
Robotics and Computer–Integrated Manufacturing 89 (2024) 102770

A
0

Contents lists available at ScienceDirect

Robotics and Computer-Integrated Manufacturing

journal homepage: www.elsevier.com/locate/rcim

Full length article

Augmented reality spatial programming paradigm applied to end-user robot
programming✩

Michal Kapinus ∗, Vítězslav Beran, Zdeněk Materna, Daniel Bambušek
Faculty of Information Technology, Brno University of Technology, Božetěchova 1/2, 612 00 Brno, Czech Republic

A R T I C L E I N F O

Keywords:
Robot programming
Augmented reality
SME future

A B S T R A C T

The market of collaborative robots is thriving due to their increasing affordability. The ability to program a
collaborative robot without requiring a highly skilled specialist would increase their spread even more. Visual
programming is a prevalent contemporary approach for end-users on desktops or handheld devices, allowing
them to define the program logic quickly and easily. However, separating the interface from the robot’s task
space makes defining spatial features difficult. At the same time, augmented reality can provide spatially
situated interaction, which would solve the issue and allow end-users to intuitively program, adapt, and
comprehend robotic programs that are inherently highly spatially linked to the real environment. Therefore,
we have proposed Spatially Anchored Actions to address the problem of comprehension, programming, and
adaptation of robotic programs by end-users, which is a form of visual programming in augmented reality.
It uses semantic annotation of the environment and robot hand teaching to define spatially important points
precisely. Individual program steps are created by attaching parametrizable, high-level actions to the points.
Program flow is then defined by visually connecting individual actions. The interface is specifically designed
for tablets, which provide a more immersive experience than phones and are more affordable and well-
known by users than head-mounted displays. The realized prototype of a handheld AR user interface was
compared against a commercially available desktop-based visual programming solution in a user study with
12 participants. According to the results, the novel interface significantly improves comprehension of pick and
place-like programs, improves spatial information settings, and is more preferred by users than the existing
tool.
1. Introduction

The Fourth Industrial Revolution (Industry 4.0) has drastically
changed the established approaches to manufacturing, especially for
small and medium-sized enterprises (SMEs). Tasks previously per-
formed mainly by humans have, in recent years, started to be au-
tomated by collaborative robots (cobots). The number of cobots in
the industry is increasing year by year and is expected to continue
growing in the coming years. According to The Insight Partners [1],
the Collaborative Robots Market was estimated to be worth $1.15
billion in 2022, and it is expected to reach $8.81 billion by 2030.
SMEs are characterized by small batches and frequent changes in
production, requiring frequent changes in robot programs. One way
to reduce associated programming costs is to allow non-expert users
to understand and adapt robot programs, which are typically mainly

✩ This paper was supported by the 5G-ERA project with funding from the European Union’s Horizon 2020 Research and Innovation programme under grant
agreement No. 101016681.
∗ Corresponding author.

E-mail addresses: ikapinus@fit.vut.cz (M. Kapinus), beranv@fit.vut.cz (V. Beran), imaterna@fit.vut.cz (Z. Materna), bambusekd@fit.vut.cz (D. Bambušek).
URLs: https://www.fit.vut.cz/person/ikapinus/ (M. Kapinus), https://www.fit.vut.cz/person/beranv/ (V. Beran), https://www.fit.vut.cz/person/imaterna/

(Z. Materna), https://www.fit.vut.cz/person/bambusekd/ (D. Bambušek).

variations of pick and place tasks (palletizing, loading and unloading
of machines, etc.).

Established programming techniques seem inapplicable as they suf-
fer from low comprehensibility for non-expert users. A program is
typically represented as a sequence of actions of several types, e.g., in-
structions for moving along a line, setting joint angles, or controlling
an end effector position. These can be visualized as diagrams or just
as lines of code. Just by looking at the representation of the program,
it is difficult to match the actions to the actual steps in the program,
i.e., ‘‘Which of the 20 MOVE instructions is the one I am looking for?’’
Moreover, in the context of SMEs, we believe that adapting an existing
program will be a much more common scenario than creating a whole
new program from scratch. When production changes slightly, the
programmer will likely not bother setting up the robot and its program
vailable online 13 April 2024
736-5845/© 2024 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.rcim.2024.102770
Received 10 October 2022; Received in revised form 14 February 2024; Accepted 2
8 March 2024

https://www.elsevier.com/locate/rcim
https://www.elsevier.com/locate/rcim
mailto:ikapinus@fit.vut.cz
mailto:beranv@fit.vut.cz
mailto:imaterna@fit.vut.cz
mailto:bambusekd@fit.vut.cz
https://www.fit.vut.cz/person/ikapinus/
https://www.fit.vut.cz/person/beranv/
https://www.fit.vut.cz/person/imaterna/
https://www.fit.vut.cz/person/bambusekd/
https://doi.org/10.1016/j.rcim.2024.102770
https://doi.org/10.1016/j.rcim.2024.102770

Robotics and Computer-Integrated Manufacturing 89 (2024) 102770M. Kapinus et al.

t
v
i

R

all over again but rather duplicate an existing one and incorporate a
few changes to suit the current batch. Therefore, fast and easy program
comprehensibility is crucial, even for the authors of their own robot
programs, because it is natural to forget one’s own code as time passes.

In recent years, several programming tools for non-expert users have
been introduced, such as [2–4] (more in Section 2), which are usually
based on paradigms known from general programming, such as visual
programming, or natural language processing. Several robot-specific
paradigms, such as programming by demonstration or tangible pro-
gramming, have been introduced but have not yet been deployed in the
industry. From the existing approaches, we see visual programming as
the one with the highest chance of being deployed in real applications;
however, it has to be specifically adapted for the robotics context.

Robotic programs involve operations in a real environment. There-
fore, clear and explicit visualization and manipulation of the spatial
parameters of operations is an essential requirement for the program-
mer. Most of the current programming solutions have a weak link
between the program representation and the real space. Spatial param-
eters are usually represented by a textual description (e.g., coordinates:
X=0.5, Y=0.9, Z=1.8) or visualized in a virtual workplace using
a robot model. In both cases, the user must constantly switch their
attention between the robot and the screen to mentally map the textual
or virtual spatial representation to the real environment, which implies
a high cognitive and attentional load [5].

Incorporating augmented reality (AR) allows the visualization of
spatial information directly in the real environment, as has been
demonstrated previously (e.g., [6]). Thus, a programming tool that
displays the spatial parameters of robotic programs directly in the 3D
space of the workplace can improve program understanding and reduce
the need for context switching. However, the use of AR technology
also brings difficulties. Current handheld AR suffers from inaccuracy in
position estimation [7–9], which is a serious problem for robotic tasks
requiring high precision. In addition, most AR devices introduce their
own problems, such as a narrow field of view (head-mounted displays)
or the need to hold the device in the hand (handheld devices).

When it comes to existing AR-based solutions, there are very few
attempts to provide a general programming tool that would allow
users to create and adapt programs for different tasks. An example
could be [10], which displays a Blockly-like interface in 3D space,
however, with a lot of textual information cluttering the interface.
Most of the existing works focus on a specific task, such as teaching
assembly process [4], trajectory specification [11,12] or allow only to
set parameters to a pre-defined program [13].

We have specified five research objectives to address the aforemen-
tioned problems of contemporary solutions (commercially available
end-user programming tools, which we further refer to as a standard
method):
𝑅𝑂𝑐𝑜𝑚𝑝𝑟𝑒ℎ𝑒𝑛𝑠𝑖𝑜𝑛 — Improve the robotic program comprehension over the
standard method.
𝑅𝑂𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦 — The creation and adaptation of programs in AR should
be at least as simple as in current end-user programming tools.
𝑅𝑂𝑙𝑜𝑎𝑑 — Lower the perceived task load compared to the standard
method.
𝑅𝑂𝑒𝑟𝑔𝑜𝑛𝑜𝑚𝑖𝑐𝑠 — Provide good handheld AR user interface ergonomics.
𝑅𝑂𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 — Allow precise specification of spatial information using
handheld AR.

We propose a new robot programming paradigm based on di-
rect interaction with a virtual representation of the robot program
visualized in a real environment using AR. The paradigm is based
on the fundamental nature of manufacturing activity: (1) performing
operations/actions, (2) in a specific position (or in motion), (3) with
specific parameters, and (4) in some sequence of actions. Based on
this reasoning, we define Spatially Anchored Actions (SAA). The spa-
ial information of the program operations and their sequence are
isualized in the real space of the robot by virtual 3D objects. The
2

nterface further benefits from semantic knowledge of the environment
(manually or automatically acquired), i.e., the objects present and their
models, and the user is provided with only contextually relevant menus.
Knowledge of the positions and shapes of real objects also facilitates
fast and accurate adjustment of the spatial parameters of the program.
The method allows in-situ creation and visualization of the robotic
program and interaction with virtual and real scene elements. Thus,
the programmer works naturally in one environment (a mix of real and
virtual) without the need for context switching.

The remainder of this paper is organized as follows: Section 2
presents the theoretical background of our method, which is explained
and discussed in Section 3. Section 4 contains details of conducted user
study and discovered observations, results of the user study are further
discussed in Section 5, and everything is concluded in Section 6.

2. Related work

The increasing spread of cobots in the industry raises the demand
for allowing end-users to program them. Naturally, robots can be pro-
grammed using a vendor-specific language, such as ABB’s RAPID [14],
Fanuc’s Karel, or Universal Robots’ URScript [15]. Although these
languages offer relatively simple syntax and programming commands,
they still require programmers with expertise in programming and
robotics [16] and, therefore, are not suited for end-users.

To reduce programming complexity and to lower the requirements
for the user’s training level, some commercially available teach pen-
dants offer a certain form of simplified programming. However, despite
the effort to engage less experienced users, they often possess high
mental and physical demands, lack the ability to use common syntax
structures, and have no option for visualization [17]; therefore, their
usability seems to be rather low [18]. Offline programming tools, such
as ABB RobotStudio1 [19], Fanuc RoboGuide2 or RoboDK,3 offer more
functionalities and allow to program the robot in a simulated envi-
ronment, which reduces the robot downtime, but on the other hand,
requires extensive training and experience. Additionally, these desktop
and pendant user interfaces imply a high cognitive and attention-
related workload for the user due to a continuous switching of visual
attention between the robot and the user interface [5].

Many alternative approaches for simplified robot programming
have been proposed throughout the past years. To allow end-users
to program robots, some used variations of visual programming [2,
20–22], programming by demonstration (PbD) [23], tangible pro-
gramming [24,25], natural language interface [3], and some explored
programming directly in the robot’s space using AR [4,10–13,26,27].
The existing approaches also differ in the level of abstraction, where
the lowest could be setting robot joints (very unintuitive and time-
consuming), and the counterpart would be, for instance, programming
on the task level, using PbD or reusable skills [28], which are better
suited for end-users needs.

The published works usually differ in the type of device used for
the interaction. Some of them used a head-mounted display (HMD) to
program the robot by setting trajectory waypoints [11,26,27]; others
used projected spatial AR [13], visual programming in combination
with visualization of spatial waypoints in the workplace [10], or an
HMD in combination with a handheld pointer [12]. Apart from robot
programming, AR has been found useful for visualizations of robot
programs and motions [29], inspection and maintenance [30], or train-
ing [31,32]. Moreover, AR can display the visual content directly in the
working space, in one’s line of sight, which reduces the user’s cognitive
load when switching the context and attention between the robot and
an external device [33]. Based on the literature review and feedback

1 new.abb.com/products/robotics/en/robotstudio.
2 fanucamerica.com/products/robots/robot-simulation-software-FANUC-

OBOGUIDE.
3 robodk.com.

https://new.abb.com/products/robotics/en/robotstudio
https://www.fanucamerica.com/products/robots/robot-simulation-software-FANUC-ROBOGUIDE
https://www.fanucamerica.com/products/robots/robot-simulation-software-FANUC-ROBOGUIDE
https://robodk.com/

Robotics and Computer-Integrated Manufacturing 89 (2024) 102770M. Kapinus et al.

e
a
H
t
I
g
m
e
m
A
d
u
c
i
v
s
w
e

u
a
l
o
o

m
t
a
i
w
w
l
t
p
c
p
a
o
p
o

3

c
p
D
t
s
c

u
p
f
n
m

s
n
o
e

a
t
t
p
r
m
p
p
o
t

s
p
o

3

f

from the industry, we see handheld devices as the most prospective
choice for usage on a daily basis, as they are affordable and robust
(which is important for industrial use-case), well known by users and,
at the time, able to convey imperfect, but sufficient AR experience,
providing an intuitive environment for in-situ programming.

Recently, frameworks such as Google ARCore4 or Apple ARKit5

nabled fast and easy development of AR applications for smartphones
nd tablets, which are in general significantly more affordable than
MD devices, and well known by users. Both deliver mandatory func-

ionalities for AR using their closed-source implementation of Visual-
nertial Simultaneous Localization and Mapping [34–36]. The ARKit is
enerally faster than ARCore and reacts better to fast device move-
ents [37]. Moreover, it has better results in localization and cam-

ra tracking, especially in industrial contexts and dynamic environ-
ents [38]. On the other hand, the ARCore is supported in both
ndroid and iOS and can be used in many various devices from
ifferent manufacturers. With their current implementation, they are
sable mainly for simple, small-scale environments [38] and non-
omplicated use-cases only, as hologram drifting can vary around 8 cm
n challenging scenarios [7]. These AR frameworks are suitable for
isualization and interaction tasks but not for the precise input of
patial information per se. If there is a need to input spatial information
ith high accuracy, AR should be combined with another technology,
.g., kinesthetic teaching, the approach we used for our interface.

To summarize, there exist various attempts to enable non-expert
sers, who might be domain experts, to program robots. AR seems to be
promising technique for this problem; however, until recently, it was

imited to expensive devices (HMDs, SAR setups). With the availability
f AR on consumer-grade handheld devices, new opportunities are
pening up.

Our approach, the SAA method, extends existing visual program-
ing approaches to 3D space, by which it attempts to allow end-users

o work within their task space and eliminate the necessity to switch
ttention between a device and the workspace, which is inevitable
n the majority of existing approaches. This is achieved by using AR,
here the user interface is purposefully designed to be used on tablets,
hich are affordable for SMEs. The method overcomes the inherent

ack of precision in AR tracking by using specifically designed graphical
ools and leveraging robot precision. A program comprises high-level
arametrizable actions inspired by skills and extended to be used in
onjunction with AR. Within-workspace programming solves the main
roblem of contemporary solutions: a comprehension of programs that
re highly spatially linked to the real environment. To the extent
f our knowledge, this is the first solution enabling general visual
rogramming in AR, with a user interface specifically designed for
ptimal ergonomy and prolonged usage on tablets.

. Spatial programming paradigm

The two crucial parts of typical robot programming are the specifi-
ation of individual program steps, i.e., what should happen, and the
recise definition of spatial information, i.e., where it should happen.
epending on the programming method and selected level of abstrac-

ion, the first or latter (or both) could be derived automatically by the
ystem (e.g., in imitation learning) or hidden from the user (e.g., when
omputer vision and robot motion planning are involved).

Both these parts are naturally related because most robotic actions
se predefined or calculated coordinates. Many contemporary robot
rogramming tools represent spatial data in a way that is not natural
or non-experts, such as textual coordinates within the source code. For
on-experts to understand the spatial dimension of a robotic program,
ore than just source code is required. When a 3D environment model

4 developers.google.com/ar.
5 developer.apple.com/augmented-reality/arkit/.
3

r

is available, a visualization of important spatial parameters (points in
space or robot trajectories) could be made. Unfortunately, the quality of
the environment model heavily influences the visualization immersivity
(low-quality models could be ambiguous or vague). Moreover, the vi-
sual representation of spatial information is usually separated from the
action definition in the above-described example, as the visualization
of waypoints occurs in a 3D scene in one window, and the source code
is presented in another window. To understand the program and its
spatial meaning, the programmer needs to merge these two pieces of
information mentally.

Many robotic programs consist of just three types of instructions:
move instructions, end-effector manipulation (open/close gripper, turn
on/off suction), and IO control. However, the source code can be
tough to read and understand without the proper naming of instruc-
tions or thorough comments. Some simulations using the 3D model
of the environment could be utilized to overcome this problem. How-
ever, preparing such a simulation environment could be costly and
time-consuming.

We define a novel spatial programming paradigm for handheld AR:
Spatially Anchored Actions (SAA). The concept namely defines:

• The program as a sequence of the actions in the 3D space.
• The effective usage of AR for visualization and interaction with

virtual objects in the 3D space.
• The interaction modes for seamless program editing in the 3D

space on handheld devices.
• Methods for direct and indirect virtual object fast and precise

manipulation in the 3D space.

The proposed paradigm is applied to a robot programming task
that is a suitable scenario for it, and we use it to explain and test
the paradigm. In this scenario, the SAA elements serve as anchors for
actions (program steps), meaning that users can directly see where the
individual actions of the program take place during the execution. The
effective usage of AR is designed with respect to existing guidelines
focusing on handheld device GUI ergonomy.

3.1. Spatially anchored actions

The proposed approach is based on flow diagrams and represents
the robotic program as a sequence of individual actions connected to
the program flow. Anchored actions represent the individual program
teps (see Fig. 1). The anchored actions are connected using the con-
ections, and in terms of flow diagrams, the anchored actions are nodes
f the graph, representing the program, while the connections are the
dges of the directed acyclic graph.

Each action is anchored to one of the spatial anchors, representing
the spatial information, as stated above. Using the AR, the spatial
nchors are rendered on the exact place where the anchored action will
ake place, i.e., the action intended to pick a cube is located above
he mentioned cube. This concept combines the spatial meaning of
rogrammed action with its spatial parameters, which is crucial for
obotic programs. Moreover, a single spatial anchor could serve for
ore actions, simplifying modification of joint actions (such as objects
icking and placing on the same spot) and potentially enhancing the
rogram comprehension. The spatial anchors could be attached to scene
bjects, virtual counterparts of real objects in the scene. This enables
he user to define a spatial parameter relative to the real objects.

The spatial anchors represent specific points or space poses. A simple
phere that is natural for the observer is sufficient to visualize a specific
oint. To visualize a pose, the model of the end-effector, with a specific
rientation applied, could be used.

.2. Interaction modes

The proposed user interface introduces interaction modes to enable
luent interaction with minimal interface overhead. Based on the cur-

ent interaction mode, only relevant tools are available for the user so

https://developers.google.com/ar
https://developer.apple.com/augmented-reality/arkit/

Robotics and Computer-Integrated Manufacturing 89 (2024) 102770M. Kapinus et al.
Fig. 1. The visualization of the Spatially Anchored Actions (SAA) concept. The white circles denote the spatial anchors, which serve to define and visualize spatial information.
Above each spatial anchor is located one or more actions, represented by the yellow rectangle. The individual actions are connected by the blue lines, defining the program flow.
Two anchors are connected by the white dashed line to show that the upper anchor is positioned relative to the lower anchor.
that they can focus on the current task and are not disturbed by an
unnecessary on-screen interface. We propose five principal interaction
modes.

The execution mode enables the user to execute selected action.
The transform mode opens the transform menu over the selected scene
object or spatial anchor. The remove mode enables the user to remove
the selected connection, action, or spatial anchor. The connection mode
allows the user to create arbitrary connections between two actions.

The programming mode allows the user to create program actions
and spatial anchors. Its effects vary based on the selected object. When
triggered, a context menu within the task space is opened, and the user
can select desired action to be created. Once the action is selected, a
new spatial anchor is created 20 cm from the tablet towards the front,
and the action is attached to this anchor. Moreover, a connection is
created automatically from the previous action. The transform mode is
triggered afterward so that the user can specify the position of the new
spatial anchor. The procedure differs based on the currently selected
object:

• Existing spatial anchor: the new action is created and attached to
the existing spatial anchor, and the transform mode is not triggered.

• Existing action: the new action is created and attached to the
existing spatial anchor to which the selected action is attached,
and the transform mode is not triggered.

• Scene object: the newly created spatial anchor is set relatively to
the scene object, so when the user moves with the scene object
(using the transform mode), the spatial anchor moves the same
way.

• Connection: the newly created action is inserted in the program
flow between the two actions, connected by the selected connec-
tion.
4

3.3. Ergonomy of the user interface

Most applications nowadays (including some AR/VR apps) use the
Windows, Icons, Menus, Pointer (WIMP) paradigm to interact with the
user. In AR applications, it usually means that most of the interaction
is made using some ‘‘head-up’’ displays, which causes constant context
switching between the scene and the display. To avoid this, we followed
the design guidelines for UI elements in AR applications, as defined by
the authors of ARCore framework.6 The main outcomes for our user
interface are:

• Move most of the interactive actions and feedback information
directly in the scene to minimize the head-up interaction.

• Make the necessary interactive elements (buttons, sliders, etc.),
which would be inconvenient to have in the scene, large enough,
and place them in fixed, foreseeable places so they could be easily
remembered and quickly reached without the need to look at
them.

• Help the user to recover from missteps end errors by utilizing
notifications displayed in the scene in front of the camera so the
user sees it comfortably.

The proposed user interface’s layout is presented on Fig. 2. It
consists of three parts. The left part contains the main menu, allowing
users to select one of the five interaction modes. The central part
of the interface shows the scene image obtained from the camera.
Additionally, a crosshair is placed in the middle of the screen, serving
as a main virtual object selection tool. The right side contains two fixed
buttons. The left one is the mode button, whose appearance and function
differ based on the currently selected interaction mode. The right one

6 https://developers.google.com/ar/design/interaction/ui.

https://developers.google.com/ar/design/interaction/ui

Robotics and Computer-Integrated Manufacturing 89 (2024) 102770M. Kapinus et al.
Fig. 2. Schematic visualization of the user interface. The left side contains the main menu, allowing users to select the appropriate interaction mode. In the middle is a crosshair
for indirect virtual object selection. On the right side are two context-aware fixed mode buttons, easily reachable by the user’s thumb.
relaxes the robot joints, allowing the operator to manipulate the robot
arm. According to the abovementioned guidelines, both buttons are
large enough and placed in the foreseeable place.

The buttons have no textual labels to save space and make the
interface minimal. The help for each icon is shown upon the long button
press, and a training session is expected before usage of the interface.

3.4. Precise programming in AR

The main drawback of using AR is the low accuracy of camera
tracking when using standard devices (such as cell phones or tablets).
In other words, using just an AR device to specify an exact point
in space is virtually impossible, as the tracking error might reach
lower tens of centimeters [7]. On the other hand, when it comes to
robot programming, there is usually a very precise device available
for point specification — the robot itself. The robot can be used to
define points in space exactly. The problem with this approach lies in
the visualization of the created program and the synchronization of the
robot with other devices used in the program.

Our approach requires a workplace calibration to create a set of
very precise reference points, which can be later used to specify
spatial parameters precisely. These points can be defined by manual
annotation using the robotic arm or automatically using computer
vision technologies (e.g., QR code tracking). The reference points can
be defined relative to the workplace or individual objects so they can
automatically adapt to the objects’ position changes.

Interaction widgets are used to precisely define several relative
points using the imprecise AR visualization based on these reference
points (see Fig. 1). The ‘‘parent’’ anchor is set using a precise method
(manual guiding of robot in our prototype, but computer vision tech-
niques can also be used). Other anchors are set using a combination of
2D and 3D widgets with selectable precision (see Fig. 3). We assume
that, for understanding the program using its visualization in AR,
the absolute precision (the correlation between the rendered virtual
element and its actual position in the real environment) is not as
5

important as the mutual relative precise position of virtual elements
defining the program.

3.5. Transforming spatial anchors

The crucial interaction task is a manipulation with the spatial anchor
in a real 3D task space. The proposed concept introduces direct (fast,
but low precision) and indirect (slower, but precise) manipulation with
the objects, i.e., spatial anchors or scene objects. Direct manipulation
utilizes the physical movement of the handheld device. The transform
menu, displayed on Fig. 3, contains a palm-shaped button for direct
manipulation — when pressed, the object moves with the device’s
movement, allowing fast movement over large distances.

We propose an indirect manipulation for higher precision in setting
the spatial parameters. The rotary transform element is placed on the
right side of the transform menu, which allows moving the virtual object
by scrolling the element. It clearly indicates the number of steps by
which the object will be moved. The magnitude selector under the rotary
element selects the length of the step. Together, it allows us to move the
object by the exact distance. On the bottom are two buttons to change
between the translation and rotation.

The user needs to see and select the direction in which the virtual
object will be translated. We propose a 3D gizmo (see Fig. 3) for both
cases. The gizmo consists of three perpendicular arrows representing
the direction of the desired movement, and it is attached to the virtual
object selected for manipulation. Close to the tip of each arrow, a cur-
rent displacement from the original position is visualized. The desired
direction of movement is indicated by selecting one of the arrows using
the cross-hair.

Several buttons with additional functionality are in the left part
of the transform menu. The arrows in the top serve for undo and
redo operations. Under the palm-shaped button (described above) is
the so-called pivot button. This button causes the object to move on
the position of another object selected using the cross-hair. Using this
button, the user can, for example, move a spatial anchor on the position

Robotics and Computer-Integrated Manufacturing 89 (2024) 102770M. Kapinus et al.
Fig. 3. The schematic visualization of the tools available in the transform mode. The left side contains the 3D widget (gizmo), rendered over the manipulated object. The right
side contains the transform menu, with several interactive elements.
of aforementioned reference point and subsequently define a relative
point using the rotary element.

4. Experimental evaluation

The method was implemented into a functional prototype, and a
user study was carried out to compare it with a traditional approach for
end-user programming on a 2D screen. The experiment was designed as
a two-conditions within-subject user study, comparing the two different
interfaces – our prototype interface based on presented SAA (𝐶𝑠𝑎𝑎) and
the standard programming tool for the Dobot M1 robot – M1 Studio
with the Blockly tool (𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦), which was selected as a representative
example of a commercially available tool for end-user programming.
We have stated four hypotheses related to the objectives above:

• 𝐻𝑐𝑜𝑚𝑝𝑟𝑒ℎ𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 — The user is able to faster understand the pro-
gram, seen for the first time, using the 𝐶𝑠𝑎𝑎 interface.

• 𝐻𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 — The 𝐶𝑠𝑎𝑎 interface is more usable than 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦 and
puts less task load on the user.

• 𝐻𝑠𝑝𝑒𝑒𝑑 — The user can create a new program faster using the 𝐶𝑠𝑎𝑎
interface than the 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦 interface.

• 𝐻𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 — The 𝐶𝑠𝑎𝑎 interface provides similar precision for
selected task as the 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦 interface.

The following chapter presents a user study we have prepared and
conducted to test the hypotheses.

4.1. Prototype

A functional prototype7 was prepared for the experimental evalua-
tion, containing basic functionalities for programming of pick & place-
like tasks. The prototype application was developed in the Unity3D

7 Source code is available at github.com/robofit/arcor2_areditor.
6

game engine, using the AR Foundation framework,8 which encapsulates
the Google’s ARCore,9 for AR-related parts. The application is designed
to run on Samsung Galaxy Tab S6 or S7, a 10′′ Android tablet device
compatible with the ARCore.

The prototype is designed as a non-immersive AR application, fol-
lowing the guidelines described in Section 3.3. The SAAs (see Fig. 4) are
visualized as yellow arrows above blue spheres. The spheres represent
spatial anchors, anchoring the actions for visualization and execution.

The prototype is fully functional, except for the object calibration
procedure, which allows the user to set a precise object’s position and
orientation by navigating the robot’s end-effector into several specific
points on the object’s body. In the experiment, this procedure was
utilized to define the position of the workpiece. However, it was done
using the Wizard of Oz approach, which was unknown to the partic-
ipants. In the real-world scenario, functional robot-based calibration
or calibration based on a computer vision technique would be used
instead. Besides that, the participants interacted with a real, functional
robot and created a robotic program from scratch.

4.2. Experiment design

As was stated above, two conditions are studied: 𝐶𝑠𝑎𝑎 and 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦.
Each condition represents an interface that utilizes visual programming
and contains specialized elements for robot manipulation.

𝐶𝑠𝑎𝑎 utilizes a custom handheld AR application for visual program-
ming in task space based on the presented method of SAA described in
the previous chapter. The participant was standing in front of the table
and could interact with the workplace from the front and right side of
the table (see Fig. 5(a)).

8 docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/manual.
9 developers.google.com/ar.

https://github.com/robofit/arcor2_areditor
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/manual/
https://developers.google.com/ar

Robotics and Computer-Integrated Manufacturing 89 (2024) 102770M. Kapinus et al.
Fig. 4. Graphical user interface of the prototype application. The left side contains the main menu for mode selection. On the right side is placed either mode button (a–c),
depending on the selected mode, or the transform menu (d) in case the object is being moved. The central part serves for viewing the scene with the superimposed interface.
𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦 uses an application for desktop computers with the Google
Blockly framework for visual programming, where the user combines
special puzzle-shaped boxes into a functional program. These blocks
represent instructions such as MoveJoints, SetArmOrientation,
etc. The parameters for each block are defined using either the key-
board or, in the case of move-blocks, by physical movement of the
robot into the desired position. The participant was sitting on a chair by
the table with a computer screen, mouse, and keyboard in front of the
workplace (see Fig. 5(b)). They could reach the robot from the chair
as well. They were allowed to stand up if they required better robot
handling. The workplace was accessible from the front and right sides.

To minimize learning and transfer bias caused by the study being
designed as a within-subject, the order of both conditions is randomized
for each participant. For the safety purposes of both the robot and
subjects, each participant was thoughtfully instructed on how to control
the robots safely, the maximal velocity and acceleration of the robots
were lowered to safe levels, and robots without sharp edges were
selected for the study. The manipulated objects were small cubes made
of foam to minimize the potential risk of injury.

4.3. Experiment protocol

Each experimental run was organized as follows. At first, the mod-
erator welcomed the participant and asked them to sign an informed
consent and fill in a demographic questionnaire. After that, a work-
place introduction took place, and the moderator randomly assigned
the first condition to the participant. After this introduction, the four
experimental tasks were conducted.
7

Training task 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
At first, the moderator introduced the participant to the program-

ming tool and described the goal of the task. The participant was told
to program the robot to pick a foam cube from the table and put it
inside the box. The created program was to be subsequently modified,
so the robot followed a specified path before the cube was released
(the path was defined as a 10 cm line under the 45◦ angle, ending
at a specific point on the bottom of the box). During this phase, the
moderator proactively helped the participant with the programming,
explained the required functionality, and answered all questions.

Visualization task 𝑇𝑣𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
An existing program was presented to the participant. Their task

was to identify certain program steps according to the moderator’s
questions. The participant was explicitly informed that they could use
anything the user interface offers, namely, the ability to run the pro-
gram, program steps, or move the robotic arm. The presented program
(see Fig. 6) differs for both conditions, so the participants were not
influenced by previous knowledge of the presented program. Both
programs involved the pick & place task with various objects, and the
usage of the conveyor belt. All questions for both conditions are to be
found below.

Questions for 𝐶𝑠𝑎𝑎: Find the action, which causes. . .

1. the bigger robot to pick the box from the conveyor belt.
2. the smaller robot to pick the cube from the table.
3. the conveyor belt to shift from the bigger robot to the smaller

one.

Robotics and Computer-Integrated Manufacturing 89 (2024) 102770M. Kapinus et al.
Fig. 5. Workplace scheme for both conditions. The R1 is the main robot, the Dobot M1. The R2 is an additional robot, Dobot Magician, which was utilized only in the visualization
task. The red square with the capital 𝑇 is the original position of the object the R1 should pick and manipulate. The blue squares represent the workpiece in two positions, the
original and the adapted.
Fig. 6. The programs used for the visualization task 𝑇𝑣𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛.
4. the bigger robot to pick the box from the table.

Questions for 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦: Find the action, which causes the bigger robot
to. . .

1. pick the yellow cube from the table.
2. place the red cube on the table.
8

3. move the green cube above the conveyor belt.
4. pick the blue cube from the table.

Main task 𝑇𝑚𝑎𝑖𝑛
The main task was presented to the participant. It simulates precise

robotic manipulation with workpieces in a structured environment.

Robotics and Computer-Integrated Manufacturing 89 (2024) 102770M. Kapinus et al.
Fig. 7. The drawing of the intended trajectory for the main task, superimposed over the workpiece used for the experiment, from the top and front view. These drawings were
available for the participants during the 𝑇𝑚𝑎𝑖𝑛 and 𝑇𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛.
Specifically, the robot should pick a cube and perform simulated grind-
ing by following a specific trajectory defined by a technical scheme
(see Fig. 7), which was available to the participant during the session.
The scheme contains the position of each waypoint and the speed
of the end-effector’s movement between two consecutive waypoints.
Lastly, the robot should return the cube to the original table spot.
The experiment task was the same for both conditions. For the 𝐶𝑠𝑎𝑎
condition, the participant had to annotate the position of the workpiece
first as a part of the 𝑇𝑚𝑎𝑖𝑛 so that they could utilize its reference
points afterward. The procedure consisted of setting the position of
four reference points on the workpiece (the red circles at Fig. 7(a))
using the hand movement of the robot. Once the annotation was done,
the reference points were automatically added to the scene as spatial
anchors. The participants were told to define other anchors relative to
the reference points.

After the moderator answered the questions, the participant started
to work. The participant was allowed to ask questions during this phase,
and they were noted and categorized by the context of the question
(i.e., if they were related to the task or the programming tool).

Adaptation task 𝑇𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛
The moderator moved the simulated workpiece to the new place,

and the participant had to adapt the previously created program. In
the case of 𝐶𝑠𝑎𝑎, it meant only annotating the position of the work-
piece again, as all related spatial anchors were defined relative to the
workpiece’s reference points. For the 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦, setting a new position for
all the waypoints must be done again. For simplicity, the participants
were told only to set the first waypoint.

Once all four tasks were done with the first condition, the par-
ticipant was supposed to fill in questionnaires regarding the current
condition. After that, the same procedure was conducted using the
other condition. In the end, an open discussion took place. The mod-
erator asked the participant for their impressions, additional questions,
and opinions.

During all the tasks, the participant was allowed to test the execu-
tion of individual actions or the whole program. When the participant
claimed that they thought the program was completed, the moderator
observed and executed the program to check its functionality. In the
case of problems, the moderator suggested what needed to be altered,
and the participant was supposed to correct the program.
9

4.4. Dependent measures

As an objective measurement, the completion time was selected.
This time is computed for each task separately so that we can compare
the duration of each task individually for both conditions. The time
reported only includes the time when the participant actively worked
on the task. Intervals, where participants asked questions, a technical
problem occurred, or the moderator had to intervene, were manually
subtracted to report a pure task completion time. Asking the questions
during the experiment can influence the participant’s performance (and
the completion time) under both conditions. However, because the per-
formance can be influenced both positively and negatively (e.g., when
the answer confuses the subject), we argue that the overall completion
time is not significantly affected in either way.

As a subjective metric, standard questionnaires were selected.
Namely, the NASA Task Load Index [39] for measuring mental and
physical load, and the System Usability Scale [40] to rate the usability
of the prototype interface. Besides these standard questionnaires, eval-
uated independently for each interface, another one containing specific
questions regarding the prototype interface was utilized. Moreover, for
the 𝐶𝑠𝑎𝑎 condition, the HARUS questionnaire [41], which is explicitly
designed for the usability of handheld AR interfaces, was incorporated.

4.5. Participants

The user study was conducted with 12 subjects of various ages,
self-reported genders, and technical backgrounds. Eleven participants
identified themself as males; one identified themselves as female. Most
subjects are shop-floor workers (6), students (2), or graduates from
humanities colleges (2) with little or no prior experience in program-
ming. One participant works as a programmer, and one works as a
robot operator. They reported their experiences with robots on average
2.17 (on the scale of [1. .5], where higher means more experienced),
experiences with AR on average 2.25, and experiences with program-
ming on average 2.08. Each participant signed informed consent to
data recording and its usage for evaluation and eventually propagation
in anonymized form. Some participants reported eye defects, such as
myopia or amblyopia, but none reported that they affected them during
the experiment. The user study took place in a lab-like environment in
a dedicated room, where no external factors could influence the process
of the experiment. All participants were able to finish all the tasks using
both conditions.

Robotics and Computer-Integrated Manufacturing 89 (2024) 102770M. Kapinus et al.
Fig. 8. Comparison of subjective and objective measurements (mean values and corresponding 95 % confidence intervals) for conditions 𝐶𝑠𝑎𝑎 (proposed method) and 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦
(standard method).
5. Results

This section summarizes the user-study results and provides its
analysis and interpretation. All statistical tests were done at the 5%
significance level. Data were first tested for normality (combination
of D’Agostino and Pearson’s tests), and based on the result, paired t-
test or Wilcoxon’s signed-rank test were used to test for the significant
difference between conditions.

5.1. Quantitative and qualitative data

Results from SUS and NASA-TLX questionnaires (shown in Fig. 8(a)
for both conditions) show that, on average, the participants perceived
a lower task load using the 𝐶𝑠𝑎𝑎 interface and ranked it as more usable.
The mean TLX score for the proposed SAA interface (𝐶𝑠𝑎𝑎) was 21.99,
which is less than 32.18 for the 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦. Regarding the usability of the
interfaces for both conditions, the SUS questionnaire results show that
participants consider the interface from 𝐶𝑠𝑎𝑎 more useful, scoring 78.54,
compared to the 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦, scoring 71.04. However, differences are not
significant for both metrics according to the paired t-test (𝑝 = 0.074 for
TLX, 𝑝 = 0.312 for SUS); therefore, the 𝐻𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 cannot be confirmed.
Besides, the 𝐶𝑠𝑎𝑎 scored 82.90 using the HARUS method, specifically
designed to measure the usability of handheld AR systems. The score is
higher than that of comparable interface SlidAR [42], which is aimed
at virtual object manipulation and scored 76.3 (SD = 10.83).

The training time (𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) was comparable for both interfaces,
although longer with the 𝐶𝑠𝑎𝑎 interface (see Fig. 8(b)). Contrary, the
main task (𝑇𝑚𝑎𝑖𝑛) was significantly faster (including the time for
calibrating the workpiece) with the 𝐶𝑠𝑎𝑎 interface according to the
Wilcoxon test (𝑝 = 0.042); therefore, the 𝐻𝑠𝑝𝑒𝑒𝑑 was confirmed.

In the adaptation phase, the users were asked: for 𝐶𝑠𝑎𝑎 condition
to complete the calibration procedure for the workpiece in the new
position, and for 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦 condition to set the position of the first point
of the trajectory. The completion times in Fig. 8(c) show that the adap-
tation using the 𝐶𝑠𝑎𝑎 condition was faster, although not significantly.
On the other hand, in the 𝐶 condition, participants did not fit the
10

𝑏𝑙𝑜𝑐𝑘𝑙𝑦
entire trajectory, and therefore, the difference becomes even larger as
the number of points on the trajectory increases.

Analyzing the completion times for the visualization (𝑇𝑣𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛),
it was shown that for the 𝐶𝑠𝑎𝑎 condition, the participants required sig-
nificantly less time to answer the questions (see Fig. 8(c)). This suggests
that the AR interface supports the user in program comprehension,
especially for the actions with the spatial information, which are crucial
for robotic program understandability; therefore, the 𝐻𝑐𝑜𝑚𝑝𝑟𝑒ℎ𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 is
confirmed.

The discussion with the participants showed that they felt more cer-
tain when identifying the program steps using the SAA presented in AR.
Identification of each step was instant just by looking over the scene
and benefit from the fact that most of the program steps are represented
by 3D objects placed on the spot where the action should take place.
The only problem occurred when they had to identify the step causing
the shift of the conveyor belt (third question within the 𝐶𝑠𝑎𝑎 condition),
which has no clear spatial information. Two participants had difficulties
in indentifying it, mainly because of the confusing textual description of
the related action, and it took them 124 and 310 seconds respectively.
The rest of the participants were able to identify the movement of the
conveyor belt in a much shorter time with a mean of 25.5 (SD=13.9)
seconds. With the 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦, users did not utilize the ability to run the
program, although they were explicitly remarked that they might run
it. Instead, they used the robotic arm to estimate the spatial coordinates
of each program step to identify them. This strategy was successful but
time-consuming. The participants, on average, needed 1.17 attempts
(SD: 0.38) to identify the correct action for the 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦 interface and
1.2 attempts (SD: 0.45) for the 𝐶𝑠𝑎𝑎 interface, but over a significantly
longer period of time.

5.2. Preferences

According to the 𝐶𝑠𝑎𝑎 interface questionnaire, eight out of twelve
participants preferred the rotary control element for the precise move-
ment of virtual objects. Two participants preferred the robot manipula-

tion, and two preferred the free-form tablet motion. For the coordinates

Robotics and Computer-Integrated Manufacturing 89 (2024) 102770M. Kapinus et al.

M
t
w
f

Fig. 9. Usefulness of selected features of 𝐶𝑠𝑎𝑎 interface, rated by the participants on a scale from 1 (useless) to 6 (very useful).
setting, where the approximate position is sufficient, half of the par-
ticipants preferred the robot manipulator, a one third of participants
preferred the free-form tablet motion setting, and only two of them
preferred the rotary control element.

The insertion of new spatial anchors was preferred by the robot’s
end-effector rather than the free-form tablet position (see Fig. 9). We
argue that this is because of a higher level of certainty, as the partic-
ipants knew precisely where the spatial anchor would be placed and
that the robot would be able to reach that position. Setting a robot’s
end-effector path, the participants usually followed the pattern: (1)
setting a waypoint, (2) create a new waypoint on the position of the
previous waypoint, (3) move the new waypoint in a certain direction.
To achieve this pattern, the user had to create a new waypoint freely
in the space (or at the position of the robot) and then use the pivot
functionality (described in Section 3.5), which sets the position of the
waypoint to another virtual object (previous waypoint in this case).
According to our observations and discussion with the participants,
they would appreciate the possibility of adding a new spatial anchor to
an existing one, i.e., similar to adding it to the position of the robot’s
end effector. The robot motor’s unlock button was considered a very
useful tool by all of the participants (see Fig. 9).

5.3. Feedback and observations

There are three main categories of the feedback collected. The first
deals with the tablet-based AR. Three participants expressed concern
about the tablet falling out of their hands, especially when they were
holding it with only one hand and controlling the robot with the other.
One of them said, ‘‘I’m afraid I will drop the tablet because I’m holding it
with one hand, and I still have to hold down the release button. I would put
it down on the table, but then again, I can’t hold the button down properly ’’.

oreover, moving the robot with only one hand was also difficult for
he participants. Three participants reported that at the beginning, they
ere stressed out by the 𝐶𝑠𝑎𝑎 interface, mainly because of a rich set of

unctions, compared to the 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦 interface. Moreover, they claimed
that the 3D elements within the 𝐶𝑠𝑎𝑎 were entirely new to them, and it
took some time for them to get used to it. Nevertheless, most of them
agreed that after a short time, they got used to the controls, and the
programming was easier than with the 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦 interface, despite their
initial concerns: ‘‘At the beginning it was a bit difficult to use the tablet,
but once one understands the basic principle, it goes well’’.

The second category deals with the program comprehension. For the
task 𝑇𝑣𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, all but one participant (professional robot operator)
preferred the 𝐶𝑠𝑎𝑎 interface. They claimed the spatial distribution of
11

individual actions in task space helped to distinguish the anchored
actions. One participant stated that they could quickly orient themselves
because of the spatial visualization in 𝐶𝑠𝑎𝑎. The other claimed that
spatial visualization hugely helps them to identify which ‘‘pick’’ action
is the one they are looking for, although they look the same: ‘‘I liked the
visualization better on the tablet, e.g., because of the naming of the actions
and also that the position of the action in space made it easier to see which
action was which’’.

The third category of feedback deals with the comparison of both in-
terfaces. Two participants preferred the programming using the 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦
interface over the 𝐶𝑠𝑎𝑎. Both have a strong technical background; one
works as a junior robot programmer (using RoboDK software), and the
other has a background in CNC programming. The latter claimed that
the visualization task was also easier for him using the 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦 interface:
‘‘The visualization was better for me on PC — on the tablet, the actions were
visible in space, but it seemed to me that on the PC I was more familiar with
it ’’. Both stated that the 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦 interface was more straightforward for
them and reminded them of the tools they were using at their jobs. The
remaining participants preferred the 𝐶𝑠𝑎𝑎 for the programming tasks.

The participants generally liked the possibility of quickly executing
actions, using the 𝐶𝑠𝑎𝑎 during the 𝑇𝑚𝑎𝑖𝑛, as it enabled them to check
the reachability of the spatial anchors. With the 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦 interface,
the participants were using the execution of individual actions more
often, as they were using it also for identification of the actions in the
programming tool, which was not needed in the 𝐶𝑠𝑎𝑎 interface because
they saw the position of the spatial anchor in the AR.

Apart from the direct feedback collected through discussion with
the participants, we have also collected some observations based on
the recorded sessions.

All participants struggled with the visualization and control of the
gizmo element in 𝐶𝑠𝑎𝑎. They were often unsure which axis was selected
or accidentally selected the wrong one. The participants struggled with
the magnitude of the transform step selection, causing them to move
the object at the wrong length or wonder why it was not moving
because it only moved by several millimeters instead of centimeters.
The transform widgets must be enhanced to provide better feedback
for the operator on the desired movement’s magnitude and direction.

Most participants considered the blue lines between the individual
actions in the 𝐶𝑠𝑎𝑎 interface to be the robot’s trajectory, although they
were explicitly informed during the training that the blue line only
indicates the order of the actions.

In the 𝐶𝑏𝑙𝑜𝑐𝑘𝑙𝑦, the users can modify the coordinates in textual form
with virtually unlimited precision. The 𝐶𝑠𝑎𝑎 preserves the possibil-
ity of setting the position with a selectable degree of precision in a
graphical way, utilizing the 2D and 3D widgets with user-defined coor-
dinate systems. The participants finished all tasks using both interfaces,
which required setting several precise spatial parameters. Therefore, we
consider the 𝐻 to be confirmed.
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

Robotics and Computer-Integrated Manufacturing 89 (2024) 102770M. Kapinus et al.

s
l
b
t
e
h
e
o

e
o
u
s
i
w

C

I
&
t
y
S

D

c
i

D

a
c

R

5.4. Limitations and future work

The 3D gizmo widget for axis selection was unclear for the par-
ticipants as they were unsure which axis was selected, which was
indicated by the thin outline of the selected axis. The currently selected
distance/angle magnitude for transformation was also unclear, as it
was indicated by the selection element in the lower right corner of
the screen, thus outside of the user’s view when working with the 3D
gizmo. To check if the set spatial anchor is reachable by the robot, the
participants had to execute an action attached to the anchor. It would
be beneficial to visualize the reachability more clearly. We would also
like to investigate more the possibilities for the robot motor’s unlock
button, as the dead-man-trigger concept causes trouble to the partic-
ipants, forces them to hold the device in a non-ergonomic way, and
causes trouble with robot manipulation. Moreover, we will evaluate
the feasibility of the proposed concept in different contexts with no
robots in action, such as home automation, where there is also a high
demand for end-user programming techniques for definition of routines
with IoT devices and, at the same time, a need to set spatial parameters
as, e.g., the definition of various kinds of zones.

6. Conclusions

This paper presents a novel paradigm for spatial programming in
handheld AR. The paradigm defines Spatially Anchored Actions for
program visualization, their manipulation in real 3D space, and UI
elements and rules for interaction in AR on handheld devices. The
new concept was introduced and tested on a robot programming task.
A fully functional prototype was created for tablet-like handheld de-
vices, which was evaluated with 12 potential users and compared to
the existing visual programming method. The study revealed that the
SAA concept significantly helped the participant’s comprehension and
understandability of the robotic programs, which correlates with the
research objective 𝑅𝑂𝑐𝑜𝑚𝑝𝑟𝑒ℎ𝑒𝑛𝑠𝑖𝑜𝑛. All participants successfully finished
all tasks using both interfaces at a similar time; therefore, it was shown
that the simplicity of program creation is similar to the standard tool
(𝑅𝑂𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦). We also aimed to lower the users’ task load (𝑅𝑂𝑙𝑜𝑎𝑑). The
tudy revealed no significant task load reduction, which was relatively
ow for both tested conditions. A higher number of participants might
e needed to reveal potential significant differences, as the variance in
he data was rather high. One of our objectives was to provide good
rgonomics for the handheld AR interface (𝑅𝑂𝑒𝑟𝑔𝑜𝑛𝑜𝑚𝑖𝑐𝑠). To do so, we
ave designed the user interface to be controlled by users’ thumbs,
nabling them to hold the tablet in an ergonomic position at the cost
f requiring more thorough initial training.

Moreover, we designed the interface so it has most of the interaction
lements located directly inside the 3D scene (instead of the traditional
n-screen menus), allowing for lower context switching between the
ser interface and the visualization of the scene. We have also proposed
everal 2D and 3D widgets, allowing precise specification of spatial
nformation using the AR (𝑅𝑂𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛). The users could finish the task
ith similar precision in both conditions.

RediT authorship contribution statement

Michal Kapinus: Writing – original draft, Software, Methodology,
nvestigation, Conceptualization. Vítězslav Beran: Writing – review

editing, Supervision, Methodology, Conceptualization. Zdeněk Ma-
erna: Writing – review & editing, Validation, Software, Formal anal-
sis, Data curation. Daniel Bambušek: Writing – review & editing,
oftware, Investigation.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.
12
ata availability

The datasets generated during the current study are not publicly
vailable due to the participants’ privacy but are available from the
orresponding author on reasonable request.

eferences

[1] Insight Partners, Collaborative Robots Market Growth Report & Analysis by 2030,
The Insight Partners, 2023, pp. 1–215.

[2] J. Huang, M. Cakmak, Code3: A system for end-to-end programming of mo-
bile manipulator robots for novices and experts, in: 2017 12th ACM/IEEE
International Conference on Human-Robot Interaction, HRI, IEEE, 2017, pp.
453–462.

[3] D. Fogli, L. Gargioni, G. Guida, F. Tampalini, A hybrid approach to user-oriented
programming of collaborative robots, Robot. Comput.-Integr. Manuf. 73 (2022)
102234.

[4] S. Blankemeyer, R. Wiemann, L. Posniak, C. Pregizer, A. Raatz, Intuitive robot
programming using augmented reality, Procedia CIRP 76 (2018) 155–160.

[5] A. Weiss, A. Huber, J. Minichberger, M. Ikeda, First application of robot teaching
in an existing industry 4.0 environment: Does it really work? Societies 6 (2016)
20.

[6] M. Contero, J.M. Gomis, F. Naya, F. Albert, J. Martin-Gutierrez, Development
of an augmented reality based remedial course to improve the spatial ability of
engineering students, in: 2012 Frontiers in Education Conference Proceedings,
2012, pp. 1–5, http://dx.doi.org/10.1109/FIE.2012.6462312.

[7] T. Scargill, G. Premsankar, J. Chen, M. Gorlatova, Here to stay: A quan-
titative comparison of virtual object stability in markerless mobile ar, in:
2022 2nd International Workshop on Cyber-Physical-Human System Design and
Implementation, CPHS, IEEE, 2022, pp. 24–29.

[8] A. Morar, M.A. Băluţoiu, A. Moldoveanu, F. Moldoveanu, A. Butean, V. Asavei,
Evaluation of the arcore indoor localization technology, in: 2020 19th RoEduNet
Conference: Networking in Education and Research, RoEduNet, IEEE, 2020, pp.
1–5.

[9] E. Battegazzorre, D. Calandra, F. Strada, A. Bottino, F. Lamberti, Evaluating
the suitability of several ar devices and tools for industrial applications, in:
International Conference on Augmented Reality, Virtual Reality and Computer
Graphics, Springer, 2020, pp. 248–267.

[10] E. Yigitbas, I. Jovanovikj, G. Engels, Simplifying robot programming us-
ing augmented reality and end-user development, in: IFIP Conference on
Human-Computer Interaction, Springer, 2021, pp. 631–651.

[11] C.P. Quintero, S. Li, M.K. Pan, W.P. Chan, H.M. Van der Loos, E. Croft, Robot
programming through augmented trajectories in augmented reality, in: 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS,
IEEE, 2018, pp. 1838–1844.

[12] S.K. Ong, A. Yew, N.K. Thanigaivel, A.Y. Nee, Augmented reality-assisted robot
programming system for industrial applications, Robot. Comput.-Integr. Manuf.
61 (2020) 101820.

[13] Z. Materna, M. Kapinus, V. Beran, P. Smrž, P. Zemčík, Interactive spatial aug-
mented reality in collaborative robot programming: User experience evaluation,
in: 2018 27th IEEE International Symposium on Robot and Human Interactive
Communication, RO-MAN, IEEE, 2018, pp. 80–87.

[14] R. ABB, Technical Reference Manual: Rapid Instructions, Functions and Data
Types, ABB Robotics, 2014.

[15] U. Robot, The Urscript Programming Language for E-Series, Universal Robot,
2022.

[16] G. Ajaykumar, M. Steele, C.M. Huang, A survey on end-user robot programming,
ACM Comput. Surv. 54 (2021) http://dx.doi.org/10.1145/3466819.

[17] G. Ajaykumar, C.M. Huang, User needs and design opportunities in end-
user robot programming, in: Companion of the 2020 ACM/IEEE International
Conference on Human-Robot Interaction, 2020, pp. 93–95.

[18] C. Schmidbauer, T. Komenda, S. Schlund, Teaching cobots in learning
factories–user and usability-driven implications, Procedia Manuf. 45 (2020)
398–404.

[19] C. Connolly, Technology and applications of abb robotstudio, Ind. Robot: Int. J.
(2009).

[20] Y. Gao, C.M. Huang, Pati: a projection-based augmented table-top interface for
robot programming, in: Proceedings of the 24th International Conference on
Intelligent User Interfaces, 2019, pp. 345–355.

[21] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, G.D. Hager, Costar: Instructing
collaborative robots with behavior trees and vision, in: 2017 IEEE International
Conference on Robotics and Automation, ICRA, IEEE, 2017, pp. 564–571.

[22] C. Mayr-Dorn, M. Winterer, C. Salomon, D. Hohensinger, R. Ramler, Consider-
ations for using block-based languages for industrial robot programming-a case
study, in: 2021 IEEE/ACM 3rd International Workshop on Robotics Software
Engineering, RoSE, IEEE, 2021, pp. 5–12.

[23] S. Alexandrova, M. Cakmak, K. Hsiao, L. Takayama, Robot programming by
demonstration with interactive action visualizations, in: Robotics: Science and
Systems, Citeseer, 2014, pp. 48–56.

http://refhub.elsevier.com/S0736-5845(24)00056-5/sb1
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb1
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb1
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb2
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb2
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb2
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb2
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb2
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb2
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb2
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb3
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb3
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb3
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb3
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb3
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb4
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb4
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb4
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb5
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb5
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb5
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb5
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb5
http://dx.doi.org/10.1109/FIE.2012.6462312
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb7
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb7
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb7
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb7
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb7
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb7
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb7
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb8
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb8
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb8
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb8
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb8
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb8
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb8
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb9
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb9
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb9
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb9
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb9
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb9
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb9
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb10
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb10
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb10
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb10
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb10
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb11
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb11
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb11
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb11
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb11
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb11
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb11
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb12
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb12
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb12
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb12
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb12
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb13
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb13
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb13
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb13
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb13
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb13
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb13
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb14
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb14
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb14
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb15
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb15
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb15
http://dx.doi.org/10.1145/3466819
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb17
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb17
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb17
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb17
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb17
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb18
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb18
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb18
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb18
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb18
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb19
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb19
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb19
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb20
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb20
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb20
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb20
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb20
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb21
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb21
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb21
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb21
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb21
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb22
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb22
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb22
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb22
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb22
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb22
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb22
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb23
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb23
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb23
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb23
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb23

Robotics and Computer-Integrated Manufacturing 89 (2024) 102770M. Kapinus et al.
[24] Y.S. Sefidgar, P. Agarwal, M. Cakmak, Situated tangible robot programming,
in: 2017 12th ACM/IEEE International Conference on Human-Robot Interaction,
HRI, IEEE, 2017, pp. 473–482.

[25] Y.S. Sefidgar, T. Weng, H. Harvey, S. Elliott, M. Cakmak, Robotist: Interactive
situated tangible robot programming, in: Proceedings of the Symposium on
Spatial User Interaction, 2018, pp. 141–149.

[26] S.Y. Gadre, E. Rosen, G. Chien, E. Phillips, S. Tellex, G. Konidaris, End-user robot
programming using mixed reality, in: 2019 International Conference on Robotics
and Automation, ICRA, IEEE, 2019, pp. 2707–2713.

[27] M. Ostanin, A. Klimchik, Interactive robot programing using mixed reality,
IFAC-PapersOnLine 51 (2018) 50–55.

[28] J. Hoyos, A.B. Junaid, M.R. Afzal, A. Tirmizi, P. Leconte, Skill-based easy pro-
gramming interface for industrial applications, in: 2022 IEEE/SICE International
Symposium on System Integration, SII, IEEE, 2022, pp. 210–217.

[29] E. Rosen, D. Whitney, E. Phillips, G. Chien, J. Tompkin, G. Konidaris, S. Tellex,
Communicating robot arm motion intent through mixed reality head-mounted
displays, in: N.M. Amato, G. Hager, S. Thomas, M. Torres-Torriti (Eds.), Robotics
Research, Springer International Publishing, Cham, 2020, pp. 301–316.

[30] H. Eschen, T. Kötter, R. Rodeck, M. Harnisch, T. Schüppstuhl, Augmented and
virtual reality for inspection and maintenance processes in the aviation industry,
Procedia Manuf. 19 (2018) 156–163.

[31] E.Z. Barsom, M. Graafland, M.P. Schijven, Systematic review on the effectiveness
of augmented reality applications in medical training, Surg. Endosc. 30 (2016)
4174–4183.

[32] S. Werrlich, K. Nitsche, G. Notni, Demand analysis for an augmented reality
based assembly training, in: Proceedings of the 10th International Conference on
PErvasive Technologies Related to Assistive Environments, 2017, pp. 416–422.

[33] R. Suzuki, A. Karim, T. Xia, H. Hedayati, N. Marquardt, Augmented reality and
robotics: A survey and taxonomy for ar-enhanced human–robot interaction and
robotic interfaces, in: CHI Conference on Human Factors in Computing Systems,
2022, pp. 1–33.

[34] H. Liu, M. Chen, G. Zhang, H. Bao, Y. Bao, Ice-ba: Incremental, consistent and
efficient bundle adjustment for visual-inertial slam, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 1974–1982.

[35] T. Taketomi, H. Uchiyama, S. Ikeda, Visual slam algorithms: A survey from 2010
to 2016, IPSJ Trans. Comput. Vis. Appl. 9 (2017) 1–11.

[36] T. Terashima, O. Hasegawa, A visual-slam for first person vision and mobile
robots, in: 2017 Fifteenth IAPR International Conference on Machine Vision
Applications, MVA, IEEE, 2017, pp. 73–76.

[37] P. Nowacki, M. Woda, Capabilities of arcore and arkit platforms for ar/vr ap-
plications, in: International Conference on Dependability and Complex Systems,
Springer, 2019, pp. 358–370.

[38] T. Feigl, A. Porada, S. Steiner, C. Löffler, C. Mutschler, M. Philippsen, Localiza-
tion limitations of arcore, arkit, and hololens in dynamic large-scale industry
environments, in: Proceedings of the 15th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications -
GRAPP, INSTICC. SciTePress, 2020, pp. 307–318, http://dx.doi.org/10.5220/
0008989903070318.

[39] S.G. Hart, L.E. Staveland, Development of nasa-tlx (task load index): Results of
empirical and theoretical research, Adv. Psychol. 52 (1988) 139–183.

[40] J. Brooke, et al., Sus-a quick and dirty usability scale, in: Usability Evaluation
in Industry, Vol. 189, 1996, pp. 4–7.
13
[41] M.E. Santos, J. Polvi, T. Taketomi, G. Yamamoto, C. Sandor, H. Kato, A usability
scale for handheld augmented reality, 2014, http://dx.doi.org/10.1145/2671015.
2671019.

[42] J. Polvi, T. Taketomi, G. Yamamoto, A. Dey, C. Sandor, H. Kato, Slidar: A 3d
positioning method for slam-based handheld augmented reality, Comput. Graph.
55 (2016) 33–43, http://dx.doi.org/10.1016/j.cag.2015.10.013, URL: https://
www.sciencedirect.com/science/article/pii/S0097849315001806.

Michal Kapinus, Ph.D. is a researcher at the Faculty of
Information Technology, Brno University of Technology,
Czech Republic, where he successfully defended his doc-
toral thesis ‘‘End-user Robot Programming using Augmented
Reality’’. His research interests are mainly human–machine
interaction in mixed/augmented reality and end-user robot
programming.

Vítězslav Beran, Ph.D. is an associate professor at the
Faculty of Information Technology, Brno University of Tech-
nology, Czech Republic, where he leads the Human–Robot
Interaction group. His research interests include human–
machine interaction, computer vision, video processing and
augmented reality. He has participated in several European
and contractual research projects.

Zdeněk Materna, Ph.D. received a bachelor’s degree in
computer systems in 2009 at the College of Polytechnics
Jihlava. Then at the Brno University of Technology, he
received a master’s degree in cybernetics, control, and
measurements in 2011 and later, in 2019, defended a disser-
tation on the topic of advanced task-oriented user interfaces
for non-expert users. His research interests are human–robot
interaction, augmented reality, semi-autonomous systems,
and intelligent home automation. He is currently a post-doc
at BUT.

Daniel Bambušek is a Ph.D. student at the Faculty of
Information Technology, Brno University of Technology,
Czech Republic, where he focuses on the use of augmented
reality in the field of human–robot interaction, including
communication of spatial information and end-user robot
programming. He is also interested in augmented reality and
augmented virtuality for efficient user interfaces of drone
operators.

http://refhub.elsevier.com/S0736-5845(24)00056-5/sb24
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb24
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb24
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb24
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb24
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb25
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb25
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb25
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb25
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb25
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb26
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb26
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb26
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb26
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb26
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb27
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb27
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb27
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb28
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb28
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb28
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb28
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb28
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb29
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb29
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb29
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb29
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb29
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb29
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb29
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb30
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb30
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb30
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb30
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb30
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb31
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb31
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb31
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb31
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb31
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb32
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb32
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb32
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb32
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb32
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb33
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb33
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb33
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb33
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb33
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb33
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb33
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb34
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb34
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb34
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb34
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb34
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb35
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb35
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb35
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb36
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb36
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb36
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb36
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb36
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb37
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb37
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb37
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb37
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb37
http://dx.doi.org/10.5220/0008989903070318
http://dx.doi.org/10.5220/0008989903070318
http://dx.doi.org/10.5220/0008989903070318
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb39
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb39
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb39
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb40
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb40
http://refhub.elsevier.com/S0736-5845(24)00056-5/sb40
http://dx.doi.org/10.1145/2671015.2671019
http://dx.doi.org/10.1145/2671015.2671019
http://dx.doi.org/10.1145/2671015.2671019
http://dx.doi.org/10.1016/j.cag.2015.10.013
https://www.sciencedirect.com/science/article/pii/S0097849315001806
https://www.sciencedirect.com/science/article/pii/S0097849315001806
https://www.sciencedirect.com/science/article/pii/S0097849315001806

	Augmented reality spatial programming paradigm applied to end-user robot programming
	Introduction
	Related Work
	Spatial Programming Paradigm
	Spatially Anchored Actions
	Interaction modes
	Ergonomy of the user interface
	Precise programming in AR
	Transforming Spatial Anchors

	Experimental Evaluation
	Prototype
	Experiment design
	Experiment protocol
	Training task Ttraining
	Visualization task Tvisualization
	Main task Tmain
	Adaptation task Tadaptation

	Dependent Measures
	Participants

	Results
	Quantitative and Qualitative Data
	Preferences
	Feedback and Observations
	Limitations and Future Work

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

