
ReTIN: Indexing Schema for Soft Real-Time

Data Streams

No Author Given

No Institute Given

Abstract. The paper deals with the indexing of a complex type data
stream where a portion of the stream that represents the content of
its sliding window is stored in a database. The processing of this data
must often meet some real-time constraints. We present here a novel
indexing schema/framework referred to as ReTIN (Real-Time INdexing),
the objective of which is to allow indexing of complex data arriving as
a stream to a database with respect to soft real-time constraints for the
maximum duration of insert and select operations. In contrast to hard
real-time constraints, the softness means that constraints violations are
allowed but their number must be minimized. In ReTIN, soft real-time
constraints are met with some level of confidence. The basic idea of
ReTIN is a combination of sequential access to the most recent data
to less recent data that has been indexed and stored in the database.
The collection of statistics makes balancing the indexed and unindexed
parts of the database efficient. We have implemented ReTIN PostgreSQL
DBMS and its GIN index to store and index data. Experimental results
presented in the paper demonstrate some properties and advantages of
our approach.

1 Introduction

During the last two decades a new class of data sources and data-intensive ap-
plications that process data of such sources has appeared. The data produced by
these data sources and processed by these applications is modeled best as data
streams [6]. In contrast to traditional database management systems, in which
data is stored as persistent relations, a data stream is a continuous, possibly
infinite, stream of changing and often of high dimensional data that must be
processed under some real-time constrains. Examples of such applications in-
clude network monitoring, surveillance, multimedia, financial and other sensor
data.

Our research of soft real-time data stream indexing was motivated by the need
of querying metadata of moving objects produced by computer vision modules
of our experimental SUNAR (Surveillance Network Augmented by Retrieval)
system [12]. The goal of SUNAR is to persistently track moving objects in a
space monitored by multiple smart cameras (at airports). These cameras pro-
duce multiple data streams, which are necessary to index in order to make the
similarity search and spatio-temporal queries possible in near real-time. The

2

identity preservation queries are performed every time an object (or subject)
appears in a video. Although neighboring cameras query one database only, the
load is huge.

Another application domain that require our research on real-time indexing
is computer security, namely intelligent intrusion detection systems that monitor
the computer network traffic in real-time. We use (Argos) honeypots [ARGOS]
to detect exploits on a highly monitored machine and this information is then
used to stop such incidents in the whole network. This includes also identifying
all computers possibly compromised up till now using complex network data
queries.

A different example could be a geographic information system [18] that stores
and evaluates data issued from an array of spatially referenced sensors to prevent
a natural disaster. The longer the system takes to detect any incidents, the more
we loose. There is barely enough time to re-index the database under these
circumstances in order to enable to query other sensors’ data.

In this paper, we present a novel indexing schema/framework referred to as
ReTIN (Real-Time INdexing), the objective of which is to allow indexing of
complex data arriving as a stream to a database with respect to soft real-time
constraints. A soft real-time constraint, in contrast to a hard constraint that has
to be always met, allows violations but their number is minimized and the query
speed optimized.

The indexing schema is based on database partitioning. Values of the data
stream are inserted into an unindexed partition that contains the most recent
data. Less recent data is stored in other partitions that are indexed. Queries
are processed using both full scan and an indexed-based access method. Schema
maintenance is controlled by two soft real-time constraints. It includes moving
data from the unindexed part to the indexed one, a simple load shedding and
use of a technique similar to piggybacking to collect and update statistics. The
schema maintenance and indexing runs as a completely independent process of
new data insertion and query processing. We presume no changes to client SQL
queries (except continuous ones, of course)1.

The rest of the paper is organized as follows. The most influential related
works are mentioned in the next section. Section 3 contains problem formu-
lation and section 4 describes the structure of the proposed indexing schema
and operations on it. Section 5 includes several comments on ReTIN implemen-
tation. Section 6 presents experimental results and section 7 conclusions and
future work.

2 Related work

Data stream theory and technology has become a hot research topic since the be-
ginning of this century. Several Data Stream Management Systems (DSMS)have

1 The ReTIN binary and source code including experimental util-
ities for the PostgreSQL database system can be obtained at
http://www.fit.vutbr.cz/research/view product.php.en?id=129 under GNU GPL.

3

been developed [8], [1], [4]. Their motivation was to provide monitoring and
tracking applications capabilities and functionality not supported directly by
traditional DBMSs. They have brought techniques such as continuous query-
ing [5], sliding window query processing [15], approximate query processing [14],
sampling, sketching and synopsis construction [3]. Moreover, techniques of query
optimization and Quality of Service (QoS) to guarantee a certain level of perfor-
mace, as load shedding [24], [10], have been developed. In addition, some data
stream specific indexing methods have appeared. Multi-granularity aggregation
indexing [13] is an integrated structure managing summarized information of
snapshots. Po-tree [18] is an indexing structure for spatio-temporal databases
with soft real time constraints which combines two different structures for spa-
tial and temporal dimensions. A continuous query index for RFID data streams
[21] is an index that is built on queries rather than data records. Examples of
other data stream indexing techniques are multi-resolution indexing scheme [13]
or integrated distributed indexing architecture [9].

On the other hand, DBMSs improved their capabilities too. SQL:2003 intro-
duced logical and physical windows and several windowing agregate functions.
These features are also supported in many commercial DBMSs. This frame-
workhe has been extended in the Expresive Stream Language (ESL) of the
Stream Mill system [7]. Although push-based processing is usually presented
as a prefered processing model for data streams there are applications where
pull-based processing and DBMSs can be successfuly applied. Examples have
been mentioned in the previous section. Our approach is focused on such ap-
plications. It is based on modified techniques that reduce the problem of high
index maintenance overhead for updates (inserts of new data stream values in
our case) and techniques that help to guarantee QoS measured by real-time con-
straints. Similarly as in differential files [23], we confine the recent data stream
values to a separate partition. In addition, their indexing is deferred and done
in batches, which is the idea of differential indexing.

Our approach also profits from several techniques known from real-time
databases. Their research received a lot of attention, but the primary objective
of real-time support in these databases was different compared to data streams
[16]. First of all, our concept of a soft real-time constraint is similar to one known
from real-time databases [2]. Moreover, the idea of our approach is similar to a
real-time index/cache consistency maintenance technique Codir for text retrieval
systems presented in [11] or to a differential indexing with LSM-tree [19]. Codir
builds a transient index for new document updates and queries are processed
using both permanent and transient index. To minimize performance overhead
associated with document database updates, Codir integrates transient index
with permanent index lazily using piggybacking [25] or batch processing.

3 Indexing schema concepts

The ReTIN indexing schema supports the most important real-time data stream
operations on a single table in the database, in which a portion of the stream is

4

stored – insert (inserts a new data stream element) and select (executes a query).
There are three parameters that control the behavior of the indexing schema: a
maximum time of insert operation TMAX

INSERT , a maximum time of select operation
TMAX
SELECT and a confidence factor r. Then, the schema meets the soft constraints

TMAX
INSERT and TMAX

SELECT with confidence r×σ where σ is a standard deviation of
the execution times distribution and r is a selected confidence factor as described
below.

3.1 Problem formulation

Let ds be a data stream of data elements of a type dt, which is complex in
general – composite and/or multiple-valued. The data stream is processed using
a sliding window. Let us assume that the window is larger than it fits in the
main memory. The content of the window is stored in a database table D, which
is not necessarily normalized. The size of the window is not specified in advance.
Instead, real-time constraints TMAX

INSERT and TMAX
SELECT are specified for durations

of insert and select operations on table D. Thus, the size of the window is
dependent on the duration of these operations.

It is required to minimize the number of violations of the timing constraints,
so they can be considered to be soft real-time constraints. The softness of the
constraints is dependent on the probability of their violation. We can introduce
estimates for maximum processing times of insert and select operations on D:
M [TINSERT] and M [TSELECT], respectively:

M [TOPERATION] = µ(TOPERATION) + r × σ(TOPERATION) (1)

where OPERATION is either INSERT or SELECT. The estimates are derived from
the expected (duration of the operation) E[TOPERATION]. It is given by the
average processing time of the operation µ(TOPERATION), and its standard de-
viation σ(TOPERATION). The real value r is a confidence factor that determines
the confidence interval or the allowable probability of the constraint violation
together with the standard deviation σ. For example, provided Gaussian normal
distribution the value r = 3.0 results in 99.73% probability of not exceeding the
TMAX
OPERATION .
We have chosen operations select and insert because they are typical for data

streams and data of temporal character. Data modification operations are usually
not defined on streams and they have a minor effect on the system performance.

4 Proposed solution

The idea of the ReTIN indexing schema is that table D consists of two logical
partitions, namely DS and DI that differ in access methods and DX that stores
obsolete data that are not accessed using queries onD. Data inDS is accessed by
means of full scan whereas data in DI is indexed. All incoming data of the data
stream ds is inserted into DS. DI contains less recent data of the stream that

5

was relocated there from DS partitions during indexing schema maintenance
operations in the past. The objective of the schema maintenance operation is
to improve performance in order to meet the soft constraints TMAX

INSERT and
TMAX
SELECT . There are two cases that result in accomplishing the schema mainte-

nance operation:

– CASE 1: duration of insert or select operation that is to be executed would
violate TMAX

INSERT or TMAX
SELECT with high probability,

– CASE 2: full scan access of DS takes more time than access to data in DI.

In order to be able to check for these situations, some temporal statistics
must be gathered during the execution of operations on ReTIN. In CASE 1,
reduction of the DI part may be necessary. It is done by moving the less resent
data, which is considered to be obsolete to DX storage, or by deleting it. This
data will not be available further in ReTIN by querying table D.

The schema maintenance operation should not block and significantly delay
an insertion of new stream data and querying the data in D. We solve it in such
a way that the maintenance operation is performed asynchronously as a back-
ground process (in time and space) to insert and select operations. In addition,
the maintenance operations use partitions and must be atomic.

Both TMAX
INSERT and TMAX

SELECT should be met, but it is not acceptable to
rebuild the index on DI whenever after insert or before a select operation (the
lazy approach), because it may break the time constraints.

Thus, our approach is advantageous in at least two situations. First, when
the duration of a sequential scan for a select operation on D would take much
longer than a corresponding index scan or when it would violate the constraint
TMAX
SELECT . Second, when updating an index would take much longer than a sim-

ple insertion of data or it would violate the constraint TMAX
INSERT :

E[TSELECT DS] ≫ E[TSELECT DI] or E[TSELECT] > E[TMAX
SELECT] (2)

E[TINDEX] ≫ E[TINSERT] or E[TINDEX] > E[TMAX
INSERT] (3)

where E[TOPERATION] stands for expected duration of a corresponding op-
eration.

Having in mind the above conditions, all the data are inserted to the unin-
dexed subtable DS, in which they are kept until it stops being advantagous.
This means, until the query duration on DS exceeds either the query time of
the indexed part or it exceeds the soft constraint TMAX

SELECT . If this condition
(2) is approaching, there is time to relocate the data from DS into DI asyn-
chronously. The asynchronous transfer is important not to influence the queries
in progress. Thus it must be processed in parallel way, both in time and memory.
In this way we can guarantee the soft query time constraint TMAX

SELECT .

4.1 Structure

The basic elements of the ReTIN indexing schema are shown in Figure 1. It
consists of the hierarchy of three tables. All the tables have the same schema

6

(t : TIMESTAMP, d : dt), where TIMESTAMP is an underlying DBMSs data type
for timestamp values and dt is the type of an element of the data stream ds.
Each row of tables contains a value of one element of ds in column d and the
time of insertion into the database in column t. Because the data type dt can
be a composite and/or multiple-valued, the column d can contain subcolumns
or nested collections.

Fig. 1. Basic elements of the ReTIN indexing schema. Table D encapsulates partition
DS, and indexed oneDI .DI consists of partitions Pi. Metadata related to all partitions
Pi and DS are stored in the MD metadata table.

– Table D – a virtual table that encapsulates tables DS and DI. All schema
clients’ insert and select operations run on it.

– Table DS – a base table containing the most recent data of the data stream
ds that has been inserted into D. There is no index on column d or its
subcolumns or nested collections. The data is accessed by means of a full
scan.

– Table DI – a virtual table that encapsulates one or more base tables Pi(i =
1, . . . , k, k ≥ 1) referred to as partitions. The number of partitions k changes
in time. There is one or more indices IDj(j = 1, . . . , l, l ≥ 1) on column d

of DI or its subcolumns or nested collections. DI encapsulates the indexed
part of table D.

– Table MD – a base table that contains some temporal statistics concerning
the insert and select operations on tables D, DS and DI, as illustrated in
Figure 1. It will be described in more details in the following section.

4.2 Operations of ReTIN

The ReTIN indexing schema provides two logical operations to its clients:

– insert(e: dt) – inserts an element e of the data stream ds into the table D,
– select(q: query) – selects data from D as a result of a query q.

Both these operations rely on corresponding operations of the underlying
DBMS. Here we consider INSERT and SELECT statements conforming to the

7

SQL standard. The only additional activities include the logging of queries and
the update of temporal statistics used for the decision on whether the indexing
schema maintenance operation should be performed. It is an internal operation
of the ReTIN role, which is meant to change the content of tables DS and DI

in such a way that the soft constraints TMAX
INSERT and TMAX

SELECT will be met for a
time period. This operation is performed asynchronously to the insert and select
operations. Let us assume that there is a concurrent process responsible for the
indexing schema maintenance operation.

All three operations are described more formally below. Inputs, outputs (only
data is considered here) and preconditions used are specified first, then the al-
gorithm is described in the pseudocode.

Algorithm 1: Operation insert(e : dt)

Input: e -- an element of the data stream

Precondition: "INSERT INTO D VALUES(e)" performed

INSERT INTO DS VALUES (current_timestamp, e);

update_insert_statistics();

SIGNAL "check RT constraints";

Algorithm 1 presents the INSERT operation. It is ensured, that the new value
will always be inserted into the table DS without the need to update any index.
The operation update insert statistics() updates statistics related to the insert
operation. These statistics are stored in the metadata table MD. The opera-
tion updates sums that are necessary to compute the mean (µINSERT) and the
standard deviation (σINSERT) of the insert operation processing time.

The last statement SIGNAL represents the sending of an asynchronous mes-
sage to the process responsible for the indexing schema maintenance operation.
In fact, it is not appropriate to send the message after each insert. Instead, it
should be send after a batch of inserts.

Algorithm 2: Operation select(q : query)

Input: q -- a~select statement, retrieves data from D

Output: rs -- a~result set of query q

Precondition: "SELECT d FROM D" performed

rs = EXECUTE q;

update_query_statistics(q);

Algorithm 2 presents the SELECT operation. The select statement q is exe-
cuted by the DBMS. Its execution is optimized by DBMS’s query processing
planner and optimizer. We assume the optimizer uses indexes on the table DI

and a full scan on the tableDS to access the data from the table D. Next, the up-
date query statistics(q) operation logs the query in a log. The log may be later
analyzed by the indexing schema maintenance process to acquaint performed
queries and to analyze their durations.

8

Temporal statistics of a batch of select(q) operations are computed asyn-
chronously based on typical or randomly logged queries in the indexing schema maintenance()
process. It performs the queries on the table D in order to obtain their du-
ration exploring both the index and sequential scan tables. It calculates the
mean (µSELECT) and standard deviation (σSELECT) of the queries duration
(TSELECT) on D. Moreover, it calculates the mean value (µSELECT DI) of
the durations of accessing data in DI employing indexes and the mean value
(µSELECT DS) of the durations of the accessing data in DS using full scan.
The standard deviations (σSELECT DI) and (σSELECT DS) are calculated anal-
ogously. In algorithm 3 below, it is represented by an update select statistics()
operation for a selected or reduced set q’ of client queries that were logged.

As previously mentioned, the responsibility for decisions concerning indexing
schema maintenance is assigned to an asynchronous process. The process either
runs if it receives a signal from the insert() operation or after a batch of updates
according to the probability of necessity to perform the index maintenance. The
indexing schema maintenance() process has no inputs and outputs, but it uses
constraints TMAX

INSERT and TMAX
SELECT and the confidence factor r. In addition, it

uses temporal statistics of insert operations.

Algorithm 3: Process indexing_schema_maintenance()

Precondition: Signal "check RT constraint" or multiple updates

M[T_INSERT] = E[T_INSERT] + r * sigma_INSERT;

if M[T_INSERT] > T_INSERT_MAX raise warning "Insufficient Hardware";

M[T_SELECT] = E[T_SELECT] + r * sigma_SELECT;

if M[T_SELECT] > T_SELECT_MAX or E[T_SELECT-DS] > E[T_SELECT-DI]

create new DI’ as DI;

if M[T_SELECT-DI] > T_SELECT_MAX exclude partition P1 from DI’;

if E[T_SELECT-DS] > E[T_SELECT-DI]

create partition Pk+1 as DS;

include partition Pk+1 into DI’;

endif;

create indexes for DI’; -- may take a long time

replace DI with DI’; -- must be atomic

delete Pk+1 data from DS;

endif;

Algorithm 3 presents the schema maintenance operation. Expressions E[X]
and M [X], in accordance with the notation used in previous sections (1). The
first (if) condition in the algorithm checks the insert operation durations to
meet the soft real-time constraint TMAX

INSERT . If it is violated, the situation is just
reported, because the ReTIN does not use any index while inserting the data,
so there is no related overhead that could be reduced.

The second condition checks the temporal constraints and defines when the
indexing schema operation should be performed. Until the condition is met, the

9

balancing of the execution time of the full scan on DS and the index data access
on DI is considered to be optimal.

The indexing schema maintenance operation can be executed if one or both
of the following conditions are met:

– The duration of select operations on the indexed data part are about to
break the TMAX

SELECT . In such a case, the size of the indexed table DI has to
be reduced. It is done by removing partition P1 containing the least recent
data from DI.

– Unindexed selects last longer than the indexed ones. In such a case, a new
partition Pk+1 containing data from table DS is added to DI.

After that, the data in DI is (re-)indexed using user-defined indexing oper-
ations. The (re-)indexing routine is supposed to work asynchronously in time
and space. Thus a new virtual table DI ′ is created and the index(es) are built
on this table, which can take considerably long time. The re-indexing process is
accomplished by the atomic replacement of the deprecated logical index table
DI with DI ′.

Note: For the sake of simplicity, we have simplified the description of/ al-
gorithm 3. For instance, we consider the range of partitions of DI from 1 to k

no matter of the fact that some can be excluded and other added. A technique
similar to shadow paging known from database systems can also be used.

5 ReTIN implementation

Our open-source implementation of ReTIN is based on DBMS PosgreSQL. Java
and PL/pgSQL were used as programming languages.

There are some important issues that have to be taken into account in im-
plementation of ReTIN. Most of them concern the DMBS, in particular:

1. Inheritance
Because ReTIN indexing schema consists of the hierarchy of tables D, DS

and DI, this support is necessary. Either views or object-relational exten-
sions introduced in SQL: 1999 (inheritance) can be used. The latter seems
to be more appropriate.

2. Partitioning
In ReTIN, table DI is composed of partitions Pi [20]. Partitions can also be
implemented as individual partition tables that are inherited by tables DI

and D. We have used this approach.
3. Triggers

Because data elements from the stream are inserted into the virtual table
D, but are physically stored in DS, the DBMS must provide a mechanism
that makes it possible (INSTEAD OF or BEFORE).

4. Notification
ReTIN assumes the existence of a background process that checks soft real-
time constraints and is responsible for indexing schema maintenance. This

10

process receives asynchronous messages that trigger these activities. Some
DBMSs support the waking up of such a process, for example dbms alert in
Oracle or listen/notify concept in PostgreSQL [22, 20]. If the DBMS does not
support this functionality, it is necessary to set an appropriate sleep period
for the process. It can be derived from the frequency of insertions. However,
notification is the primary instrument for implementing continuous queries.

5. Indexing
The DBMS must provide appropriate indexing methods with respect to data
types of data stream elements or their subelements that should be indexed.
PostgreSQL provides two families of indexes on complex data types – GiN
and GiST [22].

6. Query planner and optimizer
Because ReTIN indexing schema combines full scan and indexing as access
methods to data, it relies on its quality or the existence of hints that allow
one to enforce a specific data access method.

There are some other important issues, such as concurrency control, query
logging, query selection for temporal statistics collection, duration measurement
etc., which are not discussed here.

6 Experimental Results

We used a dataset of meteorological observationsGlobal Surface Summary of Day
Data (GSOD) [17] for experiments. GSOD is a product archived at the National
Climatic Data Center (NCDC) to make a wide range of climatic data available
to researchers and the public. The on-line data files cover a time period from
1929. They contain data from more than 9000 stations. Each record contains
the global summary of day data containing 18 surface meteorological means and
maximums and other characteristics such as temperature, dew point, sea level
pressure, visibility, wind speed together with precipitation amount, snow depth
and indicators for occurrence of fog, rain or drizzle, snow or ice pellets, hail,
thunder, and a tornado/funnel cloud summary. Because of its temporal charac-
teristics, the data can be processed as a data stream. Although this is not typical
data with critical real-time constrains, it is appropriate for our experiments.

The GSOD data were represented by an array of integers. Float values in the
dataset were rescaled and converted into integers due to performance and mem-
ory saving reasons. Then table D, in which the data is stored in the database,
has a schema D(t : TIMESTAMP, d : ARRAY OF INTEGER). ReTIN implementation
is based on the PostgreSQL 8.4 database management system and the General-
ized Inverted Index (GIN) index [22] recommended for the indexing of arrays. It
ran on a server with 2x AMD Opteron 2435 (6 cores, 2.6GHz), 64GB RAM and
2.5TB RAID-6.

The goal of the first experiment was to show a dependency of the execution
times of insert and select operations on the amount of data in the database
for given constraints TMAX

INSERT and TMAX
SELECT . There were three approaches to

11

access data used: unindexed data, GIN indexed data and by means of the ReTIN
indexing schema. The experiment was evaluated on 500, 000 records of 1950’s
GSOD data. The size of table D with 500, 000 records was about 240 MB,
including the GIN index structure.

The methodology of the experiment was as follows: Records were sequentially
inserted into the data table. Average and maximum execution times of insertions
were measured for batches of 100 insertions. Average and maximum durations of
queries were measured by a set of queries for batches of 1000 insertions. The same
set of queries with the contains array operator was used in the batches. A result
set of queries contained 5% to 50% of all records in the table. Execution times
were measured by stored functions on the database server. They are equivalent
to the EXPLAIN ANALYZE query. During this experiment we set both TMAX

INSERT

and TMAX
SELECT constraints to 0.3s The experiment was repeated three times to

avoid random noise.

Figure 2 shows dependency of average and maximum execution times on the
size of table D without any index on data column d. This approach was very fast
for insertion but execution times of queries increased linearly with the number of
records. The time constraint 0.3s was permanently broken for more than 460000
inserted records in the table. This corresponds ito our expectation because of
the full scan access to data.

Figure 3 shows the same situation when the GIN index on data column d was
created. The problem of this approach is showed in figure 3(a). There are many
insertion execution time peaks between 110000 and 180000 records. The cause of
this phenomenon is the necessity to re-build the index structure. The maximum
execution time of queries exceeded the value 0.3s of the TMAX

SELECT constraint
many times.

The results for ReTIN are presented in figure 4. They show the benefit of the
proposed indexing schema. Maximum insertion execution times in figure 4(a)
were below the value 0.3s of the TMAX

INSERT constraint. Execution times were
slower only when the indexing schema maintenance operation was performed.
Execution times of queries shown in figure 4(b) demonstrate the benefit of our
approach. The ReTIN indexing schema combines a stable time of insertion with
efficient query processing.

Figure 5 provides a more detailed view of the behavior of the ReTIN with
respect to tablesDS andDI. Figure 5(a) shows the decomposition of the average
execution times from Figure 4(b) to the times spent by partial queries accessing
data in the tables DS and DI. Figure 5(b) shows the dependency of the size of
the DS table on the number of executions of the indexing schema maintenance
operation from the beginning of the stream. At the beginning, the full-scan
search is very fast but grows linearly. As the number of records grow, more data
is searched using the index and the total execution times grows logarithmically.
It proved our hypotheses stated in section 2.

The second experiment was focused on the concurrency properties of ReTIN.
We simulated concurrent transactions by two groups of clients. The first group
generated transactions containing an insert operation, while the other group

12

Fig. 2. a) Average and maximum execu-
tion time of insertions and

b) queries on the database table using se-
quence scan.

Fig. 3. a) Average and maximum execu-
tion times of insertions and

b) queries on the database with the GIN
index on column d.

Fig. 4. a) Average and maximum execu-
tion times of insertions and

b) queries on table D of the ReTIN index
schema.

Fig. 5. a) Average times of queries on DS

and DI tables based on tuples count and
b) appropriate DS size each executions of
the index schema maintenance operation.

13

generated transactions containing queries. There were several threads running
in parallel. We used the same set of data as in the first experiment. The con-
straints TMAX

INSERT and TMAX
SELECT were set to 0.3s. We evaluated the dependency

of constraint violations on the number of parallel queries and insertions that
were performed three times a second.

Table 1 shows the main results of the experiment. We expected a maximum
violation rate of about 0.3% by setting the confidence factor r = 3σ. The ex-
periment showed that the ReTIN system limit for TMAX

INSERT on this hardware is
about 150 transactions a second – 25 parallel insertions and 25 parallel queries
3 times a second (the row picked in bold in Table 1). This value also determines
the maximum size of the data stream sliding window. For more transactions, the
number of violations is greater than 0.3% and the window size would have to
be reduced to about 200, 000 items for 300 transactions a second in our case. If
we compare it to the same experiment but with data stored only in a table with
a GIN index – see the last row in Table 1, which corresponds to 150 transac-
tions a second, we can see the benefit of ReTIN. It fails about two times less for
querying and 10 times less for the data insertion.

Table 1. The number of real-time constraint violations in the concurrent database
access.

Threads Queries failed Inserts failed

ReTIN indexing schema

10+10 0.00% 0.03%
25+25 0.52% 0.31%

50+50 1.13% 0.54%
GIN indexing

25+25 1.23% 3.84%

7 Conclusions

We have proposed, implemented and evaluated a soft real-time indexing schema
called ReTIN. It makes it possible to effectively index a portion of a data stream
stored in a database and to meet real-time constraints for insert and select oper-
ations with some confidence. It combines storing the most recent data unindexed
and indexing less recent data. The former is advantageous from an insert oper-
ation point of view, but results in a full scan access for select operations. The
latter provides more effective access to data. The indexing schema maintenance
operation that optimizes the balance between unindexed and indexed data with
respect to the real-time constraints is performed asynchronously to clients’ insert
and select operations.

The experimental evaluation showed advantages in comparison with index-
ing all data stored in the database. We used the efficient PostgreSQL’s GIN
index both in our ReTIN implementation and as a competitive access method in

14

the experiments. They showed that ReTIN behaves appropriately for insertion
and selection operations on both indexed and unindexed data in the database.
Moreover, it changes its behavior automatically according to the system load
– it changes the width of the sliding window that defines the number of data
stream elements stored in the database.

ReTIN does not specify the type of index used for indexing. Current DBMSs
usually provide several types, some of them are suitable for indexing complex
data, similarity search etc., for example a KD-tree or R-tree. Their disadvantage
often is a high overhead of insertions. ReTIN can cushion this problem and allow
for the indexing of data streams containing complex data (e.g. spatio-temporal
ones).

In the future, we intend to continue the experimental evaluation of ReTIN
with other types of indexes. In addition, we will focus on the ReTIN deployment
and optimization for our surveillance network system SUNAR and a network
security project, for which it was originally designed. The schema performance
could be moreover improved by using differential indexing techniques [23] or
another use of the random access memory in the database backend.

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang,
J.H., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y.,
Zdonik, S.B.: The design of the borealis stream processing engine. In: CIDR. pp.
277–289 (2005)

2. Adelberg, B., Garcia-Molina, H., Kao, B.: Applying update streams in a soft real-
time database system. In: SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD
international conference on Management of data. pp. 245–256. ACM, New York,
NY, USA (1995)

3. Aggarwal, C.C.: Data Streams: Models and Algorithms. Springer US (2007)

4. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Mot-
wani, R., Srivastava, U., Widom, J.: Stream: The stanford data stream
management system. Technical Report 2004-20, Stanford InfoLab (2004),
http://ilpubs.stanford.edu:8090/641/

5. Arasu, A., Babu, S., Widom, J.: The cql continuous query language: semantic
foundations and query execution. The VLDB Journal 15(2), 121–142 (2006)

6. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues
in data stream systems. In: PODS ’02: Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems. pp.
1–16. ACM, New York, NY, USA (2002)

7. Bai, Y., Thakkar, H., Wang, H., Luo, C., Zaniolo, C.: A data stream language and
system designed for power and extensibility. In: CIKM. pp. 337–346 (2006)

8. Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Cherniack, M., Con-
vey, C., Galvez, E., Salz, J., Stonebraker, M., Tatbul, N., Tibbetts, R., Zdonik, S.:
Retrospective on Aurora. VLDB Journal (January 2004)

9. Bulut, A., Singh, A.K., Vitenberg, R.: Distributed data streams indexing using
content-based routing paradigm. Parallel and Distributed Processing Symposium,
International 1, 94 (2005)

15

10. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stone-
braker, M., Tatbul, N., Zdonik, S.B.: Monitoring streams - a new class of data
management applications. In: VLDB. pp. 215–226 (2002)

11. Chiueh, T., Huang, L.: Efficient real-time index updates in text retrieval systems
(1999), technical report TR-66, SUNY at Stony Brook

12. Chmelar, P., Lanik, A., Mlich, J.: Sunar: Surveillance network augmented by re-
trieval. In: Advanced Concepts for Intelligent Vision Systems. p. 12. Springer,
Sydney, Australia (2010)

13. Feng, J., Wang, Y., Yao, J., Watanabe, T.: Multi-granularity aggregation index
for data stream. In: CW ’08: Proceedings of the 2008 International Conference on
Cyberworlds. pp. 767–771. IEEE Computer Society, Washington, DC, USA (2008)

14. Hsieh, M.J., Chen, M.S., Yu, P.S.: Approximate query processing in cube streams.
IEEE Transactions on Knowledge and Data Engineering 19, 1557–1570 (2007)

15. Krämer, J., Seeger, B.: Semantics and implementation of continuous sliding window
queries over data streams. ACM Trans. Database Syst. 34(1), 1–49 (2009)

16. Kuo, T.W., Lam, K.Y.: Real-time Database Systems: An Overview of System
Characteristics and Issues, pp. 3–8. Springer US (2002)

17. NASA Official: Global Surface Summary of the Day - GSOD. [online] (2010),
http://gcmd.nasa.gov/records/GCMD gov.
noaa.ncdc.C00516.html

18. No, G., Servigne, S., Laurini, R.: The Po-tree: a Real-time Spatiotemporal Data
Indexing Structure, pp. 259–270. Springer Berlin Heidelberg (2005)

19. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The log-structured merge-tree
(lsm-tree). Acta Inf. 33(4), 351–385 (1996)

20. Oracle: Documentation library. [online] (2010),
http://www.oracle.com/pls/db112/homepage

21. Park, J., Hong, B., Ban, C.: A continuous query index for processing queries on
rfid data stream. In: RTCSA ’07: Proceedings of the 13th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications.
pp. 138–145. IEEE Computer Society, Washington, DC, USA (2007)

22. PostgreSQL Global Development Group: Postgresql 8.4.4 documentation. [online]
(2010), http://www.postgresql.org/docs/8.4/static/index.html

23. Severance, D.G., Lohman, G.M.: Differential files: their application to the main-
tenance of large databases. ACM Trans. Database Syst. 1, 256–267 (September
1976), http://doi.acm.org/10.1145/320473.320484

24. Tatbul, N., Çetintemel, U., Zdonik, S.: Staying fit: efficient load shedding tech-
niques for distributed stream processing. In: Proceedings of the 33rd international
conference on Very large data bases. pp. 159–170. VLDB ’07, VLDB Endowment
(2007), http://portal.acm.org/citation.cfm?id=1325851.1325873

25. Zhu, Q., Dunkel, B., Soparkar, N., Chen, S., Schiefer, B., Lai, T.: A piggyback
method to collect statistics for query optimization in database management sys-
tems. In: CASCON ’98: Proceedings of the 1998 conference of the Centre for Ad-
vanced Studies on Collaborative research. p. 25. IBM Press (1998)

