
Storing results of web page segmentation

(Evaluation of post-relational databases)

Jan Zelený

FIT, Brno University of Technology, Czech Rep., email: izeleny@fit.vutbr.cz

Abstract. Segmenting the web page is one of initial steps of information
retrieval process performed on that page. While there has been an exten-
sive research in this area, storing the results is usually only a marginal
topic. When we consider principles of modern web page design like tem-
plates, it is possible to reuse the segmentation result for more pages than
just the one it was created with, thus improving the performance of web
site processing engines. This paper analyzes what structures have to be
stored and what databases are convenient for this purpose in order to
enable and support reusing the segmentation algorithms’ results.

1 Introduction

In recent years, the World Wide Web has become perhaps the most important
source of information in the world. A family of algorithms for web-focused infor-
mation retrieval grows with it. One step of information retrieval is understanding
different parts of the web page. This is achieved by segmenting the web page
and classifying resulting segments. Although the area of web page segmentation
has been extensively researched, storing results of this process is usually dis-
cussed only marginally, even though it can be used for achieving much better
performance.

When we consider principles of modern web page design like templates, it
is possible to reuse the segmentation result for more pages than just the one it
was created with. The principle of templates defines that there is one template
for a set of pages within the same site. This template contains blank spaces,
where different data are placed to create different web pages. Segmenting just
one page and storing the result for other pages based on the same template can
improve segmentation performance significantly, especially for methods based on
visual appearance of the page. The motivation for this paper is to find out what
structures and what features of these structures need to be stored, so they can
be reused for further site processing as easily as possible. This paper also focuses
on different database types convenient for storing desired structures.

Sections 2, 3 and 4 analyze what data do we need to store when segmenting
page with algorithm based on visual appearance of the page. Section 5 then an-
alyzes databases capable of conveniently storing tree structures and summarizes
those of their features which might be convenient and/or inconvenient for storing
structures identified in previous sections.

2 DOM tree

The Document Object Model (DOM) is both language and architecture inde-
pendent model used to represent SGML-based documents. The tree representing
a web page is described by its API which can be used to describe all content,
structure, and visual style of the web page. The API itself consists of many in-
terfaces, each element can implement one or more of them. All interfaces can
define both properties and methods, but only properties are to be stored. There
are two allowed approaches to the interface representation and implementation.
The first one is to follow common object-oriented concept of inheritance. The
second one is a concept of flattened view of the API (no interface hierarchy).

There are four basic data types in the DOM tree: (1) string, (2) timestamp
represented by integer number, (3) user data blob and (4) object which is a
reference to any other DOM object. For storing the tree, strings, integers and
object references, these types should be sufficient. There are also some extended
data types like collections[3] and lists (ordered collections)[2]. Items in both can
be accessed by ordinal number starting from zero, therefore both are basically
equivalent of common array type.

Following are some general features of the DOM tree which should be consid-
ered when storing it. First of all each node can have N child nodes (depending
on its type). Similarly, a node can have multiple attributes (again based on its
type). These attributes can be represented either by one of basic data types as
element properties (deprecated) or by child nodes of Attr type. Sibling nodes
are linked in the list. They are accessible like standard list items, but in addition
each node has a direct link to previous and next sibling. When using hierarchical
API model, a node can implement properties from multiple interfaces. A text
is always considered to be node (otherwise it would be impossible to represent
for example text with bold parts). Since this paper discusses storing the DOM
tree mainly for the purpose of mapping it to the output of segmentation algo-
rithms, it is possible not to store the content of DOM tree itself. That means the
text nodes don’t have to contain the text itself. Also image nodes don’t have to
contain the image data. But because some heuristics can be performed on the
stored tree, it is reasonable to save at least some properties representing the text
or image. These can be for example character/word count or image dimensions
respectively.

Although it contains the means necessary to describe HTML pages, the Core
module itself is not entirely convenient. HTML extension was designed as a
layer providing this convenience by defining types of common elements and their
attributes – it is no longer necessary to store them as objects of Attr class.

As for CSS support, DOM offers two interface families. The first one is de-
signed to attach style sheets to documents. That’s not important for our purpose.
However the second one focuses specifically on CSS related properties of doc-
ument and particular elements. The most important part is defined in CSS2
extended interface, which basically states that each CSS attribute has its own
equivalent in DOM. For example margin-right CSS attribute has marginRight

as its equivalent. All these DOM equivalents are grouped in DOM attribute
style, which each DOM node representing HTML element can have.

3 Tree of visual areas

For the purpose of this paper let’s consider the output of every visual segmenta-
tion algorithm to be the Tree of Visual Areas. Different algorithms have different
output formats, but they all have similar characteristics, for example the tree
structure.

3.1 VIPS

After being processed by VIPS[1], the web page is represented by a set of blocks,
a set of separators and a relation between blocks (two blocks are in relation if
they are adjacent).

The most important feature of blocks is that they are not overlapping. Each
block in the set is recursively segmented and then represented by another set
of blocks, separators and relation. This implies the tree structure of the whole
construct. It also means that the web page is considered and treated the same as
any other visual block. Leaf nodes of the resulting tree are called basic objects.
Each basic object corresponds to one node in the DOM tree. Therefore each
visual block can contain one or more nodes of the DOM tree. Note that the Tree
of Visual Areas and the DOM tree don’t have to correspond, i.e. a visual block
doesn’t have to correspond to a particular node in the DOM tree. Because it
is used in some algorithms[6, 5], the corresponding DOM tree and the mapping
between both trees should be stored along with the output of VIPS.

For each block an information about its position and size is absolutely es-
sential. These properties can be expressed as absolute numbers or relative to
the parent block[6]. Also the alignment with its parent (for example float left) is
used[6]. Considering how VIPS works, an information about the Degree of Co-
herence as defined in [1] should be stored for each block as well. For separators
is is important to store their visual impact, which can be in form of width or
visibility defined e.g. by borders of adjacent blocks. Relations between blocks
have one feature and that is the degree of visual similarity of blocks in relation.
This information is not a part of VIPS output, but it is added in some other
algorithms using it[6].

3.2 Other algorithms

Burget in his work [7] focuses on similar problems as VIPS but structures he
uses are slightly different. The tree produced by his algorithms contains two
node types: visual areas and content nodes. All visual areas contain information
about the position and dimensions of the area. To define both of these a special
topographical grid is constructed for each non-leaf visual area. An example of
this grid is displayed on figure 1

Fig. 1. An example of the topographical grid

All child areas are then placed on the grid. A position of each area is repre-
sented by the cell of grid which the top-left corner of the area is in and dimensions
are represented by the number of rows and columns the area takes. Every non-
leaf node in the tree can contain only other visual areas. Each leaf contains
exactly one content node, therefore no grid is necessary for it.

Content nodes contain one or more content elements concatenated to a string
creating a single continuous area of the document. There are two types of content
element: images and text. Each of them contains different attributes describing
appearance. Taking description of text nodes in section 2 into account, it is
possible to consider text and image nodes in the DOM tree as content elements,
because they are basically equal.

4 Mapping of trees

Mapping of tree for our purposes is different than the problem of tree mapping
as described in [8] and [9]. In the literature, it is defined as a list of actions
needed to transform one tree to another, but we just need to know which nodes
of the DOM tree are represented by a particular visual area in the Tree of Visual
Areas.

Each leaf node in VIPS output is mapped 1:1 to a node in the DOM tree.
This can be solved by simple object reference. However non-leaf nodes don’t
have to correspond to particular nodes. To find out which DOM nodes the area
represents, a recursive search for all leaf successors and their corresponding DOM
nodes can be performed. However for convenience it should be possible to store
a list of subtrees represented by the visual area. A two-way reference between
DOM nodes and visual areas might be considered. That would have to be M:N if
we consider that more Trees of Visual Areas might be derived from single DOM
tree.

Mapping between DOM tree and Burget’s algorithm output tree is similarly
simple. Content nodes are represented by their DOM counterparts as described
in sections 3.2 and 2. The rest of the mapping is fairly the same.

5 Databases

Some design challenges were introduced in previous sections. This section will
analyze different database types suited for storing previously introduced tree
structures. In each part a special attention will be given to features which might
be difficult to conveniently implement in that particular database. Only object-
oriented and object-relational databases will be inspected here, because they
support a basic feature needed for storing tree structures – objects and refer-
ences to objects. Also a declarative access to data, which both database types
offer, is strongly preferred.

A very brief summary of specifics we have to evaluate follows:

– Flat or hierarchical DOM node representation (hierarchical is preferred)?
– Is it possible to store references to N children? How?
– How can we store attributes (object properties or Attr data type)?
– How can we store lists (sibling nodes, DOM attributes, . . .)?
– How can we represent style attributes?
– How to store the relation between VIPS blocks?
– How to represent the grid in Burget’s tree?

5.1 Object-relational databases

Object-relational data model is the first one offering the required set of features.
It is partially derived from common relational data model, but in comparison it
solves their biggest weakness and that is the atomicity of attributes as defined
in the first normal form. This limitation is not a problem in simple applications
(in a terms of precessed data) such as banking systems. However even there
it is possible to observe first complications. For example addresses are usually
represented by several fields (street, house number, city, etc.), but the application
might have a need for the address as one corpus. O-R data model solves this
by introducing the possibility to store user data types. Address would be just
stored on one field of the table and it would be represented by an object holding
all these information separately. Following block of code shows an example how
could the data type be defined:

create type address as (number integer, street varchar(100),

city varchar(100), zip integer)

After being defined, objects of the data type can be used in data fields of
tables and as properties of other objects. To get closer to the object-oriented
paradigm it is also possible to define tables of the type as demonstrated by
following example. Objects of defined type will then represent rows of the table.
This concept is also required for some features which will be described later.

create table addresses of address

User defined types in SQL are equivalent to classes in standard programming
languages. As such, they have some features known from these languages. One
of such features is type inheritance. When inheriting a type, both methods and
properties are inherited. Inheriting methods has its specifics, but, since methods
are not important for our purposes, they will not be discussed here any further.
It is possible to use keyword final to specify that a type can’t be inherited any
more. SQL defines not only type inheritance, but also table inheritance. This
corresponds to generalization/specialization as known from entity-relationship
models. Both these inheritances imply the possibility to use the hierarchical
DOM model design as described in section 2.

Reference types are the next useful feature of object-relational databases.
They are equal for example to pointers to objects in C++. It is possible to
store a reference to another object as an attribute of an object. To use this in
SQL, there is one limitation: there has to be a table of referenced object type in
the database and of course the referenced object has to be stored in this table.
When creating a type which contains reference attribute, this attribute has to
be given its scope – the table containing objects it is possible to reference in that
attribute. The scope is mandatory and it makes this whole concept work similar
as foreign keys in relational databases. The table of referenced type has to have
self-referential attribute defined. Value of this attribute will then serve as the
reference itself – it will identify the referenced object within the table. It is the
same concept as primary key in relational databases. In fact existing primary key
of the type can be used as self-referential attribute. Dereferencing of an object
is similar as dereferencing pointers in C++. We can use either -> operator,
or combination of deref() and . operators. Reference types are important for
modeling the mapping between trees, because each node can be referenced both
from the tree itself and also in the mapping.

Besides user defined data types, object-relational databases offer two new
data types: arrays and multisets. Multiset is a type similar to set known from
standard SQL, but it can contain same values multiple times as well. The ar-
ray type is basically the same as known from C language – it also has to have
pre-defined length and can store only one data type. Compared to relational
databases, both arrays and multisets simplify some common design problems.
Simple 1:N relations are a good example of this. However for our purposes, the
pre-defined array size makes it unusable, because each DOM element can have
arbitrary number of children as well as attributes. The only option how to design
this is to use double linked list. Each node would have to reference only the first
child. This approach, however, cannot be applied to mapping as described in
section 4. The only option would be to reduce the mapping to 1:N, which is also
described in section 4. The array limitation also affects attribute representation.
Because hierarchical DOM model can be supported, it is reasonable to store the
most common attributes as properties of data types. The rest of attributes can
be represented for example by a list of Attr objects. The best approach would be
to store attributes in an associative array which can be emulated to some degree
by a database table, but the result would not be entirely satisfying. This also

implies that the best way to store style information is as the DOM specification
suggests – each style attribute will have its property in style data type.

There is one more simplification, which can be considered new data type:
unnamed row. These are an alternative solution to user defined data types. For
example when we consider the users table described above, unnamed row can
easily replace the address data type in addr column as example below shows.
This might be useful for storing attributes of DOM nodes assuming that the flat
DOM design is used.

create table users (addr row (number integer, ...))

There are the last two things left for evaluation: considering properties offered
by object-relational databases, the best way to store relation between VIPS
blocks is to store it as a list of relation objects. Each such object would have
to have two next pointers and two prev pointers, one for each block in the
relation. The grid design will be more of a challenge taking our options into
account. The best option to design it would probably be as an array of objects
linked similarly as a list. There is one more issue of object-relational data model
left and that is bridging the gap between programming language of an application
and the language of the database. This issue is closely described and dealt with
in section 5.2.

5.2 Object oriented databases

The concept of object oriented databases was designed to solve the biggest issue
of relational and object-relational databases and that is transformation of the
data from typeset of the database to the typeset of the programming language
the application itself is written in. The process of data conversion has two flaws.
First, it takes a substantial amount of code. That means less lucidity and greater
likelihood of an error in the code. And second, the persistence has to be handled
explicitly – when the data is modified in the program, a routine to store them in
the database has to be called and its result evaluated. Again, it means a lot of
additional code.

Object-oriented databases are based on a concept of persistent programming
languages[11]. In these languages the query language and other means of data
handling are integrated into the application language, therefore the typeset of
database and application is the same – no additional conversion is needed. Per-
sistent programming languages are basically standard programming languages
like Java with framework handling the persistence. This means that there are
no issues with features of such databases, because they share feature set with
language of the application and therefore all things we need to evaluate are sup-
ported. There are, however, some features related to data storing which should
be evaluated.

Normally, objects are transient and they disappear once the program is ter-
minated. There are four approaches how to make transient objects persistent[11]:

– persistence by class: in this approach the whole class is defined as persistent
and all objects of this class will be automatically stored on the disk. This
approach is not convenient for our purposes, because we might need some
temporary objects upon which many operations need to be performed before
they are ready to be stored.

– persistence by creation: here the object is marked to be persistent when it
is created. This approach is slightly better, but still inconvenient for use for
the same reason as the previous one.

– persistence by marking : this is the first approach which might be used. Ob-
jects are created as transient and they are marked as persistent at any point
of their life

– persistence by reachability is probably the best option for storing DOM tree
and the Tree of Visual Areas. Here a root object is marked as persistent and
all objects become persistent once they are reachable from this root object.
Also breaking their reachability from the root makes them transient again.

What is important in object-oriented databases is the object identity and
its persistence. Transient objects have their identity very straightforward. The
identity corresponds with object’s position in the memory. However position of
persistent objects may change in time. We need to know how to refer to these
objects when for example the program ends and starts again later. There are
four levels of identity persistence[11]:

– within the procedure: basically equals to no persistence at all
– within the program: this level of persistence can be used in some specific

cases described below. In other cases it corresponds to global variables for
instance.

– between programs: this corresponds to pointers to file system. The problem
here is that these pointers can be changed in time. That can cause the stored
tree to fall apart.

– persistent: in this case the identity survives even data reorganization on the
disk. It is, therefore, the optimal level we can achieve.

There are also some drawbacks to using persistent programming language[11].
The biggest one is that programming languages used for this are usually high-
level. That means worse optimization of performed operations and rather big
overhead. Historically, there was also worse support of declarative querying, but
lately a significant progress has been made in this area.

There are many implementations of object-oriented database concept. Be-
cause many web segmenting applications are written in Java, we’ll focus on one
specific interface: Java Persistence API [10] and its most spread implementa-
tion – Hibernate. It uses object-relational mapping concept. That means it is not
database engine per se. Instead, it uses arbitrary SQL-based database as backend
and then transforms the data from the database to Java objects. There is a set of
well defined rules how to declare classes to correspond with the database layout
(or vice versa). Several code/database generators are even based on this set of
rules. Since the Hibernate framework does all the transforming itself, two main

issues of object-relational and relational databases mentioned at the beginning
of this section disappear.

Now just to list some features related to previously described features of
object-oriented databases. Hibernate typically persists objects by marking them
as persistent. This is dona via persist() method of entity manager object,
which handles persistence. To some degree, persistence by reachability is also
supported. In following example, object a is persisted by marking and object b

is persisted by reachability:

A a = new A();

B b = new B();

a.setB(b); // "a" knows about "b"

em.persist(a);

This is perfect for our purpose, since we can build the complete tree and then
mark its root as persistent. This will store the entire tree. As for object identity,
Hibernate objects have identity within the program, but this is the case in which
it is not a problem. Identity of objects is destroyed after the program exits,
but the whole tree is automatically loaded from the backend database once
the program starts again and the data is requested. Objects in this run have
different “pointers”, but the tree is still valid, because each object has its own
abstract ID in the backend database. This ID is used to rebuild identity of objects
and, based on it, the tree as well. Optimizations of object-oriented databases
based on object-relational mapping are often a problem because they add a
large amount of overhead, as discussed before. This is partially compensated in
Hibernate by possibility of configuration and also possibility of finetuning the
underlying database backend. Finally, there are also some issues when using
JPA and object-relational mapping. The issue, although only a small one, is
that application designer needs to do the design of data structures in SQL as
if doing design for relational data model. That is certainly more complicated
than defining data structures in object-relational databases. On the other hand,
available code generators solve this issue for programmers.

To sum up and answer questions from section 5: both hierarchical and flat
DOM representation is possible. Collections and object references are at pro-
grammer disposal in the same range as the programming language offers. That
makes design challenges like M:N mapping rather simple. Maps are usually a part
of the language, therefore simple textual representation of both attributes and
style information is possible. Relation between VIPS blocks can be represented
by a collection of Relation objects. Similar design can be used for Burget’s grid.

6 Conclusion

In the first half of this work, outputs of different vision-based segmentation
algorithms have been inspected and described in a way which brings them closer
to object-oriented tree-based approach. Also a DOM model has been described
with special attention to those of its features which are important for storage.

The last data component inspected was the mapping between the two trees.
During the inspection of all data structures some aspect of their design were
emphasized as potentially problematic for storage.

The second half then outlined basic features of two database approaches
convenient for storing the data identified in the first part. Each one of proposed
database approaches has its specifics. In comparison Object oriented databases
offer much better design possibilities, making most of the structural specifics pos-
sible to design and implement. From this point of view they are more convenient
for data storage. Of course not every language offers the persistence extension,
therefore object-oriented approach is not always the best option. Also some per-
formance issues are likely to occur in comparison with object-relational data
model. If necessary, this model can also offer some features making the database
design needed for described structures possible. But the final design would have
many shortcomings which would need to be compensated by additional program
code. Therefore it won’t be the first choice in most cases.

References

1. Cai, D., Yu, S., Wen, J.-R., Ma, W.-Y.: VIPS: a Vision-based Page Segmentation
Algorithm.. Microsoft technical report. MSR-TR-2003-79. 2003

2. Hors, A. L., Hégaret, P. L., Nicol, G., Wood, L., Champion, M., Byrne, S.: Document
Object Model (DOM) Level 3 Document Object Model Core. W3C Recommenda-
tion. April 2004

3. Stenback, J., Hégaret, P. L., Hors, A. L.: Document Object Model (DOM) Level 2
Document Object Model HTML. W3C Recommendation. January 2003

4. W3C: Document Object Model (DOM) Technical Reports (overview)
5. Petasis, G., Fragkou, P., Theodorakos, A., Karkaletsis, V., Spyropoulos, C. D.: Seg-

menting HTML pages using visual and semantic information. In Proceedings of the
4th Web as a Corpus Workshop, 6th Language Resources and Evaluation Confer-
ence. June 2008.

6. Liu, W., Meng, X., Meng, W., ViDE: A Vision-Based Approach for Deep Web Data
Extraction. IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 3.
March 2010.

7. Burget, R.: Layout Based Information Extraction from HTML Documents. The
Ninth International Conference on Document Analysis and Recognition. 2007.

8. Tai, K. C.: The tree-to-tree correction problem. J. ACM 26(3). 1979
9. Vieira, K., Carvalho, A. L. C., Berlt, K., Moura, E.S., Silva, A. S., Freire, J.: On

Finding Templates on Web Collections. In Journal on World Wide Web, Volume 12
Issue 2. June 2009.

10. EJB 3.0 Expert Group: JSR 220: Enterprise JavaBeansTM, Version 3.0; Java Per-
sistence API. May 2006

11. Silberschatz, A., Korth, H. F., Sudarshan, S.: Database System Concepts, 5th
edition. New York: McGraw-Hill.

