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Abstract—Computer vision is an integral part of many robotic
applications which are often executed on limited hardware.
In this paper, we study applications which execute the vision
tasks remotely in a cloud or edge environment instead of local
execution. Such a structure of applications (called Network
Application within the 5G-ERA project) helps to overcome many
limitations of robotic platforms stemming from less powerful
hardware. The one requirement is that each robot must have
a sufficient network connection. In the future, we believe, this
will be solved easily using new generations of networks which
will offer low latencies and high bandwidth for connected clients.
In this paper, we discuss the particular case of vision tasks and
show their properties in a use case of visual collision warning
and train detection systems for autonomous robots. In particular,
we compare local execution with the execution in a cloud-based
system using the automatically deployed container. The Network
Application along with experimental data is available as an open
source on GitHub.

I. INTRODUCTION

Robotic platforms nowadays employ vision applications
like object detection and tracking, environment mapping and
localization, image recognition, etc. This is especially promi-
nent e.g. in autonomous driving, where advanced and robust
algorithms must be used in order to ensure reliability and
safety. Such algorithms come with a price which includes
hardware and energy demands and, ultimately, increased cost
of the system. However, the computing power of robots is often
limited, especially in cases where robots must be kept simple
and cheap, the reason being that many units must be built
and deployed (e.g. drones or service robots in medical care).
Such robots, even when equipped with a GPU, cannot often
afford the execution of advanced algorithms. Moreover, their
performance cannot compare to massive computing power,
which can be easily deployed in the cloud, not to mention
energy demands which can be satisfied easier in a data center
than on an autonomous robot running on battery.

The advantages of using cloud computing for autonomous
robots include — almost unlimited computing power, low
energy requirements for the robot, a simpler robotic platform,
and simple updates of algorithms in the cloud. The one strong
requirement is the connectivity. Almost unlimited computing
power — limited only by the availability of computing nodes
which can be added or removed transparently. Moreover,
resources like memory or GPU can be allocated with respect
to the needs of the robot. Low energy requirements — Due
to offloading, the energy consumption can be “moved” to
the data center, not draining the battery with expensive local
computations. Simpler robotic platform - the hardware can be

constrained to sensory inputs, necessary local processing and
connectivity. Simple updates of algorithms — A new version
of an algorithm used by the robot can be simply deployed in
a container; no changes in the robot itself are required since
the whole process is managed centrally.

The connectivity required for cloud application deployment
can be satisfied by ordinary WiFi (and its recent specifica-
tions [1]), which can be used on local networks covering
buildings and small areas. For autonomous robots, e.g. in
transportation, mobile networks offering 4G, LTE or 5G con-
nection have to be used. Especially 5G seems promising for
such applications since it specifies network slicing, which can
provide extremely low latency or transfers of massive data.
In the future, the 5G network (and its potential successors)
has the potential to become the standard not only for IoT
communication but for robotic communication as a whole.

In the 5G-ERA! [2—4] project, a framework for the man-
agement and deployment of robotic applications is being devel-
oped. In this framework, a robot makes a request specifying
the task it wants to use (like detection, mapping, etc.). The
placement and life-cycle of deployed applications are managed
by the Middleware > — a central service of the 5G-ERA
framework. The Middleware decides where the application is
executed — either the edge system near the robot for extremely
low latency, or a remote data center for massive computations
with the lower required bandwidth, and connects the robot
to the deployed application. The important point is that from
the robot’s perspective, this process is transparent, performed
by the Middleware in the background. Once the application is
deployed, the robot starts sending inputs to the application and
collects results which it uses for its own ends.

In this article, we employ the framework from the 5G-
ERA project and implement applications for transportation
within it — a vision-based collision warning system and train
detection. Such a system requires instant feedback (e.g. low
processing latency) and have to employ advanced algorithms
based on deep learning — robust object detection and tracking.
So far, such systems were usually implemented directly in
robotic platforms using other sensory inputs than cameras (e.g.
radar, lidar, and IMU). The main properties of our algorithms
are as follows. They uses only a camera as the input. They
are executed completely in the cloud managed by 5G-ERA
Middleware, and they can be reused by multiple robots. The
algorithms and the packages using the 5G-ERA framework
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were made available as an open source on GitHub?*.

II. NETWORK APPLICATION FRAMEWORK

The 5G-ERA framework defines a simple protocol for
connecting the robot and the Network Application. It combines
the simplicity of HTTP requests with the versatility of Web-
Sockets to deliver a bidirectional communication channel. This
protocol enables various types of deployments. The network
application can be deployed locally on the robot, remotely
on an edge device, or in the cloud, using the same protocol
and client library. Combined with the 5G-ERA Middleware,
this framework provides high scalability and versatility in net-
work application deployment across multi-domain and multi-
administration environments.

The protocol requires the robot first to call the
/register endpoint. As a result, the network application
creates a session for the client (robot). After that, the client
initiates the WebSocket communication to establish the bidi-
rectional data transfer channel. The current implementation
supports three image transport channels:

e JPEG-compressed image sent over HTTP endpoint

e JPEG-compressed and base64-encoded image sent
over WebSockets

e h.264 video stream sent using GStreamer pipeline

Each channel has different demands for computing power
(encoding h.264 video stream is more demanding than JPEG
compression) or network bandwidth (individual JPEGs, en-
coded in base64, will be much bigger than h.264 stream).
Therefore, each transport channel suits different use cases.

The framework consists of two main parts, the python
client library era-5g-client, and the interface library
erangfinterfaceﬂ which serves as a base for the im-
plementation of network applications. Alongside these two
libraries, a reference implementation of a network application
is provided’.

III. NETWORK APPLICATIONS FOR TRANSPORTATION

As example applications for testing the framework, we
consider two vision tasks that are part of the use case of
the 5G-ERA project within the domain of transportation.
Both applications are required for autonomous driving of an
advanced delivery robot. The first task is train detection — as
the robots are deployed in an industrial area with many train
tracks without a fixed train schedule, one problem to be solved
is detecting trains on crossings. The second task is collision
warning system — another problem is detecting obstacles and
dangerous objects in the robot route. Usually, these are cars
and people moving freely in the area. Both applications require
complex vision algorithms and instant feedback, and thus they
are often considered as candidates for local execution, which
also requires powerful hardware. We analyze the properties of
these applications when executed both locally and remotely as
Network Applications under a variety of conditions.
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Fig. 1. Visualization of the train detector application. Train instances are
detected with YOLO network and grouped together across the time domain
using SORT tracker. Subsequently, keypoints are detected and tracked for
each instance, in order to determine its movement. Green dots represent the
keypoints, while green lines show their tracks over time. The bounding box
of the train and the resultant information about its motion is then sent to the
robot.

A. Train Detector

The train detector application is a service for obtaining
information about possible train movement in a video stream.
It is intended to be used on robotic vehicle that operates inside
an industrial area with a railway branch line (industrial spur).

The robot can utilize this service each time it is about to
cross railway tracks on its route. Firstly, the robot must stop
before the tracks, in order to allow the motion of the train to be
distinguished from the movement of the video stream that is
induced by the robot itself. Subsequently, train detector service
is called and it searches for any trains in the camera view, and
evaluates whether they are still or moving. This information
can then be used by the robot to decide when it is safe to
proceed with crossing the track. Implementation of the train
detector service encompasses several processing steps. YOLO
object detector from MMDetection Toolbox [5] is first used
to find train instances in a video frame. SORT tracker [6]
is then employed to track the movement of the individual
objects in the video. Subsequently, optical flow is estimated
for each object. The final information about whether the train
is moving is then established based on the magnitude of the
optical flow. Visualization of the detection process is shown
in Figure 1. The structure the service follows the Network
Application framework described in Section II and it is made
available on GitHub?.

B. Visual collision warning

Collision warning works with a calibrated front-facing
camera. It detects dangerous objects in the robot’s path (e.g.
persons, other cars, etc.), estimates their relative location and
motion, and predicts their movement on the road plane, see
Figure 2. The predicted movement is analyzed with respect to
the defined safety zones, and alarm signals are issued in case
of dangerous behavior.

8https://github.com/5G-ERA/TrainDetectorService
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Fig. 2. Conceptual view of collision warning. The camera captures objects
(the red dot) in the robot’s path. The Network Application predicts the path
of objects relative to caution or danger zones, and issue signals.
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Camera calibration is defined by the intrinsic matrix —
projection parameters, and extrinsic matrix — location and
rotation of the camera w.r.t. the robot coordinate frame. We
estimate intrinsics simply using OpenCV [7] tools, extrinsics
can be estimated from one known vanishing point in the
direction of the robot movement and known horizon line.
The input image from the camera is rectified to get the ideal
pinhole projection. For the detection of dangerous objects we
use pre-trained YOLO detector [8, 9]. We detect common
dangerous objects — vehicles, persons and animals. And we
track the objects with the SORT tracker [6]. Each object is
then represented by its identity, class and bounding box in the
image. We leverage camera calibration information in order to
estimate the 3D location of the objects w.r.t. the vehicle, the
assumption here is that the objects stand on the road plane.
The representation of each object is enriched with its location
in the world by projecting the center of the bottom edge of the
bounding box to the road plane (z = 0). Each object is tracked
in the world coordinate system using a 2D Kalman filter [10]
with a constant acceleration model (omitting z coordinate).
The Kalman state is used for prediction over a short time
span (about 15s) to get the object location in the near future.
We define two zones — caution zone and danger zone. The
caution zone is defined by a polygon in front of the robot,
generally speaking, where the robot will be in the near future.
The danger zone is a tight polygon around the robot — i.e.
anything penetrating the danger zone, collides with the robot.
The movement of each object is analyzed, and four states are
recognized:

e SAFE - Object is outside caution zone.

e CAUTION - Object will enter caution zone.

e  WARNING - Object is inside cation zone.

e DANGER - Object will collide with the danger zone.

The Figure 3 shows a example visualization and signals
issued by the algorithm. The robot must react appropriately
to the obtained signals. The simplest case is to start breaking.
The more advanced strategy involves path planning — this is,
however, left to the developers using the Network Application
which provides the signals.

The architecture of the Network application is visualized in
Figure 4. The Python package is divided into core, service
and client modules. The core module handles object
detection, collision prediction and visualization. As an input to
the core algorithm, it is necessary to specify the video source
(file or video stream) and the configuration files for setting
the algorithm parameters. The service module is used on a
server that can run outside the robot environment and uses

Fig. 3. Visualization of the collision warning. The bottom left picture shows
rectified image with predicted object track. The top bar shows the signals
issued by the system.
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Fig. 4. Data flow of Collision warning service application.

both the core module for computation itself and the 5G-
ERA network application framework which realizes the remote
service interface. The c1ient module contains two examples
of clients (robots) for pure python (client_python) and
for ROS2 (client_ros?2). The era-5g-client package
handles the connection to the Middleware, registering the client
on the server (in the network application) and communication
between the remote and client counterparts. The data flow of
the Network Application is visualized in Figure 4.

IV. EVALUATION OF THE NETWORK APPLICATIONS

We evaluated both Network applications considering the
power requirements, observed latency and CPU, GPU, RAM,
and video RAM usage under various conditions. The metrics
were measured on three different execution platforms:

e  Robot — Intel Core 15-6500 CPU, 4 cores @ 3.20GHz
with 32 GB RAM and Nvidia GeForce GTX 1050
Ti with 4 GB RAM, running Ubuntu 22.04 operating
system



Power CPU RAM GPU VRAM Latency FPS
[W] [%] [%] [%] [%] [ms]

H W G H w G H W G H w G H W G H w G H w G
Robot 82 81 79 86 83 80 11 11 11 9 9 9 18 18 18 124 130 131 100 100 10.0
Eth/Edge 49 48 48 31 31 31 4 4 4 0 0 0 0 0 0 121 126 134 99 10.1  10.0
Wi-Fi/Edge 38 37 48 25 33 30 5 4 4 0 0 0 2 2 2 124 132 142 9.6 10.0 10.1
5G/Cloud 37 48 48 18 31 31 4 4 4 0 0 0 0 0 0 207 193 321 6.0 9.9 10.0
Eth/Cloud 37 37 37 28 23 21 4 4 4 0 0 0 0 0 0 147 168 283 100 100 10.0
Wi-Fi/Cloud

TABLE I THE RESULTS FOR TRAIN DETECTOR SERVICE FOR 10 FPS INPUT VIDEO. ALL VALUES ARE MEDIAN FOR 60 SECONDS OF DATA. H, W, AND
G STAND FOR HTTP, WEBSOCKETS AND GSTREAMER RESPECTIVELY.
Power CPU RAM GPU VRAM Latency FPS
[W] [%] [%] [%] [%] [ms]

H w G H w G H w G H w G H w G H w G H w G
Robot 85 85 8 96 94 9 11 11 1117 17 17 18 18 18 83 74 69 204 214 235
Eth/Edge 51 51 50 39 38 35 4 4 4 0 0 0 0 0 0 61 66 74 235 238 246
Wi-Fi/Edge 39 39 39 33 30 51 5 4 5 0 0 0 2 2 2 68 83 190 183 229 232
5G/Cloud 47 40 49 29 32 35 4 4 4 0 0 0 0 0 0 197 175 258 5.9 187 21.0
Eth/Cloud 38 40 38 32 30 54 4 4 4 0 0 0 0 0 0 128 145 195 137 190 214
Wi-Fi/Cloud 49 50 50 34 38 35 4 4 4 0 0 0 1 1 1 122 155 174 123 163 209

TABLE II.

THE RESULTS FOR TRAIN DETECTOR SERVICE FOR 25 FPS INPUT VIDEO. ALL VALUES ARE MEDIAN FOR 60 SECONDS OF DATA. H, W, AND

G STAND FOR HTTP, WEBSOCKETS AND GSTREAMER RESPECTIVELY.

Power CPU RAM GPU VRAM Latency FPS
[W] [%] [%] [%] [%] [ms]
H w G H w G H w G H w G H w G H w G H w G
Robot 98 97 97 92 90 92 11 11 10 32 33 33 21 21 21 77 78 88 100 100 10.0
Eth/Edge 57 57 56 33 33 33 4 4 4 0 0 0 0 0 0 92 97 80 100 100 10.0
Wi-Fi/Edge 58 59 58 53 55 55 5 4 5 0 0 0 2 2 2 118 106 286 8.1 9.6  10.0
5G/Cloud 58 58 58 53 56 56 4 4 4 0 0 0 0 0 0 204 140 206 5.2 9.7 10.0
Eth/Cloud 56 55 55 34 33 34 4 4 4 0 0 0 0 0 0 127 110 88 80 100 100
Wi-Fi/Cloud 58 58 58 55 55 55 4 4 4 0 0 0 1 1 0 144 108 87 6.5 9.8 10.0

TABLE III.

THE RESULTS FOR COLLISION WARNING APPLICATION FOR 10 FPS INPUT VIDEO. ALL VALUES ARE MEDIAN FOR 60 SECONDS OF DATA. H,

W, AND G STAND FOR HTTP, WEBSOCKETS AND GSTREAMER RESPECTIVELY.

e FEdge and Cloud - AMD Ryzen 7 1700X,
8 cores @ 3,4 GHz with 32 GB RAM and Nvidia
GeForce GTX 1050 Ti with 4 GB RAM, running
Ubuntu 20.04 operating system

The robot and the edge computers were two different
computers with similar specifications. The cloud platform was
a computer with exactly the same specifications as the edge
platform but placed in remote network. As networking media,
we consider Ethernet and WiFi providing access to local
networks and the internet, and 5G connection is available
through the commercial operator. For 5G access, we use a
Netgear MR5200 router connected to the robotic platform.
It should be noted that the only combinations enabling truly
autonomous robot operation are Robot (local) and 5G/Cloud
variants since others enable small local area deployment only.
We do not consider the 5G/Edge variant here since we use
services of the commercial 5G operator and do not have access
to their infrastructure.

The results, as shown in Table I to Table IV, indicate that

offloading makes sense for lowering power consumption on
the robot. The power is lower in all cases when the algorithm
does not run on the robot, even though there is additional
overhead associated with encoding individual images or the
video stream. Latency is slightly higher for Ethernet and WiFi
connections, which can be considered acceptable. However,
it is approximately double for a 5G connection, which we
attribute to the usage of a commercial network. With a private
network, it should be possible to obtain substantially better
results. The results show that HTTP transport has worse per-
formace when the network application is offloaded compared
to other types of transport. With an application in the cloud,
CPU usage is lower. RAM usage is lower in all cases. When
running non-locally, the GPU is not used; therefore, its usage
is zero.

V. CONCLUSION

We presented a use case of two computer vision appli-
cations for autonomous delivery robots — the Train Detector
and Collision Warning System. Both applications are impor-



Power CPU RAM GPU VRAM Latency FPS
W] [%] [%] [%] [%] [ms]
H w G H w G H W G H W G H w G H w G H w G
Robot 134 135 134 99 99 9 11 11 10 59 62 65 21 21 21 85 91 72 211 227 241
Eth/Edge 57 57 57 35 39 39 4 4 4 0 0 0 0 0 0 91 83 61 146 231 234
Wi-Fi/Edge 58 59 59 55 59 59 5 5 5 0 0 0 2 2 2 111 96 71 8.9 19.5 220
5G/Cloud 57 59 59 53 59 59 4 4 4 0 0 0 0 0 0 215 146 244 5.1 204 243
Eth/Cloud 55 56 56 33 39 39 4 4 4 0 0 0 0 0 0 128 99 115 75 229 235
Wi-Fi/Cloud 58 59 59 54 59 59 4 4 4 0 0 0 1 1 0 146 107 122 6.6 189 230

TABLE IV.

THE RESULTS FOR COLLISION WARNING APPLICATION FOR 25 FPS INPUT VIDEO. ALL VALUES ARE MEDIAN FOR 60 SECONDS OF DATA. H,

W, AND G STAND FOR HTTP, WEBSOCKETS AND GSTREAMER RESPECTIVELY.

tant for the safety of the robot and its correct functioning.
We experimented with the applications in different kinds
of networking environments from simple local deployment
to a complex automatically orchestrated deployment in the
cloud using 5G technology and compared different tradeoffs
between the type of execution and used networking media.
Our experiment shows that the deployment of applications in
the cloud environment increases latency and decreases power
consumption of the robot. The difference is that in the “cloud”
case, the robot does not have to contain potentially expensive
hardware and serves simply as a source of sensory data with
the expensive task offloaded to the cloud. The latency is not a
critical limitation in the case of the Train Detector where the
robot stops in front of the tracks, however, collision avoidance
requires much lower latencies. This will be solved in future
by exploitation of 5G network slicing features and deployment
of Network Applications in 5G/Edge mode by the 5SG-ERA
Middleware.
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