location (e.g., a dataset or a directory with pictures) and newC () methods, that
show the developer the natural flow of the program (represented as aggregations
in Fig. 2). For example, invoking newSequence() method of the Dataset class
object creates a new object of class Sequence, with all necessary parameters,
in which we can call the next() to access all the current dataset’s sequences
identified by getName(). This is illustrated in the sample code in Sect. 4.1.

The database model presented in Fig. 3 is here for completeness. Only at-
tributes (columns) that are necessary for the VTApi functionality are shown
there. During the development, the schema is changed using the Method ’s data

7 See the Wiki at http://gitorious.org/vtapi



definition capabilities. When running a Method, a new process is created and
column(s) are added according to the keys required. One can decide to create
a new Selection or to use an existing one (Intervals by default). One Method can
be run (e.g., with different parameters) on various data as a different process.
A process stores its metadata in the same format, so chaining is simplified to
specifying input process name.

Fig. 3. Illustration of the minimum logical databases ER model. Orange tables are
specific to a distinct dataset (database schemes), while public tables (grey) are shared
across all datasets. The white table denotes a selection, which can be used either as the
storage in non-SQL databases (using modified KeyValues class) or for storing different
data, as trajectories or tags.

4 Use Cases

We have chosen two simple use-cases demonstrating the use of VTApi for some
common tasks based on TRECVid evaluations and an object trajectory extrac-
tion and transformation experiment. The first use-case is a simple CBIR and the
second presents trajectory clustering followed by the performance experiment.

4.1 Content-Based Image Retrieval

The OpenCV library provides powerful feature extraction and classification tech-
niques. However, it doesn’t have capabilities to store the data to be efficiently
searched and processed further. This is especially useful for tools like Google
Image Search or developed within TRECVid [10], where the retrieval is based
on multiple types of (low to high-level, local and global) features related to any
object (mask) together with annotation (tags) based on the image description.

Thus, we have implemented various similarity-based distance functions. The
pgDistance extension (included in the VTApi code) performs the similarity
queries measuring distances of feature vectors in PostgreSQL database, e.g.,
cosine or Euclidean distance. So that we can employ the feature-based similarity



search supported by efficient indexing techniques (GiST and GIN [7]) as filter
methods – Heap and Bitmap indexes, R-Tree, Inverted Document Index and
other general indexing structures, supporting containment and nearest neighbor
search on vectors (using @> and <-> operators). However, the example in Fig.
4 is quite simple. Assume you have a large dataset of images called “search”
already populated in the database, and you want to perform MPEG-7 Color
layout descriptor based CBIR.

Fig. 4. A simple CBIR code example.

4.2 Object tracking, trajectory querying and analysis

In the surveillance video, it is important to be able to track moving objects and
to extract their visual and spatio-temporal features. Such extracted metadata
then should be cleaned, stored and indexed to be able to query and analyze it.

Object tracking is a complex task, especially in crowded scenes. It is possible
to use various object trackers, for example, OpenCV blobtrack demo that can be
extended with feature extraction as in [3]. The outputs of such methods include
spatio-temporal locations in the form of trajectories, blobs and other features
of moving objects, which can be aggregated, summarized, analyzed and enriched
with additional features such as annotations, tags or classes.

All the above features might be used and searched for similarity by VTApi.
A trajectory query may relate either to relationships between moving objects
or a specific spatio-temporal region. Such an analysis can be performed both
on VTApi clients and server, because we have adopted the OpenGIS GEOS
library, that has been adopted by PostGIS. In order to perform these operations
efficiently, VTApi adds a binary access to geometry types and n-dimensional



cubes that are used as spatio-temporal minimum bounding boxes of (moving)
objects.

Many data mining and machine learning techniques can be also performed
on moving objects metadata. Such an analysis may involve trajectory cluster-
ing, classification, object recognition, outliers detection and so on. The follow-
ing example shows a clustering of trajectories using VTApi and an OpenCV
implementation of Expectation-maximization (EM) algorithm, which estimates
parameters of a Gaussian mixture model (GMM) [2]. First, feature vectors rep-
resenting trajectories are read from the database and training samples for the
EM algorithm are prepared (see Fig. 5). Suppose that trajectories are stored in
selection “tracks” in this example. Second, GMM is trained by the EM algorithm
and appropriate cluster labels are stored in the database (see Fig. 6).

Fig. 5. Sample code of reading trajectories and preparing training samples.

We performed the trajectory clustering on a set of trajectories extracted
from the second dataset of videos forming the i-LIDS dataset8 used for NIST
evaluations and it comes from five cameras at the LGW airport. An example
of visualization of some obtained results is shown in Fig. 7. Different colors
of trajectories refer to different clusters. On the left, there is a result of clustering
trajectories from the first camera using the EM algorithm mentioned above. On
the right, there is a result of clustering trajectories from the third camera by the
K-means clustering algorithm to show the easy changeability of methods of the
same purpose. We have prepared also an outliers analysis within the VideoTerror
project.

8 http://www.homeoffice.gov.uk/science-research/hosdb/i-lids/



Fig. 6. Sample code of training GMM and storing cluster labels.

Fig. 7. Examples of trajectory clustering results obtained by EM algorithm on trajec-
tories from the first camera (left) and by k-means algorithm on trajectories from the
third camera (right).

4.3 Real-time tracking and trajectory indexing

Because processing trajectories often relates to the real-time, we have performed
experiments focused on how much time and resources are needed for the trajec-
tory management. In the experiment (see Table 1), we transform the OpenCV’s
blobtrack trajectories, we store them in the database as vectors capable of the
first order temporal interpolation even stored as discrete points, and we index
them using 3D bounding-cube and GiST (bitmap index), so that they can be re-
trieved very efficiently. The similarity query was performed by the containment
operator (@>) returning 4 trajectories contained in a spatio-temporal bounding
box (selected randomly).

At this simple demonstration we dealt with 7269 trajectories, tracked of about
4 hours of video (49:17 minutes by 5 cameras in parallel) with a very crowdy
airport trafic of the i-LIDS dataset. According to the table, we show that this
system can eventually run in real-time both on: (a) 13” notebook (dual 1.4 GHz
ULV processor, 2 GB RAM, 128 GB SSD) including both the trajectory pro-
cessing part and the local database and (b) the same machine connected using



Table 1. A simple performance test of insertion and querying trajectory data.

insert/update all select all find similar (4) total network data

(a) local 220 ± 1 s 43 ± 1 s 0.1 s 0
(b) remote 220 ± 5 s 74 ± 1 s 0.2 s 334 MB

Ethernet network to a remote VTApi database server and the network delivery
time must be taken into consideration in favor of the server hardware.

5 Conclusion

In the paper, we present an innovative open source computer vision data and
metadata management framework we offer to the public. The main advantages
of the proposed API is the reduction of effort and time to produce high-quality
distributed intelligent vision applications by unified and reusable both meth-
ods and data sets of video, image, metadata and features on all levels. Above
that, we offer the novel data and methods interfaces and methodology to be
used by researchers and developers of both academic and commercial sectors to
collaborate and chain their efforts.

We have selected, integrated and extended a set of progressive and robust
open source tools to be efficient for multimedia data and related metadata stor-
age, indexing, retrieval and analysis. The system uses the best from (post)rela-
tional databases, it offers unlogged, alternative storages and data structures we
need to manage and some others (graph databases) to make the data access
more efficient, especially for rapidly changing geography/spatio-temporal data
of a very complex nature in binary form, that can be now processed both on
VTApi clients and in the database. During the development, we were aware that
intelligent vision specialists are not familiar with databases, so we hid the concept
and most operations are made even more naturally than working with XML in
any form – using next(), getters and setters. However, if operations as the data
transformation, replication, storage cascades or warehousing are needed, they
are still available, because it is open source.

There will always be impossibleconsciously manipulating all pixels of mas-
sive real-time video streams, but that’s why there is MPEG and OpenCV. In
the future, we will supplement more of their activities. Also, we will extend
VTApi with the MPEG-7 XML Library1 to enable a standardized framework
for methods’ performance evaluation, the KALDI2 audio and speech processing
framework, and some other capabilities especially to enable data transformation
and analysis. At the moment, we focus on making the VTApi broadly usable for
real-time, real-world and real-need intelligent vision systems.

1 http://iiss039.joanneum.at/cms/index.php?id=80
2 http://kaldi.sourceforge.net



Acknowledgments. This work was partially supported by the research plan
MSM0021630528, the specific research grant FIT-S-11-2, the VG20102015006
grant of the Ministry of the Interior of the Czech Republic and the IT4Innovations
Centre of Excellence CZ.1.05/1.1.00/02.0070.

References

1. Bastan, M., Cam, H., Gudukbay, U., Ulusoy, O.: BilVideo-7: An MPEG-7-
compatible video indexing and retrieval system. IEEE Multimedia 17, 62–73
(2010)

2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
3. Chmelar, P., Lanik, A., Mlich, J.: SUNAR: Surveillance network augmented by

retrieval. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P.
(eds.) Advanced Concepts for Intelligent Vision Systems, Lecture Notes in
Computer Science, vol. 6475, pp. 155–166. Springer Berlin / Heidelberg (2010)

4. Döller, M., Kosch, H.: The MPEG-7 multimedia database system (MPEG-7
MMDB). J. Syst. Softw. 81(9), 1559–1580 (Sep 2008)

5. Gelasca, E.D., Guzman, J.D., Gauglitz, S., Ghosh, P., Xu, J., Moxley, E.,
Rahimi, A.M., Bi, Z., Manjunath, B.S.: CORTINA: Searching a 10 million +
images database. Tech. rep. (Sep 2007),
http://vision.ece.ucsb.edu/publications/elisa_VLDB_2007.pdf

6. Guliato, D., de Melo, E., Rangayyan, R., Soares, R.: POSTGRESQL-IE: An
image-handling extension for postgreSQL. Journal of Digital Imaging 22, 149–165
(2009)

7. Hellerstein, J.M., Naughton, J.F., Pfeffer, A.: Generalized search trees for
database systems. In: Dayal, U., Gray, P.M.D., Nishio, S. (eds.) VLDB’95,
Proceedings of 21th International Conference on Very Large Data Bases,
September 11-15, 1995, Zurich, Switzerland. pp. 562–573. Morgan Kaufmann
(1995)

8. Kosch, H.: Distributed Multimedia Database Technologies: Supported MPEG-7
and by MPEG-21. CRC Press, Boca Raton (2004)

9. Melton, J., Eisenberg, A.: SQL multimedia and application packages (SQL/MM).
SIGMOD Rec. 30(4), 97–102 (Dec 2001)

10. Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and trecvid. In: MIR
’06: Proceedings of the 8th ACM International Workshop on Multimedia
Information Retrieval. pp. 321–330. ACM Press, New York, NY, USA (2006)


