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Abstract. Off-policy learning is a framework for optimizing poli-
cies without deploying them, using data collected by another policy.
In recommender systems, this is especially challenging due to the
imbalance in logged data: some items are recommended and thus
logged more frequently than others. This is further perpetuated when
recommending a list of items, as the action space is combinatorial. To
address this challenge, we study pessimistic off-policy optimization
for learning to rank. The key idea is to compute lower confidence
bounds on parameters of click models and then return the list with
the highest pessimistic estimate of its value. This approach is com-
putationally efficient, and we analyze it. We study its Bayesian and
frequentist variants and overcome the limitation of unknown prior
by incorporating empirical Bayes. To show the empirical effective-
ness of our approach, we compare it to off-policy optimizers that use
inverse propensity scores or neglect uncertainty. Our approach out-
performs all baselines, is robust, and is also general.1

1 Introduction2

Off-policy optimization is used to learn better policies in systems,3

where deploying sub-optimal solutions is costly, for example, rec-4

ommender systems [10]. Despite the obvious benefits, off-policy op-5

timization is often impeded by the feedback loop, where the earlier6

versions influence the training data in future iterations [13]. This type7

of bias in data is one of the main issues with off-policy optimization.8

Several unbiased learning strategies exist to learn from biased data.9

Amongst the most popular approaches is inverse propensity scoring10

(IPS), which re-weights observations with importance weights [11]11

to estimate a policy value. This so-called off-policy evaluation is of-12

ten used in off-policy optimization, finding the policy with the high-13

est estimated value [13]. While IPS is commonly used in practice14

[2], it has variance issues that compound at scale, which may prevent15

a successful deployment [6]. An important scenario where IPS has a16

high variance is recommending a ranked list of items. In this case, the17

action space is combinatorial, as the number of ranked lists, which18

represent actions, is exponential in the length of the lists.19

Therefore, in real-world ranking problems (e.g., news, web search,20

and e-commerce), model-based methods often outperform IPS meth-21

ods [14]. The model-based methods rely on an explicit model of the22

reward conditioned on a context-action pair, e.g., the probability of a23

user clicking on a given recommendation [8]. A prevalent approach24

to fitting model parameters, maximum likelihood estimation (MLE),25

is impacted by non-uniform data collection. Consider choosing be-26

tween two restaurants where the first has an average rating of 5.027

with five reviews, and the second has a rating of 4.8 with a thousand28

reviews. Optimizers using MLE would choose the first restaurant,29

as they consider only the average rating, while the second choice is30

safer.31

In our work, we account for the uncertainty caused by unevenly32

explored action space by applying pessimism to reward models of33

action-context pairs for learning to rank. The challenge is to design 34

lower confidence bounds that hold jointly for all lists as the number 35

of unique lists grows exponentially with the list length. A naïve appli- 36

cation of existing pessimistic methods to each unique list is sample 37

inefficient. Also, user behavior signals are often biased for higher- 38

ranked items and can only be collected on items that users actually 39

saw. The main contributions of our paper are: 40

• We propose lower confidence bounds (LCBs) on parameters of 41

model-based approaches in learning to rank and derive error 42

bounds for acting on them in off-policy optimization. 43

• We study both Bayesian and frequentist approaches to estimating 44

LCBs, including an empirical estimation of the prior, as it is often 45

unknown in practice. 46

• We conduct extensive experiments that show the superiority of 47

the proposed methods compared to IPS and MLE policies on four 48

real-world learning to rank datasets with a large action space. 49

2 Related Work 50

Off-Policy Optimization: One popular approach to learning from 51

bandit feedback is to employ the empirical risk minimization princi- 52

ple with IPS-based estimators [19, 2, 32]. An alternative to using IPS 53

in learning from bandit feedback is the model-based approach. These 54

approaches learn a reward regression model for specific context- 55

action pairs, which is then used to derive an optimal policy. How- 56

ever, due to model misspecification, model-based methods are typ- 57

ically biased but have more favorable variance properties than IPS 58

models [13]. Variance issues of IPS-based estimators are further per- 59

petuated in the learning to rank problems as the action space grows 60

at a combinatorial pace. 61

Counterfactual Learning to Rank: Training of learning to rank 62

models is often done by leveraging feedback from user behavior as 63

an alternative data source [16]. However, implicit feedback, such as 64

user clicks, is noisy and affected by various kinds of biases [17]. 65

Many studies have explored how to extract unbiased relevance sig- 66

nals from biased click signals. One approach is to model examination 67

probability by using click models [3, 4]. While IPS estimators based 68

on various click models have been studied in the past [25], the key 69

assumption was that the value of a list is linear in the contributions of 70

individual items in the list. IPS estimators have unbiased properties, 71

and increased variance can be mitigated by various ways [20, 32, 33], 72

for example, capping the probability ratio to a fixed value [12], but 73

they fail to model a non-linear structure of a list. 74

Model-based methods can capture that non-linearity, but they suf- 75

fer from biased estimates due to unexplored action space. While pre- 76

vious works for counterfactual learning to rank were focused mostly 77

on evaluation [25, 34, 19], they use linear estimators for the objec- 78

tive function, such as the item-position model [4] and pseudoinverse 79



estimator. More recently, a doubly robust method under the cascade80

model has been proposed that induces a much weaker assumption81

[22]. Although it is possible to use these methods for optimization,82

they still suffer from overly optimistic estimations - a phenomenon83

known as “the Optimiser’s curse” [30]. Our proposed method works84

with both linear and non-linear click models while alleviating the85

Optimiser’s curse.86

Pessimistic Off-Policy Optimization: While off-policy methods87

learn from data that was collected under a different policy, on-policy88

methods learn from the data they collected. In online learning, the89

policy needs to balance the immediate reward of action with the90

informational value for future actions [27]. Here, the common ap-91

proach is to be optimistic about the potential reward of action and92

methods using an upper confidence bound (UCB) proved to be suc-93

cessful [24].94

In an offline setting, as the methods cannot learn directly from the95

actions, we need to be pessimistic (as we have only one shot). Pes-96

simistic LCBs on a reward model were applied using Bayesian un-97

certainty estimates and achieved a robust increase in the performance98

[13]. Principled Bayesian methods can be used to obtain closed-form99

expressions, but they require to know prior in advance, and they are100

often restricted to specific model classes [13, 3, 24].101

We are the first to apply pessimism to model the reward function in102

learning to rank. While pessimism is popular in offline reinforcement103

learning [37], regarding the recommender systems domain, it was ap-104

plied only in a single-recommendation scenario and did not consider105

structured actions [13]. We extend this work from pointwise to list-106

wise pessimism and compare multiple approaches for constructing107

pessimistic estimates.108

3 Setting109

We start with introducing our setting. Specifically, we formally de-110

fine a ranked list, how a user interacts with it, and how the data for111

off-policy optimization are collected.112

We consider the following general model of a user interacting with113

a ranked list of items. Let E be a ground set of items, such as all114

web pages or movies that can be recommended. Let ΠK(E) be the115

set of all lists of length K over items E . A user is recommended a116

ranked list of items. We denote a ranked list with K items by A =117

(a1, . . . , aK) ∈ ΠK(E), where ak ∈ E is the item at position k.118

The user clicks on items in the list and we observe click indicators119

on all positions Y = (Y1, . . . , YK), where Yk ∈ {0, 1} is the click120

indicator on position k. The list is chosen as a function of context121

X ∈ X , where X can be a user profile or a search query coming122

from a set of contexts X .123

A ranking policy π(· | X) is a conditional probability distribution124

over lists given context X . It interacts with users for n rounds in-125

dexed by t ∈ [n]. In round t, π observes context Xt and then selects126

a list At ∼ π(· | Xt), where At = (at,1, . . . , at,K) ∈ ΠK(E).127

After that, it observes clicks Yt = (Yt,1, . . . , Yt,K) on all recom-128

mended items in the list. All interactions are recorded in a logged129

dataset D = {(Xt, At, Yt)}nt=1. The policy that collects D is called130

the logging policy and we denote it by π0.131

Our goal is to find a policy that recommends the optimal list in132

every context. The optimal list in context X is defined as133

A∗,X = argmax
A∈ΠK(E)

V (A,X) , (1)

where V (A,X) is the value of list A in context X . This can be the134

expected number of clicks or the probability of observing a click.135

Algorithm 1 Conservative off-policy optimization.

Inputs: Logged dataset D
for X ∈ X do

ÂX ← argmaxA∈ΠK(E) L(A,X)
end for
Output: Â = (ÂX)X∈X

The definition of V depends on the chosen user interaction model 136

and we present several choices in Section 5. 137

4 Pessimistic Optimization 138

Suppose that we want to find list A∗,X in (1) but V (A,X) is un- 139

known. Then the most straightforward approach is to estimate it and 140

choose the best list according to the estimate. As an example, let 141

V̂ (A,X) be a maximum likelihood estimate (MLE) of V (A,X). 142

Then the best empirically-estimated list in context X would be 143

ÂX = argmaxA∈ΠK(E) V̂ (A,X) . (2)

This approach is problematic when V̂ is a poor estimate of V . 144

Specifically, we may choose a list with a high estimated value 145

V̂ (ÂX , X) but low actual value V (ÂX , X) when V̂ (ÂX , X) is a 146

highly-uncertain estimate of V (ÂX , X). 147

To account for uncertainty, prior works in bandits and reinforce- 148

ment learning designed pessimistic lower confidence bounds (LCB) 149

and acted on them [15]. We adopt the same design principle in our 150

proposed algorithm, which we present in Algorithm 1. At a high 151

level, the algorithm first computes an LCB for each action-context 152

pair (A,X), denoted by L(X,A). The lower confidence bound sat- 153

isfies L(A,X) ≤ V (A,X) with a high probability. Then it takes 154

an action ÂX with the highest lower confidence bound L(·, X) in 155

each context X . In Sections 5 and 6, we show how to design LCBs 156

for entire lists of items efficiently. These LCBs, and our subsequent 157

analysis in Section 7, are our main technical contributions. 158

Lower confidence bounds are beneficial when V̂ does not approx- 159

imate V uniformly well. Specifically, suppose that V̂ approximates 160

V better around optimal solutions A∗,X . This is common in practice, 161

as deployed logging policies π0 are already optimized to select high- 162

value items. Then low-value items can only be chosen if the LCBs of 163

high-value items are low. This cannot happen because the high-value 164

items are logged frequently; and thus their estimated mean values are 165

high and their confidence intervals are tight. 166

As a concrete example, consider two lists of recommended items. 167

The first list contains items with an estimated click-through rate 168

(CTR) of 1, but all of them were recommended only once. The other 169

list contains items with an estimated CTR of 0.5, but those items are 170

popular and were recommended a thousand times. Off-policy opti- 171

mization with the MLE estimator would choose the first list, whose 172

estimated value is high but the actual value may be low. Off-policy 173

optimization with LCBs would choose the other list, since its esti- 174

mated value is reasoanbly high but more certain. 175

5 Structured Pessimism 176

In this section, we construct lower confidence bounds for lists. The 177

main challenge is how to establish useful LCBs for all lists jointly, 178

since there can be exponentially many lists. To do that, we rely on 179

user-interaction models with ranked lists, the so-called click mod- 180

els [4]. The models allow us to construct LCBs for the whole list by 181

decomposing it into LCBs of items in it. 182
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To illustrate the generality of our approach, we study three popular183

click models. To simplify notation, we assume that the context X is184

fixed in this section and drop it from all terms. In each click model,185

the relevance of item a ∈ E is described by its attraction probability186

θa ∈ [0, 1]. This is the probability that the item is clicked given being187

examined. In each model, we show that when we have LCBs for each188

θa, we have LCBs for all lists A, trivially by the union bound.189

5.1 Cascade Model190

The cascade model (CM) [28, 5] assumes that a user scans items in191

a list from top to bottom until they find a relevant item [4]. Under192

this assumption, item ak at position k is examined if and only if item193

ak−1 at the previous position is examined but not clicked. The item194

at the first position is always examined. It follows that at most one195

item is clicked in the CM. Therefore, a natural choice for the value196

of list A is the probability of a click defined as197

VCM(A) = 1−
K∏

k=1

(1− θak ) , (3)

where θa ∈ [0, 1] denotes the attraction probability of item a ∈ E .198

To stress that the above value is for a specific model, the CM in this199

case, we write VCM. The optimal list A∗ contains K items with the200

highest attraction probabilities [23].201

To establish LCBs for all lists, we need LCBs for all model pa-202

rameters. In the CM, the value of a list depends only on the attrac-203

tion probabilities of its items. Let L(a) be the LCB on the attraction204

probability of item a, where θa ≥ L(a) holds with probability at205

least 1− δ. Then for all lists A jointly, the LCB206

LCM(A) = 1−
K∏

k=1

(1− L(ak)) ≤ 1−
K∏

k=1

(1− θak )

holds with probability at least 1− δ |E|, by the union bound over all207

items. The above inequality holds because we have a lower bound on208

each term in the product.209

5.2 Dependent-Click Model210

The dependent-click model (DCM) [7] extends the CM to multiple211

clicks. This model assumes that after a user clicks on an item, they212

may continue examining items at lower positions in the list. Specif-213

ically, at position k ∈ [K], the probability that the user continues to214

explore after a click is denoted by λk ∈ [0, 1].215

A natural choice for the value of list A in the DCM is the probabil-216

ity of a satisfactory click, a click upon which the user leaves satisfied.217

This can be formally written as218

VDCM(A) = 1−
K∏

k=1

(1− (1− λk)θak ) , (4)

where θa ∈ [0, 1] denotes the attraction probability of item a ∈ E ,219

identically to Section 5.1. The optimal list A∗ contains K items with220

the highest attraction probabilities, where the k-th most attractive221

item is placed at the k-th most satisfactory position [21].222

Let L(a) be defined as in Section 5.1. Then for all lists A jointly,223

the LCB224

LDCM(A) = 1−
K∏

k=1

(1− (1− λk)L(ak))

≤ 1−
K∏

k=1

(1− (1− λk)θak )

holds with probability at least 1 − δ |E|, by the union bound over 225

all items. We assume that the position parameters λk are known, al- 226

though we could also estimate them and plug in their LCBs. 227

5.3 Position-Based Model 228

The position-based model (PBM) [5] assumes that the click prob- 229

ability depends only on the item and its position, and allows mul- 230

tiple clicks. This is modeled through the examination probability 231

pk ∈ [0, 1] of position k ∈ [K]. Specifically, the item is clicked 232

only if its position is examined and the item is attractive. 233

A natural choice for the value of list A in the PBM is the expected 234

number of clicks 235

VPBM(A) =

K∑
k=1

θakpk , (5)

where θa ∈ [0, 1] denotes the attraction probability of item a ∈ E , 236

identically to Section 5.1. The optimal list A∗ contains K items with 237

the highest attraction probabilities, where the k-th most attractive 238

item is placed at the position with the k-th highest pk. 239

Let L(a) be defined as in Section 5.1. Then for all lists A jointly, 240

the LCB 241

LPBM(A) =
K∑

k=1

pkL(ak) ≤
K∑

k=1

pkθak

holds with probability at least 1 − δ |E|, by the union bound over 242

all items. Similarly to the DCM (Section 5.2), we assume that the 243

position examination probabilities pk are known. 244

6 Lower Confidence Bounds on Attraction 245

Probabilities 246

In this section, we describe how to construct LCBs for attraction 247

probabilities θa of individual items in Section 5. Note that these are 248

means of Bernoulli random variables, which we use in our deriva- 249

tions. We consider two kinds of LCBs: Bayesian and frequentist. The 250

Bayesian bounds assume that the attraction probabilities are drawn 251

i.i.d. from a prior distribution, which is used in the construction of the 252

bounds. The frequentist bounds make no assumption on the distribu- 253

tion of the attraction probabilities. The Bayesian bounds are more 254

practical when the prior is available, while the frequentist bounds 255

are more robust due to fewer modeling assumptions. Our bounds are 256

derived independently for each context X . To simplify notation, we 257

drop it in the derivations in this section. 258

6.1 Bayesian Lower Confidence Bounds 259

Let θa ∈ [0, 1] be the mean of a Bernoulli random variable rep- 260

resenting the attraction probability of item a. Let Y1, . . . , Yn be 261

n i.i.d. observations of θa. Let the number of positive observa- 262

tions be na,+ and the number of negative observations be na,−. 263

We show how we estimate na,+ and na,− for each click model in 264

Appendix A. In the Bayesian setting, we make an additional as- 265

sumption that θa ∼ Beta(α, β). By definition, θa | Y1, . . . , Yn ∼ 266

Beta(α+na,+, β+na,−). Consequently, a 1− δ lower confidence 267

bound on θa is L(a) = 268

max

ℓ ∈ [0, 1] :

ℓ∫
z=0

Beta(z;α+ na,+, β + na,−) dz ≤
δ

2


(6)
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According to (6), L(a) is the largest value such that the attraction269

probability θa ≤ L(a) is at most δ
2

[1]. Note that in (6), L(a) is270

found as a quantile of the probability density.271

6.2 Frequentist Lower Confidence Bounds272

If the prior of θa is unknown or poorly estimated, Bayesian estimates273

could be biased. In this case, Hoeffding’s inequality would be pre-274

ferred, as it provides a confidence interval for any random variable275

on [0, 1]. Specifically, let θa be any value in [0, 1], and all other quan-276

tities be defined as in the Bayesian estimator. Then a 1 − δ lower277

confidence bound on θa is278

L(a) =
na,+

na,+ + na,−
−
√

log(1/δ)/(2na) , (7)

where na,+

na,++na,−
is the MLE, na = na,+ + na,−, and event θa ≤279

L(a) occurs with probability at most δ [36].280

6.3 Prior Estimation281

One shortcoming of Bayesian methods is that the prior is often un-282

known. To address this issue, we show how to estimate it using em-283

pirical Bayes [26], which can be implemented for attraction proba-284

bilities as follows. Let |E| be the number of attraction probabilities285

of different items. For any a ∈ E , let θa ∼ Beta(α, β) be the mean286

of a Bernoulli random variable, which is drawn i.i.d. from the un-287

known prior Beta(α, β). Let Na,+ and Na,− be the random vari-288

ables that denote the number of positive and negative observations,289

respectively, of θa. Let na,+ and na,− be the actual observed values,290

and na = na,+ + na,−. Then the likelihood of the observations for291

any fixed α and β is292

L(α, β) =
∏
a∈E

P (Na,+ = na,+, Na,+ = na,+ |α, β)

=
∏
a∈E

Γ(α+ β)

Γ(α)Γ(β)

∫ 1

za=0

z
α+na,+−1
a (1− za)

β+na,−−1 dza

=
∏
a∈E

Γ(α+ β)Γ(α+ na,+)Γ(β + na,−)

Γ(α)Γ(β)Γ(α+ β + ni)
.

(8)

The last equality follows from the fact that293 ∫ 1

za=0

Γ(α+ β + ni)z
α+na,+−1
a (1− za)

β+na,−−1

Γ(α+ na,+)Γ(β + na,−)
dza = 1 .

The empirical Bayes [26] is a statistical procedure that chooses294

(α, β) that maximize L(α, β). To find the maximizer, we search on295

a grid. For instance, let G = [m] for some integer m > 0. Then we296

search over all (α, β) ∈ G2. In this case, grid search is feasible since297

the parameter space has only 2 dimensions.298

7 Analysis299

The analysis is structured as follows. First, we derive confidence in-300

tervals for items and lists. Then we show how the error of acting301

with respect to LCBs is bounded. Finally, we discuss how different302

choices of π0 affect the error in Theorem 3. All proofs are presented303

in Appendix B. We conduct a frequentist analysis, based on the con-304

fidence intervals in Section 6.2. A similar analysis could be done for305

the Bayesian setting (Section 6.1). Note the analysis is exact for the306

CM and DCM. For PBM, it is approximate, and we say how we ap-307

proximate na,X in Appendix A.308

For any item a ∈ E and context X ∈ X , let θa,X ∈ [0, 1] be 309

the true unknown attraction probability of item a in context X , and 310

θ̂a,X = na,X,+/na,X be its empirical estimate in (7), where na,X,+ 311

is the number of clicks on item a in context X and na,X is the num- 312

ber of times user observed item a in context X . Then, we get the fol- 313

lowing concentration bound on the attraction probabilities of items. 314

Lemma 1 (Concentration for item estimates). Let 315

c(a,X) =
√

log(1/δ)/(2na,X) .

Then for any item a ∈ E and context X ∈ X ,
∣∣∣θ̂a,X − θa,X

∣∣∣ ≤ 316

c(a,X) holds with probability at least 1− δ. 317

For any list A ∈ ΠK(E) and context X ∈ X , let V (A,X) be its 318

value in context X using the true unknown attraction probabilities 319

θa,X and V̂ (A,X) be its estimated value using θ̂a,X , for any click 320

model introduced in Section 5. Then we get the following concentra- 321

tion bound on list values. 322

Lemma 2 (Concentration for list estimates). Let 323

c(A,X) =
∑
a∈A

√
log(|E| |X | /δ)/(2na,X) .

Then for any list A ∈ ΠK(E) and context X ∈ X , and any click 324

model in Section 5,
∣∣∣V̂ (A,X)− V (A,X)

∣∣∣ ≤ c(A,X) holds with 325

probability at least 1− δ, jointly over all A and X . 326

Now we show how the error due to acting pessimistically does not 327

depend on the uncertainty of the chosen list but on the confidence 328

interval width of optimal list c(A∗,X , X). This is desirable, if the 329

logging policy already performs well (Section 4). 330

Theorem 3 (Error of acting pessimistically). Let A∗,X and ÂX 331

be defined as in (1) and Algorithm 1, respectively. Let L(A,X) = 332

V̂ (A,X)− c(A,X) be a high-probability lower bound on the value 333

of list A in context X , where all quantities are defined as in Lemma 2. 334

Then for any context X , the error of acting with respect to a lower 335

confidence bound satisfies 336

V (A∗,X , X)− V (ÂX , X) ≤ 2c(A∗,X , X)

≤ 2
∑

a∈A∗,X

√
log(|E| |X | /δ)

2na,X

with probability at least 1− δ, jointly over all X . 337

Theorem 3 shows that our error depends on the number of obser- 338

vations of items in the optimal list a ∈ A∗,X . To illustrate how it 339

depends on the logging policy π0, fix context X ∈ X and let nX be 340

the number of logged lists in context X . We discuss two cases. 341

Suppose that π0 is uniform, and thus each item a ∈ E is placed at 342

the first position with probability 1/ |E|. Moreover, suppose that the 343

first position is examined with a high probability. This occurs with 344

probability 1 in the CM (Section 5.1) and DCM (Section 5.2), and 345

with a high probability in the PBM (Section 5.3) when p1 is high. 346

Then na,X = Ω̃(nX/ |E|) as nX → ∞ and thus the error bound 347

in Theorem 3 is Õ(K
√
|E| /nX), where Õ and Ω̃ are asymptotic 348

notation up to logarithmic factors. The bound is independent of the 349

number of lists |ΠK(E)|, which is exponentially large. 350
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Now suppose that we have a near-optimal logging policy. One way351

of formalizing this is as placing each item a ∈ A∗,X at the first po-352

sition with probability 1/K. Then, under the same assumptions as353

in the earlier discussion, na,X = Ω̃(nX/K) as nX → ∞ and the354

bound in Theorem 3 is Õ(K
√

K/nX). Note that this bound im-355

proves by a factor of |E| /K upon the earlier discussed bound.356

8 Experiments357

We conduct extensive experiments where we compare learned poli-358

cies by our method (Algorithm 1) to four baselines: MLE, IPS [29],359

structural item-position IPS [25], and pseudoinverse estimator [34].360

We refer to our method as LCB because it optimizes lower confi-361

dence bounds.362

8.1 Experimental Setup363

We use the Yandex dataset [38] for the first four experiments. We364

treat each query as a different context X , perform the computations365

separately, and then average the results. Due to a huge position bias366

in the dataset, where most of the clicks occur at the first positions,367

we only keep the top 4 items in each list and discard the rest, as done368

in other works [25]. We observe improvements without this prepro-369

cessing step, but they are less pronounced.370

All compared off-policy optimization methods are evaluated as371

follows. We first fit a click model from Section 5 to a given dataset.372

Because of that, we can efficiently compute the optimal list A∗,X in373

each context X under that model. Then, for a given query, we ran-374

domly select a list of items from the original dataset and generate375

clicks based on the fitted click model. We repeat this n times and376

get a logged dataset D = {(Xt, At, Yt)}nt=1, where Xt and At are377

taken from the original dataset, and Yt is generated by the fitted click378

model. After that, we apply off-policy methods to D to find the most379

valuable lists ÂX . We evaluate these lists against the true optimal380

lists A∗,X using error EX

[
V (A∗,X , X)− V (ÂX , X)

]
. We esti-381

mate the logging policy π0 from D. We repeat each experiment 500382

times, and report the mean and standard error of the results (shaded383

areas around the lines).384

We experiment with both Bayesian and frequentist lower confi-385

dence bounds in Section 6. They hold with probability 1− δ, where386

δ ∈ [0.05, 1] is a tunable parameter representing the width of the387

confidence interval. The estimation of our model parameters is de-388

tailed in Appendix A. As Bayesian methods depend on the prior, we389

also evaluate Empirical Bayes for learning the prior (Section 6.3)390

with grid G = {2i−1}10i=1.391

8.2 Baselines392

One of our baselines is the best list under the same click model393

with MLE-estimated parameters. We also use relevant baselines from394

prior works [12, 25, 34].395

IPS: We implement an estimator using propensity weights, where396

the whole list is a unique action. We compute the propensity weights397

separately for each query. We also implement tunable clipping pa-398

rameter M [12]. IPS optimizer then selects ÂX that maximizes399

V̂IPS(A,X) =
∑
t∈TX

min

{
M,

1{At = A}
pA,X

}
Yt , (9)

where we estimate propensities pA,X =
∑

t∈TX
1{At=A}

|TX | as the fre-400

quency of recommending list A, Yt is the number of clicks in list At,401

and TX is the set of all indices t ∈ [n] such that Xt = X . Max- 402

imization of V̂IPS(A,X) is a linear program, where we search over 403

all A ∈ ΠK(E) [31]. When showing the results in our experiments, 404

as |D| = 1000, we map clipping parameter M to δ using this table: 405

δ .05 .1 .15 .2 .25 .35 .45 .5
M 1 5 10 50 100 300 500 600

δ .55 .65 .75 .8 .85 .9 .95 1
M 700 900 1100 1200 1300 1400 1500 ∞

Item-Position IPS: Similarly to the IPS estimator, we implement a 406

structured IPS estimator using linearity of the item-position model 407

[25], where the expected value of a list is the sum of attraction prob- 408

abilities of its item-position entries. The list value is 409

V̂IP-IPS(A,X) =
∑
t∈TX

K∑
k=1

min

{
M,

1{at,k = a}
pa,k,X

}
Yt,k , (10)

where pa,k,X =
∑

t∈TX
1{at,k=a}

|TX | and TX is the set of all t ∈ [n] 410

such that Xt = X . To maximize V̂IP-IPS(A,X), we select an item 411

with the highest attraction probability for each position k ∈ [K]. 412

Pseudo-Inverse Estimator (PI): As the last baseline, we implement 413

the pseudo-inverse estimator [34] designed for off-policy evaluation 414

that also assumes that the value of a list is the sum of individual items 415

in it. The context-specific weight vector ϕX can then be learned in a 416

closed form as 417

ϕ̂X =
(
Eπ0

[
1A1

T
A | X

])†
Eπ0 [Y 1A | X] , (11)

where 1A ∈ {0, 1}K|E| is a list indicator vector whose compo- 418

nents indicate which item is at which position. We denote by M†
419

the Moore-Penrose pseudoinverse of a matrix M and by Y the sum 420

of clicks on the list A. Note that ϕ̂X uses conditional expectation 421

over A ∼ π0(· | X) and Y ∼ p(· | X,A). As mentioned by 422

Swaminathan et al. [34], the trained regression model can be used 423

for off-policy optimization. We adopt this procedure, which greedily 424

adds the most attractive items to the list from the highest position to 425

the lowest. 426

8.3 Yandex Results 427

The experiments are organized as follows. First, we compare LCBs 428

to all baselines on frequent queries, while we vary the confidence in- 429

terval width represented by parameter δ. Second, we compare LCBs 430

to MLE while automatically learning parameter δ from data. Finally, 431

we study the robustness of model-based LCB estimators to model 432

misspecification. We refer readers to Appendix C for experiments on 433

less frequent queries where we show LCBs work well even with less 434

data, and the experiment for choosing the right size of hyperparame- 435

ter space to estimate prior using empirical Bayes from Section 6.3.2 436

Top 10 Queries: We start with evaluating all estimators on 10 most 437

frequent queries in the Yandex dataset. Results in Figure 1 show im- 438

provements when using LCBs for all models. Specifically, for almost 439

any δ in all models, the error is lower than using MLE. When op- 440

timizing non-linear list values, such as those in CM and DCM, we 441

outperform all the baselines that assume linearity. In PBM, where 442

2 Code from the technical appendix will be available on GitHub following
the publication.

5



Bayes LCB Empirical Bayes LCB Hoeffding LCB IPS Item-Position IPS PI

0.2 0.4 0.6 0.8 1.0

0.16

0.18

0.20

0.22

0.24

0.26

Er
ro

r

MLE

Cascade Model

0.2 0.4 0.6 0.8 1.0

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

MLE

Dependent-click Model

0.2 0.4 0.6 0.8 1.0

0.06

0.08

0.10

0.12

0.14

0.16

0.18
MLE

Position-based Model

Figure 1: Comparison of our methods to baselines on three click models and top 10 queries. We vary the δ parameter that represents the
confidence interval width. MLE is the grey dashed line.
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Figure 2: Comparison of our methods to MLE
when increasing the sample size n.
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Figure 3: Robustness evaluation of our methods and baselines.

the list value is linear, the baselines can perform similarly to the LCB443

estimators. We observe that the empirical estimation of the prior im-444

proves upon an uninformative Beta(1, 1) prior.445

More Realistic Comparison to MLE: MLE is common in practice446

and does not have a hyper-parameter δ to tune, unlike our method.447

To show that our approach can beat the MLE in a realistic setting,448

we estimate δ on past data and then apply it to future data. We apply449

the evaluation protocol from the Top 10 Queries experiment on the450

first 5 days of data with fixed sample size n = 1000 for each query.451

We choose δ that minimizes the Bayesian LCB error. We apply the452

evaluation protocol from the Top 10 Queries experiment on the last453

23 days of data with the above chosen δ = 0.2. We report the differ-454

ence between MLE and Bayesian LCB errors. This is repeated 500455

times while varying logged sample size n ∈ [50, 500 000]. Figure 2456

shows that the largest improvements are at the sample size 50 000.457

This implies that LCBs have a sweet spot where they work the best.458

We observe smaller improvements for smaller sample sizes because459

the uncertainty is too high to leverage. On the other hand, when the460

sample size is large, the uncertainty is low everywhere and does not461

have to be modeled.462

Robustness to Model Misspecification: We examine how the es-463

timators behave if the underlying model does not hold. In the Top464

10 Queries experiment, we observe that the baselines with linear-465

ity assumptions do not perform well in non-linear models, such as466

CM or DCM, but they perform well when the value of a list is the467

sum of clicks, such as PBM. We fit PBM and use it to generate the468

logged dataset. We then use DCM to learn the attraction probabilities469

for MLE and LCB methods. We also examine the opposite scenario,470

using DCM as a ground truth model and estimating attraction prob-471

abilities with PBM. This does not impact IPS and PI baselines. Our472

results are reported in Figure 3. In the left plot, we use a non-linear 473

model to fit the linear reward. As a result, MLE and LCB methods es- 474

timate misspecified parameters. Other baselines that assume linearity 475

perform better in this setup. However, Bayesian LCBs still achieve 476

50% lower error compared to MLE. In the right plot, the reward is 477

non-linear, and all methods (except IPS) assume linearity in item- 478

level rewards. Here, MLE performs on par with other baselines, and 479

LCBs consistently outperform all other baselines. This shows us that 480

LCBs are robust to model misspecification and can be used to im- 481

prove model-based estimates further, even though we may not know 482

the correct model class. 483

8.4 Results on Other Datasets 484

We validated the results on other popular datasets, namely Yahoo! 485

Webscope3, Istella4, and MSLR-WEB5. These datasets do not con- 486

tain clicks, only human-labeled query-document relevance scores; 487

with score(a) ∈ {0, 1, 2, 3, 4} for item a ranked from 0 (not rel- 488

evant) to 4 (highly relevant). We follow the standard procedure to 489

generate the clicks by mapping relevance scores to attraction proba- 490

bilities based on the navigational user model [Table 2, 9]. 491

score(a) 0 1 2 3 4
θa 0.05 0.1 0.2 0.4 0.8

For PBM, we define position examination probabilities based on an 492

eye-tracking experiment [18] and for CDM, we define λ parameters 493

as λk = 1 − exp(−k + 0.5)/0.5 for positions k ∈ [K]. We ran- 494

domly select 5000 queries. Then for each query, to form our logged 495

3 http://webscope.sandbox.yahoo.com/
4 https://istella.ai/data/
5 https://www.microsoft.com/en-us/research/project/mslr/
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Figure 4: Comparison of our methods to baselines on the Yahoo! Webscope dataset.
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Figure 5: Comparison of our methods to baselines on the MSLR-WEB30k dataset.
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Figure 6: Comparison of our methods to baselines on the Istella dataset.

dataset, we sample 100 lists of length K = 4 from the set of labeled496

documents for given query Eq from Dirichlet distribution with its pa-497

rameter set at α = (θa)a∈Eq . On these datasets, we use the same498

evaluation protocol as outlined in Section 8.1. Figures 4 to 6 support499

our prior findings. LCBs outperform MLE and other baselines for500

most δ values and provide major improvements. We observed simi-501

lar results for other sample sizes and list lengths.502

9 Conclusions503

We study for the first time pessimistic off-policy optimization for504

learning to rank. We design lower confidence bounds (LCBs) for the505

value of ranked lists. Specifically, through LCBs on individual items,506

we get LCBs on exponentially large action spaces. We prove that the507

loss due to choosing the best list under our model is polynomial in508

the number of items in a list as opposed to polynomial in the num-509

ber of lists, which is exponential. We also apply LCBs to non-linear510

objectives, such as CM and DCM in Equations (3) and (4), based on511

their linearization. This is the first paper in off-policy learning where512

this approximation was applied and analyzed. Our approach outper- 513

forms model-based approaches using maximum likelihood estimates 514

(MLE) and optimizers using IPS. Furthermore, we show LCBs are 515

robust to model misspecification and perform better with almost any 516

confidence interval width. We show how to estimate prior with em- 517

pirical Bayes when prior is not known in advance. Finally, LCBs 518

proved to have a positive impact on almost any size of logged data. 519

One of the natural future directions is to apply listwise pessimism 520

to any model class. This can be generally achieved with an ensemble 521

of models, each trained on a different bootstrapped dataset, although 522

this method presents computational challenges, and further research 523

is needed so the optimization is tractable. We do not use theory- 524

suggested confidence intervals in the experiments because they are 525

too conservative. To address this limitation, studying the calibration 526

of confidence interval width from logged data is needed. The main 527

focus of our work is on a large action space, the space of all lists. 528

We wanted to make this contribution clear and thus focus on tabular 529

contexts. However, our algorithms can be extended to a large context 530

space or items with features. 531
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A Learning Click Model Parameters 657

To simplify notation, we only consider a small finite number of contexts, such as day of the week or user characteristics. For each such context, 658

we estimate the attraction probabilities separately. In this section, we show the calculation of model parameters with respective applications 659

of LCB to the three click models mentioned in Section 5. We assume that the context is fixed, and computations are done over each context 660

separately; therefore, we define TX to be the set of all indices of [n] such that Xt = X, ∀t ∈ TX . 661

Cascade Model: The cascade model has only one type of parameters, attraction probabilities θa and these can be estimated from clicks, 662

as the number of clicks over the number of examinations [23]. According to the cascade model assumptions, items are examined from 663

the top until clicked on some item and the user does not examine any further. Therefore to model θa,X , we collect the number of posi- 664

tive impressions na,X,+ =
∑

t∈TX

∑K
k=1 1{at,k = a ∧ Yt,k = 1} (user examined and clicked) and the number of negative impressions 665

na,X,− =
∑

t∈TX

∑K
k=1 1{at,k = a}1

{∑k−1
j=1 Yt,j = 0

}
(examined, but did not click) for item a in context X and calculate either 666

Bayesian, frequentist LCBs, and prior according to (6), (7), and Section 6.3. 667

Dependent-Click Model: When fitting the dependent-click model, we process the logged data according to the following assumption; examin- 668

ing items from the top until the final observed click at the lowest position and disregarding all items below. Observed impressions on each item 669

a in context X are sampled from its unknown Bernoulli distribution Ber(θa,X). To model θa,X , we collect the number of positive impressions 670

na,X,+ =
∑

t∈TX

∑K
k=1 1{at,k = a}Yt,k (clicks) and the number of negative impressions na,X,− =

∑
t∈TX

∑K
k=1 1{at,k = a} (1−Yt,k) 671

(examined, but not clicked) for item a and calculate either Bayesian, frequentist LCBs, and prior according to (6), (7), and Section 6.3. To 672

model the probability λk,X , we collect positive observations that the click is the last nk,X,+ =
∑

t∈TX
1
{∑K

j=k Yt,j = 1
}
Yt,k and negative 673

observations that user continues exploring as nk,X,− =
∑

t∈TX
1
{∑K

j=k Yt,j > 1
}
Yt,k. 674

Position-Based Model: To learn the parameters of the position-based model, we use an EM algorithm. We solve 675

minθ,p

∑n
t=1

∑K
k=1(θat,k,Xtpk − Yt,k)

2 by alternating least squares algorithm [35] to obtain an estimate of p. Then the propensity- 676

weighted number of positive impressions is na,X,+ =
∑

t∈TX

∑K
k=1 1{at,k = a ∧ Yt,k = 1} /pk and the number of negative impressions 677

na,X,− =
∑

t∈TX

∑K
k=1 1{at,k = a ∧ Yt,k = 0} /pk. 678

B Proofs of Pessimistic Optimization 679

Proof of Lemma 2:
PBM: By Lemma 1, for any item a ∈ E and context X ∈ X , we have that

|θa,X − θ̂a,X | ≤
√

log(1/δ)/(2na,X)

holds with probability at least 1− δ. Therefore, by the union bound, we have that

|θa,X − θ̂a,X | ≤
√

log(|E| |X | /δ)/(2na,X) (12)

holds with probability at least 1− δ, jointly over all items a and contexts X . 680

Now we prove our main claim. For any context X and list A = (ak)k∈[K], we have from the definition of the PBM that

VPBM(A,X)− V̂PBM(A,X) =

K∑
k=1

pk,X(θak,X − θ̂ak,X) .

Since pk,X ∈ [0, 1], we have

∣∣∣VPBM(A,X)− V̂PBM(A,X)
∣∣∣ ≤ K∑

k=1

|θak,X − θ̂ak,X | =
∑
a∈A

|θa,X − θ̂a,X | ≤
∑
a∈A

√
log(|E| |X | /δ)/(2na,X) . (13)

The last inequality is under the assumption that (12) holds, which holds with probability at least 1− δ. 681

CM: To prove the bound for CM and DCM, we first show how the difference of two products with K variables is bounded by the difference 682

of their sums. 683

Lemma 4. Let (ak)
K
k=1 ∈ [0, 1]K and (bk)

K
k=1 ∈ [0, 1]K . Then∣∣∣∣∣

K∏
k=1

ak −
K∏

k=1

bk

∣∣∣∣∣ ≤
K∑

k=1

|ak − bk| .
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Proof. We start with

K∏
k=1

ak −
K∏

k=1

bk =

K∏
k=1

ak − a1

K∏
k=2

bk + a1

K∏
k=2

bk −
K∏

k=1

bk = a1

(
K∏

k=2

ak −
K∏

k=2

bk

)
+ (a1 − b1)

K∏
k=2

bk

(a)
=

K∑
k=1

(
k−1∏
i=1

ai

)
(ak − bk)

(
K∏

i=k+1

bi

)
,

where (a) is by recursively applying the same argument to
∏K

k=2 ak −
∏K

k=2 bk. Now we apply the absolute value and get∣∣∣∣∣
K∏

k=1

ak −
K∏

k=1

bk

∣∣∣∣∣ =
∣∣∣∣∣

K∑
k=1

(
k−1∏
i=1

ai

)
(ak − bk)

(
K∏

i=k+1

bi

)∣∣∣∣∣ ≤
K∑

k=1

|ak − bk| ,

since
∏k−1

i=1 ai ∈ [0, 1] and
∏K

i=k+1 bi ∈ [0, 1].684

685

Now we prove our main claim. For any context X and list A = (ak)k∈[K], we have from the definition of the CM and from the bound in
Lemma 4 that

∣∣∣VCM(A,X)− V̂CM(A,X)
∣∣∣ = ∣∣∣∣∣1−

K∏
k=1

(1− θak,X)− 1 +

K∏
k=1

(1− θ̂ak,X)

∣∣∣∣∣ =
∣∣∣∣∣

K∏
k=1

(1− θ̂ak,X)−
K∏

k=1

(1− θak,X)

∣∣∣∣∣
≤

K∑
k=1

|θak,X − θ̂ak,X | =
∑
a∈A

|θa,X − θ̂a,X | ≤
∑
a∈A

√
log(|E| |X | /δ)/(2na,X) .

The last inequality is under the assumption that (12) holds, which holds with probability at least 1− δ.686

DCM: For any context X and list A = (ak)k∈[K], we have from the definition of the DCM and from the bound in Lemma 4 that

∣∣∣VDCM(A,X)− V̂DCM(A,X)
∣∣∣ = ∣∣∣∣∣1−

K∏
k=1

(1− (1− λk,X)θak,X)− 1 +

K∏
k=1

(1− (1− λk,X)θ̂ak,X)

∣∣∣∣∣
=

∣∣∣∣∣
K∏

k=1

(1− (1− λk,X)θ̂ak,X)−
K∏

k=1

(1− (1− λk,X)θak,X)

∣∣∣∣∣
≤

K∑
k=1

|θak,X − θ̂ak,X | =
∑
a∈A

|θa,X − θ̂a,X | ≤
∑
a∈A

√
log(|E| |X | /δ)/(2na,X) .

The first inequality holds as λk,X ∈ [0, 1], and the last inequality is under the assumption that (12) holds, which holds with probability at least687

1− δ. This completes the proof.688

Proof of Theorem 3:689

Proof. Let L(A,X) = V̂ (A,X) − c(A,X). Suppose that
∣∣∣V̂ (A,X)− V (A,X)

∣∣∣ ≤ c(A,X) holds for all A and X . Note that this also

implies L(A,X) ≤ V (A,X). Then, for any X ,

V (A∗,X , X)− V (ÂX , X) = V (A∗,X , X)− L(A∗,X , X) + L(A∗,X , X)− V (ÂX , X)

≤ V (A∗,X , X)− L(A∗,X , X) + L(ÂX , X)− V (ÂX , X)

≤ V (A∗,X , X)− L(A∗,X , X)

= V (A∗,X , X)− V̂ (A∗,X , X) + c(A∗,X , X)

≤ 2c(A∗,X , X) .

The first inequality holds because ÂX maximizes L(·, X). The second inequality holds because L(ÂX , X) ≤ V (ÂX , X). The last inequality690

holds because V (A∗,X , X)− V̂ (A∗,X , X) ≤ c(A∗,X , X).691

It remains to prove that
∣∣∣V̂ (A,X)− V (A,X)

∣∣∣ ≤ c(A,X) holds for all A and X . By Lemma 2, this occurs with probability at least 1− δ,692

jointly over all A and X , for c(A,X) in Lemma 2. This completes the proof.693
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C Other Experiments 694

Most Frequent Query: In Figure 7 we show the simplest case when using only the most frequent query to observe the effect of LCBs without 695

possible skewing due to averaging over multiple queries. Results found in the most frequent query support those already discussed in Top 10 696

Queries. 697

Less Frequent Queries: We study how less frequent queries impact the performance of LCBs. We use the same setup as in the Top 10 Queries 698

experiment and observe how the error changes as the number of queries increases. In Figure 8, we show comparable improvements to those of 699

DCM in Figure 1, showing that LCBs perform well even in less frequent queries. We performed this experiment with CM and PBM as well 700

and observed a similar behavior. 701
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Figure 7: Error of the estimated lists Â compared to optimal lists A∗ on the most frequent query.
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Figure 8: Comparison of our methods to baselines on DCM and less frequent queries.

Cross-Validation Setting: In all of the previous experiments, we fit a model on logged data D, use that model to generate new clicks, and 702

then learn a new model using those clicks. One can argue that data generated under right model yields better results and under a wrong model 703

LCBs do not hold. Therefore, we split logged data D at the 23rd day to train and test set and use first 23 days to train model parameters. We 704

randomly select 1000 samples for each query from the remaining 4 days to fit models using LCB while varying δ. The rest of the setting is the 705

same as in the Top 10 Queries experiment. The reason for this split is that using the remaining four days provides enough data in the top 10 706

queries to sample from. We tested other split ratios and observed results do not differ significantly. In Figure 9, we observe the Bayesian LCBs 707

outperform all other baselines, and reasoning under uncertainty is still better than using MLE. Similarly to the previous experiments, we omit 708

other linear baselines in CM and DCM plots as they perform considerably worse. 709
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Figure 9: Comparison of our methods against other baselines in setting, where the fitted ground truth model does not generate clicks.
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Finding Prior: When we estimated prior in the previous experiments, we did so on grid (α, β) ∈ G2, G = {2i}10i=1 and we observed710

significant improvements over fixed prior Beta(1, 1) mostly when δ = 1. In this experiment, the goal is to measure an improvement with the711

increasing grid size. We evaluate DCM using Bayesian LCBs and keep the rest of the setting the same as in the Top 10 Queries experiment.712

We then estimate prior from these queries by searching over grid G2, G = {2i−1}mi=1, m ∈ [1, 2, 5, 10, 20]. In Figure 10, we see how the713

results get more robust against the δ hyperparameter until |G| = 10, and after that, the method still finds the same optimal prior. Therefore in714

our case, it is sufficient to search over G = {2i}10i=1. The optimal values found on G are θ ∼ Beta(1, 8) and λ ∼ Beta(1, 64).715
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Figure 10: Empirical Bayes showing increasing performance with larger grid size. Red and purple lines are overlapping.
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