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ABSTRACT

In this work, we propose an error correction framework, named
DiaCorrect, to refine the output of a diarization system in a sim-
ple yet effective way. This method is inspired by error correc-
tion techniques in automatic speech recognition. Our model con-
sists of two parallel convolutional encoders and a transformer-
based decoder. By exploiting the interactions between the in-
put recording and the initial system’s outputs, DiaCorrect can
automatically correct the initial speaker activities to minimize
the diarization errors. Experiments on 2-speaker telephony data
show that the proposed DiaCorrect can effectively improve the
initial model’s results. Our source code is publicly available at
https://github.com/BUTSpeechFIT/diacorrect.

Index Terms— Speaker diarization, error correction, conversa-
tional telephone speech

1. INTRODUCTION

Speaker diarization aims to address “who spoke when” by de-
termining speaker-specific time-segments in a long multi-speaker
recording [1]. Traditionally, it is performed by clustering short
speech segments according to their speaker identity [2–4]. In recent
years, end-to-end neural diarization (EEND) [5] and its exten-
sions [6–8] have shown excellent performance when handling over-
lapped speech. However, end-to-end models require large amounts
of training data. Given the time-consuming and expensive nature
of producing manual labels, the compromise solution consists in
generating training data artificially [5, 9–11]. Due to the existent
mismatch between artificial and real target data, models trained on
artificial data are frequently fine-tuned on a real development set to
achieve good results. Nevertheless, ground-truth annotations for tar-
get data are not always available and, even more, if the practitioner
does not have access to the model but only to its outputs, fine-tuning
is impossible. In such scenarios, an error correction model can
automatically refine and correct the initial diarization results.

In automatic speech recognition (ASR), error correction is a typ-
ical sequence-to-sequence task. It takes a sentence generated by an
ASR model, and aims to correct the errors in the source sequence
to match the ground-truth transcriptions [12, 13]. Error correction
techniques have been widely adopted to refine the initial ASR re-
sults for further word error rate reduction. In [14], authors first pro-
posed an LSTM-based correction model by training on synthesized
speech generated from a text-only corpus. Since then, several related
works have been proposed, such as a transformer corrector [15] for
Mandarin speech recognition, using acoustic features and the recog-
nized results for code-switching ASR [16], and initialization from
pre-trained models [17] for better correction performance.

Despite the error correction techniques being common in ASR,
to the best of our knowledge, there are only a few related studies
in speaker diarization. In [18], a post-processing method with an
EEND model for clustering-based diarization is proposed. The
method iteratively selects frames from all speaker pairs and pro-
cesses them with a pre-trained EEND model to find overlapped
speech regions that the clustering-based system could not handle.
More recently, authors in [19] propose to correct word-level speaker
error labels using lexical information. A pre-trained language model
is required to infuse the lexical knowledge to correct speaker er-
rors while leveraging speaker scores from the diarization system to
prevent over-corrections. The major limitation of this method is its
strong coupling with ASR tasks.

In this paper, we explore, whether it is possible to refine diariza-
tion results similar to the error correction in ASR: as long as an
initial result is provided, corrections can be conducted without ex-
cessive constraints. Motivated by error correction in ASR, we pro-
pose an error correction framework for speaker diarization which we
name DiaCorrect. It automatically refines the diarization results pro-
vided by an initial diarization system, by exploiting the interactions
between the input acoustic features and the initial speaker activity
predictions (SAPs) with two parallel convolutional encoders and a
transformer-based decoder. In this work, we use EEND-EDA [7]
to provide initial diarization outputs but DiaCorrect can be applied
on top of any diarization systems. To reduce over-fitting in the er-
ror correction process, we adopt data pruning to select hard samples
from the simulated training set. Moreover, by analyzing the dis-
tribution of initial SAPs, we calibrate them for the inference. We
analyze DiaCorrect’s performance under two scenarios. If only sim-
ulated data are available, DiaCorrect can be trained on a small set of
hard samples. If some limited target domain samples are provided,
DiaCorrect can be fine-tuned or even trained from scratch on such
data. Experiments on 2-speaker telephony data, CALLHOME [20]
and DIHARD-III [21] CTS, indicate that our method is effective to
improve the initial diarization performance in real scenarios, even
when only using less than 30 hours of simulated training data.

2. METHODS

2.1. EEND baseline
We take the self-attention EEND with encoder-decoder attractors
(EEND-EDA) [7] as our baseline because of its superior perfor-
mance in previous works. Different from clustering-based methods,
EEND reformulates speaker diarization as a multi-label classifi-
cation task, and directly outputs the joint speech activities of all
speakers at the same time for an input multi-speaker recording.
Permutation-invariant training (PIT) [22] is applied to solve the
output label ambiguity problem. More details can be found in [7].
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2.2. Proposed DiaCorrect
2.2.1. Motivation

Motivated by error correction techniques in ASR, the proposed Dia-
Correct aims to improve the diarization results from the initial model
outputs. Although the contextual patterns are not as prominent as in
ASR, we still believe that it is possible to learn some hidden patterns
across frames. For example, the model could learn global statis-
tics for the whole conversation and have a notion of how likely each
speaker is to speak next. Besides, it should be unlikely for very high
and very low probability values to alternate frame after frame.

In addition, we believe that the additional audio features are able
to provide rich acoustic information for refining the initial speaker
activities. Therefore, DiaCorrect processes both acoustic features
and initial speaker activities to produce the corrected predictions.

2.2.2. Math definition

Given a T -length, F -dimensional input acoustic feature sequence
X = (xt ∈ RF | t = 1, ..., T ) and its initial SAPs Z = (zt ∈
RC | t = 1, ..., T ) of C speakers produced by an external diariza-
tion system, DiaCorrect aims to map the initial SAPs to the labels
Y = (yt ∈ {0, 1}C | t = 1, ..., T ).

During DiaCorrect error correction, the refined speaker activity
predictions Z̃ are generated as follows1:

Z̃ = argmax
Ẑ ∈ Z

P (Ẑ|X,Z) (1)

where Ẑ = (ẑt ∈ RC | t = 1, ..., T ) is the output speaker activity
prediction, Z is the set of all possible output predictions. With the
approximate conditional independence assumption, P (Ẑ|X,Z) can
be factorized as:

P (Ẑ|X,Z) =
∏
t

P (ẑt|ẑ1, ..., ẑt−1, X, Z)

≈
∏
t

P (ẑt|X,Z) ≈
∏
t

∏
c

P (ẑt,c|X,Z)
(2)

During the training stage, we also use PIT [22] to handle the
output label ambiguity. With a standard binary cross entropy (BCE),
the whole DiaCorrect loss function is defined as follows:

L =
1

TC
min
ϕ∈P

T∑
t=1

BCE(σ(ẑϕ
t ),yt) (3)

where P is the permutation set of C speakers, ϕ is one of the per-
mutations, σ(·) is sigmoid function, ẑϕ

t means the output speaker
activity prediction with permutation ϕ at time t.

2.2.3. Model design

The architecture of DiaCorrect for 2-speaker input conversations is
shown in Figure 1. It has a speaker activity prediction (SAP) encoder
to leverage the speaker activity information from the initial diariza-
tion results, and a speech encoder to capture the acoustic speaker in-
teractions. The SAP encoder is designed to accept the logit outputs
from an initial diarization system, a pre-trained EEND-EDA in this
work, and process them independently for each speaker. The input
to the speech encoder are standard log-Mel features. After trans-
forming the initial speaker predictions and acoustic features into a

1Note that we follow similar notation to EEND works [6,7] and the main
change is the addition of Z as another input.

Fig. 1. Framework of DiaCorrect for 2-speaker scenario.

high-dimensional embedding space, we concatenate these high-level
features per frame and introduce a sequential decoder to generate re-
fined diarization outputs based on the concatenated output.

The structure of SAP encoder is motivated by the temporal con-
volutional network used in Conv-TasNet [23] to model speaker ac-
tivities along time for each speaker. Figure 1(b) shows the detailed
structure. It mainly consists of a 1-D convolution followed by a 1-D
depthwise convolution (D-Conv1d) [24], with the parametric recti-
fied linear unit (PReLU) [25] and layer normalization (LN) [26] in
between them. Skip connection [27] is applied as shown in the di-
agram. The input/output dimensions of the Linear layer in SAP en-
coder are 2/256. The following Conv1d layer is a point-wise convo-
lution with input/output channels of 256/512. For the depthwise con-
volution layer, we set its stride/kernel size to 1/3, and input/output
channels to 512/512. Then, another point-wise convolution with in-
put/output channels of 512/256 is used. For the speech encoder, as
shown in Figure 1(c), we choose 2-D convolution to model both tem-
poral and spectral dynamics. The stride, kernel size, and paddings of
(time, frequency) in the Conv2d layers are set to (3, 7), (1, 5), and (1,
0), respectively. The input/output dimensions of the two Conv2d and
Linear layers are 1/256, 256/256, and 3328/256, respectively. Then
the convolutional outputs are reshaped to concatenate across channel
and frequency dimensions. Finally, a 4-layer transformer [28] based
decoder shown in Figure 1(d) is used to predict the refined speaker
activity results. The input/output dimensions of the two Linear lay-
ers in the decoder are set to 768/256 and 256/2, respectively.

3. EXPERIMENTS

3.1. Datasets
The EEND-EDA baseline and DiaCorrect models are trained on 2-
speaker simulated conversations (SC) [10] that are generated using
real distributions of pauses and overlaps from DIHARD-III [21] CTS
development set. We use 2-speaker subsets of CALLHOME [20]
Part1 (CH Part 1) and DIHARD-III CTS development (DH3 dev)
for model fine-tuning. The 2-speaker subsets of CALLHOME Part
2 (CH Part 2) and DIHARD-III CTS evaluation (DH3 eval) are used
to evaluate system performance in real scenarios. All recordings are
sampled at 8 kHz. Table 1 presents all detailed information about
the datasets used in this paper.

3.2. Configurations
We stack 15 consecutive 23-dimensional log-scaled Mel-filterbanks
(computed over 25 ms every 10 ms) to produce 345-dimensional
features. To alleviate over-fitting to the simulated data, all DiaCor-
rect models are trained only for 5 epochs with Adam [29] optimizer
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Table 1. Information of 2-speaker simulated and real datasets.

Dataset #Utts Hours Average Average %
dur. (s) sil. 1spk over.

SC 25k 2480 356.15 12.80 78.83 8.37
CH Part1 155 3.19 74.02 9.05 77.90 13.05
CH Part2 148 2.97 72.14 9.84 78.34 11.82
DH3 dev 61 10.17 599.95 10.56 77.27 12.17
DH3 eval 61 10.17 599.95 10.89 78.62 10.49

and an initial learning rate of 1e-5. We average model parameters
along all the 5 epochs checkpoints for evaluation and use a decision
threshold of 0.5 for speech activities. We report the standard diariza-
tion error rate (DER) [30] and its components, missed speech (Miss),
false alarm (FA), and speaker confusion (Conf.). For CH Part2 eval-
uation, we apply a 11-frame median filter on the outputs and we set
the DER collar to 0.25 s. For DH3, no median filter is applied and all
results are evaluated with a 0 s collar. More details about DiaCorrect
implementation can be found in our source code2.

3.3. Results and discussion
3.3.1. Baseline

We train the EEND-EDA3 baseline with the SC4 dataset follow-
ing the setup described in [7, 10]. Results are shown in Table 2,
where “FT” denotes fine-tuning with the corresponding set (Part1
for CH and dev for DH3). We first consider scenarios where target-
domain data for fine-tuning is unavailable and therefore utilize the
pre-trained EEND-EDA model without fine-tuning as baseline.

Table 2. Baseline performance of EEND-EDA on real datasets.

FT CH Part2 DH3 eval
DER Miss FA Conf. DER Miss FA Conf.

- 8.62 3.40 4.53 0.69 19.58 3.94 14.62 1.02
✓ 7.88 5.02 2.18 0.68 12.76 8.03 3.88 0.85

3.3.2. DiaCorrect with data pruning

To train DiaCorrect, we utilize the same training data used for the
baseline. As the baseline is also the diarization system that produces
the initial labels for DiaCorrect, it makes only few errors on the train-
ing data and produces speaker activity predictions that are close to
the ground truth labels for most recordings. Then, it becomes dif-
ficult to update DiaCorrect’s parameters effectively and the training
process is prone to overfit to the simulated conversations.

To improve correction results, we propose to select the hard
recordings from the training data based on its baseline performance.
The underlying motivation is that we believe an appropriate data
pruning could reduce the model’s dependence on the simulated train-
ing set, and emphasize error learning and correction during the train-
ing stage. In this paper, the average DER of the baseline system in
the training set is 3.13%. To select hard samples, we choose record-
ings with DER between a lower and an upper limit. The upper limit
is always set to 40% to remove outliers, and the lower limit is set to
8%, 10%, 12%, and 14% to produce different subsets. The selected
utterances/percentages of simulated conversations are 1254/5.0%,
611/2.4%, 338/1.3%, and 211/0.84%, respectively.

Table 3 shows results of DiaCorrect when trained on each subset.
As we can see, without data pruning, the DiaCorrect performance is

2https://github.com/BUTSpeechFIT/diacorrect
3https://github.com/BUTSpeechFIT/EEND
4https://github.com/BUTSpeechFIT/EEND_dataprep

Table 3. DiaCorrect performance when pruning the training set.

System kept % CH Part2 DH3 eval
DER Miss FA Conf. DER Miss FA Conf.

EEND-EDA 100 8.62 3.40 4.53 0.69 19.58 3.94 14.62 1.02

DiaCorrect

100 8.83 3.43 4.71 0.69 20.57 2.89 16.99 0.69
5.0 8.62 3.42 4.41 0.79 20.11 3.43 15.94 0.74
2.4 8.46 3.53 4.13 0.80 19.58 3.84 14.94 0.80
1.3 8.09 3.70 3.56 0.83 19.18 4.75 13.51 0.92

0.84 8.11 3.92 3.35 0.84 19.09 5.38 12.67 1.04

similar or even worse than the EEND-EDA baseline. When using
smaller pruned sets for training, DiaCorrect outperforms the base-
line. The best performance is obtained with the two smallest 1.3%
and 0.84% sets which attain comparable performance (yet smaller
sets showed degradation). While both sets were considered for fur-
ther experiments, we observed worse results with the latter so we
only use the 1.3% set in the rest of this paper. By means of data prun-
ing, we can decrease the initial DER on CH2 from 8.62% to 8.09%
and DH3 eval from 19.58% to 19.18%. To verify if such data se-
lection could improve baseline performance as well, we also tried to
further train the EEND-EDA baseline using the 1.3% selected hard
samples. However, with the same experimental setups as DiaCor-
rect, the CH2 DER performance changes from 8.62% to 8.74% and
DH3 eval goes from 19.58% to 19.62%.

To better understand the effect of the data pruning, Figure 2
shows the initial SAP distributions of different SC sets. For the
100% SC set, we randomly select 1000 utterances. The distributions
of speech and silence are obtained using the ground truth labels. In
EEND-EDA, SAP values are passed through the sigmoid function to
obtain output probabilities, thereby 0 corresponds to the 0.5 proba-
bility threshold used at inference time. With 0 serving as the deci-
sion boundary, a perfect diarization model would present completely
disjunct distributions of silence and speech and, in such case, there
would be no use for DiaCorrect. Consequently, correctly classified
silence frames with very low values and speech frames with very
high values do not provide useful information to train the error cor-
rection model. However, DiaCorrect can leverage the misclassified
frames around 0 to improve performance.

Fig. 2. Initial SAP distributions of 100% SC and 1.3% SC.
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Fig. 3. Initial SAP distribution of CH Part1 and DH3 dev.

3.3.3. DiaCorrect with SAP calibration

Although results in Table 3 indicate that DiaCorrect can bring im-
provements, the performance gain is limited, especially for DH3. To
identify the potential reasons, in Figure 3, we investigated the distri-
butions for CH Part1 and DH3 dev. Given the distributions of silence
and speech frames, the best decision threshold corresponds to the
one that minimizes the combined misses and false alarms. While the
theoretical threshold 0 performs well in the calibrated scenarios in
Figure 2, it can be observed a different situation in Figure 3. To mit-
igate this mismatch, for the inference, we decided to calibrate the ini-
tial SAP distribution of real data. We investigated the effects of SAP
calibration by simply subtracting some bias from its initial distribu-
tions. Figure 4 shows the results of such calibration, which further
improves the DiaCorrect performance. With only 30 hours of pruned
simulated data, our system can reduce the initial DER on CH2 from
8.62% to 7.91% and DH3 from 19.58% to 17.60%, achieving similar
performance on CH2 as the fine-tuned EEND-EDA.

3.3.4. DiaCorrect with target domain data

Although manual labeling is expensive, it is not uncommon to have
a small target-domain annotated corpus. Given the usual mismatch
between synthetic training data and real recordings, fine-tuning to
real data is essential to reach state-of-the-art performance with neu-
ral diarization methods [5–8]. In Table 4, we present the DiaCorrect
performance when target data are used for training. In this setup, no
calibrations are needed, as training and inference are performed on
data of the same domain. As we can see, after fine-tuning, the initial
DER can be further reduced. Especially on DH3 dev, the DER de-
creases from 17.60% to 12.46%. Compared to the fine-tuned results
of EEND-EDA in Table 2, our system achieves similar or even better
results on both CH Part2 and DH3 eval subsets. This is promising for
those scenarios where the diarization system is considered a black-
box and the user does not have access to its internals. In this case,
the fine-tuning of the diarization system is impossible, but as long
as an inference interface and some real labeled data are provided,
DiaCorrect can achieve competitive results.

In addition, we also train DiaCorrect from scratch using the tar-
get domain data (CH Part1 and DH3 dev). Surprisingly, in this case,
our system still achieves similar performance to the fine-tuned sys-

Fig. 4. Effects of SAP calibration on CH Part2 and DH3 eval. 1.3%
pruned data is used for model training.

tem. These results indicate that even when a few hours of target
domain data are available, additional simulated data does not benefit
the training of DiaCorrect. Furthermore, note that the training from
scratch of DiaCorrect requires only a few hours of labeled data, 3.19
hours for CH Part1 and 10.17 hours for DH3 dev, which is very
friendly to computational resources.

Table 4. DiaCorrect performance when using labeled real data.

System CH Part2 DH3 eval
DER Miss FA Conf. DER Miss FA Conf.

Train on SC 7.91 4.11 2.96 0.84 17.60 7.39 9.15 1.06
+ FT on dev set 7.85 4.74 2.30 0.81 12.46 7.10 4.71 0.65

Train on dev set 7.98 4.67 2.76 0.55 12.47 7.11 4.64 0.72

4. CONCLUSION

In this study, we propose DiaCorrect to refine the initial speaker di-
arization outputs of an existing system. We investigate data pruning
and calibration to address over-fitting and data mismatch. Exper-
iments on 2-speaker CALLHOME and DIHARD-III CTS demon-
strate that our proposed DiaCorrect can significantly improve the
initial diarization results. In particular, our system achieves promis-
ing performance when the diarization system is taken as a black-box,
i.e. one cannot retrain the existing model. Our future work will focus
on exploring automatic (supervised and unsupervised) SAP calibra-
tion and generalizing DiaCorrect to more speakers. Furthermore, we
plan to consider different architecture variants and apply our method
to other initial speaker diarization systems.
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