
Evolutionary Optimization of a Focused Ultrasound Propagation
Predictor Neural Network

Jakub Chlebik
Faculty of Information Technology
Brno University of Technology

Centre of Excellence IT4Innovations
Brno, Czech Republic
ichlebik@fit.vut.cz

Jiri Jaros
Faculty of Information Technology
Brno University of Technology

Centre of Excellence IT4Innovations
Brno, Czech Republic
jarosjir@fit.vut.cz

ABSTRACT
The search for the optimal treatment plan of a focused ultrasound-
based procedure is a complex multi-modal problem, trying to de-
liver the solution in clinically relevant time while not sacrificing
the precision below a critical threshold. To test a solution, many
computationally expensive simulations must be evaluated, often
thousands of times. The recent renaissance of machine learning
could provide an answer to this. Indeed, a state-of-the-art neu-
ral predictor of Acoustic Propagation through a human skull was
published recently, speeding up the simulation significantly. The
utilized architecture, however, could use some improvements in
precision. To explore the design more deeply, we made an attempt
to improve the solver by use of an evolutionary algorithm, challeng-
ing the importance of different building blocks. Utilizing Genetic
Programming, we improved their solution significantly, resulting
in a solver with approximately an order of magnitude better RMSE
of the predictor, while still delivering solutions in a reasonable time
frame. Furthermore, a second study was conducted to gauge the
effects of the multi-resolution encoding on the precision of the
network, providing interesting topics for further research on the
effects of the memory blocks and convolution kernel sizes for PDE
RCNN solvers.
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1 INTRODUCTION
A focused ultrasound treatment, also known as a focused ultrasound
surgery [4, 11, 12], is a technique of sending a focused beam of ultra-
sound into the tissue and causing a variety of reactions by energy
exchange inside the focus. The effects vary significantly depending
on the intensity of the waves - whether it is the high-intensity
waves (HIFU) to treat a variety of solid malignant tumours in a
well-defined volume, such as the pancreas, liver, prostate, or breast;
or the neurostimulation techniques carried out by low-intensity
waves (LIFU) to treat Parkinson’s Disease, obsessive-compulsive
disorder or a vagus nerve stimulation for epilepsy and depression
[1, 2, 7].

Using ultrasound modelling and knowledge of the properties of
the medium, it is possible to predict the ultrasound field inside the
tissue after propagating through it, and thus account for subject-
specific dose and targeting variations [5, 10]. However, existing
models based on conventional numerical techniques typically take
tens of minutes to several hours to complete due to the large size
of the computational domain, in some cases generating models
requiring tens of thousands of iterations to solve [8, 10]. This makes
them too slow to be used for online calculations and corrections,
i.e., while the subject is undergoing therapy.

The recent renaissance of machine learning technologies could
provide a solution to this problem, as a recently published article
[10] presented a Physics Informed Neural Net to predict Acoustic
Propagation through the human skull. While the utilized UNet
is reasonably small, multiple redundant parts are present within
the design. Furthermore, the authors themselves suggested more
experimentation was needed with the architecture to explore the
effects of different parts of the design.

To use this net in an ultrasound treatment plan optimization
loop, precision and delivery speed are of the highest importance.
In this spirit, we attempt to optimize the architecture, while pre-
serving or increasing the precision. With the emergence of modern
Neural Architecture Search (NAS) methods, using evolutionary
approaches managing to outperform hand-designed architectures
[6, 9, 13], we employ genetic programming techniques to carry out
our experiments.

2 HELMNET
The solution, we are attempting to improve, was presented by
Stanziola et. al. in [10] and its aim is solving the 2D version of the
Helmholtz equation. In this implementation, the boundary condi-
tion is satisfied by the use of a perfectly matched layer [3]. The
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Figure 1: Scheme of Helmnet - a 4 level deep UNet proposed
by the authors of [10]. Four dimension layers, each encod-
ing at different spatial dimensions. Every layer consists of
an Encoding and a Decoding Block, with a skip connection
between them. The network is lightweight, with only 8 chan-
nels per convolution block at every scale and a total of 47𝑘
trainable parameters.

training is guided using a physics-based loss, formed by the resid-
ual of the Helmholtz equation - this allows the solution to avoid
labelled training data and, in turn, alleviates the need for supervised
learning with large preexisting datasets. One distinctive feature
of Helmnet is the utilization of a replay buffer, which enables the
model to be trained by unrolling for a large number of iterations.

3 SETUP
The entire net is encoded into a genotype as a repeated sequence of
integers. Each sequence contains genes for the memory operation,
encoder block operation, encoder block connections, decoder block
operations and decoder block connections. This sequence is then
repeated for every resolution layer of the UNet.

3.1 Crowds
In addition to optimizing the precision of the existing net, one of
the goals of this work is also to explore how different resolution
layers perform and interact. Each resolution layer is assigned a bit,
expressing whether or not this resolution layer is enabled. For this
purpose, a crowding idea is introduced to separate solutions based
on the enabled and disabled resolution layers. Given 4 resolution
layers, the 4 bit binary combination gives us the crowd number for
each individual.

To explore both pure precision optimization and crowds explo-
ration, two separate experiments were run:

• Crowd Self-Adaptation Experiment - the main purpose
of this experiment was to optimize the precision through
exploitation. Here, the evolution process itself was given a
chance to change the crowd of any solution to a different
one.

• Heuristics Assisted Experiment - this experiment’s main
purpose is to explore different crowds. As such. we start with
an overall much bigger population and a uniform spread of
individuals between possible crowds. With each generation,
a step of cooperating Simulated Annealing is executed on the
ratio of the population space occupied by each crowd, taking
some members of a badly-performing crowd and assigning
their spots inside the population to better-performing ones.

Figure 2: Base encoder block with memory (EB) phenotype.

Figure 3: Base decoder block (DB) phenotype.

3.2 Encoder and Decoder Blocks
Each encoder block (EB) and decoder block (DB) is re-imagined for
the purpose of GP as a sequence of 4 arbitrary connected neurons,
with EB also containing a memory module, see Figs. 2, 3. Each EB
and DB can be evolved to contain some of the following operations:

• 3 × 3, 5 × 5 or 7 × 7 Convolution. All with the option to skip
an activation function.

• Linear layer, to allow for intermediary result scaling.
• Identity operation with no trainable parameters, effectively
disabling the neuron.

Furthermore:
• The memory neuron inside each encoder block starts as a
double convolution operation, but can also be disabled by
the evolution.

• Downscaling operation is evolved globally and will remain
the same for the entire net. The function is picked from a
set holding Average Pooling, Max Pooling or Convolutional
downscaling.

• Activation function is also selected globally for the entire
network. The function set consists of (P)ReLU, GeLU, Tahn
or Mish.

3.3 Neuron Connections
Connections between neurons inside each block are also subjected
to the evolution process. The connections are encoded as binary
strings, with each bit representing an input from the previous neu-
ron, starting with the input to the block itself. With this approach,
we can create a simple linear progression throughout the layer, as
well as a skip connection, such as the ones known from ResNets.
An example of a connection string can be seen in Figure 4.
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Figure 4: An example of a connection binary string and its
resulting phenotype inside an evolved block.

4 RESULTS AND CONCLUSSION
With the setup of both experiments outlined, this section presents
the results. The original HelmNet solution was encoded and used
as a seed solution for the first generations of our experiments. Both
experiments were repeated 5 times, and most figures presented are
showing the aggregate results of those runs.

Each candidate net was trained for 20 epochs on the entire train-
ing set outlined previously, performing 250 iteration per sample.
The performance on the validation set was then considered as the
fitness value of the candidate.

4.1 Best Solution
The Self-Adaptation experiment managed to find a better solution
than the original (see Fig. 5) - when we took this candidate and
trained it as the original solution was trained, the resulting net
showed approximately 1 order of magnitude better RMSE (10−4 vs
10−5) than the original UNet. However, our solution is using 12, 000
more parameters. Figure 6 shows the parameters spread of the best
individuals taken from the exploitative Self-Adaptation runs. We
can see that evolution tends to increase the number of parameters
to produce individuals with better fitness.

Figure 6 shows the parameters spread of the best individuals
taken from the exploitative Self-Adaptation runs. We can see that
evolution tends to increase the number of parameters to produce
individuals with better fitness. Figure 8 shows the comparison
between our evolution-optimized solution and the original Helmnet
time to solution. It is clear that the increase in precision comes at the
cost of increased inference time and considering that the speed was
not a part of the fitness evaluation, it is to be expected. Undeniably,
the Helmnet is faster, however, if the requirements for the focused
ultrasound planning calls for real-time live updates and navigation,
neither of the solutions is fast enough. On the other hand, if some
planning time can be afforded, the difference in inference time is
not meaningful enough to cause issues. Admittedly, both solutions
will need to transition into a 3D domain before a final decision can
be made.

4.2 Used Blocks
The crowding approach allowed us to take a look at how disabling
different resolution layers influence the quality of a generated indi-
vidual. Measurably, crowd 7 - the original design of UNet, with all
resolution layers enabled - generated the best candidate solutions.
As suspected, this crowd is understandably using the most param-
eters for its candidates on average, indicating once again that an
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Figure 5: Plots showing the progression of the best individ-
uals found by the crowd self-adaptation and the heuristics-
guided evolution experiments.
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Figure 6: Plots showing the parameters progression of the
best individuals during the best crowd self-adaptation exper-
iment.
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Figure 7: Fitness values of individual crowds, taken as an
aggregate from the last generations of the heuristics-guided
evolution experiments.
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Figure 8: Comparison of inference times of the originalHelm-
net and the evolution optimized Helmevo.
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Figure 9: Histograms of blocks used inside the encoding and
decoding stages during the last generations, separated by
resolution layers of the UNet. C𝑥 stands for convolution with
the kernel size of 𝑥 , LIN is a linear scaling block and 𝐼 is an
identity block. Identity blocks are never followed by an acti-
vation function, and could therefore be considered disabled.

increase in parameters seems to be a good way forward if we wish
to increase the accuracy of the network further.

Furthermore, figure 9 shows a very interesting spread of convo-
lution window sizes, with the encoder blocks preferring different
kernel sizes than the decoders. Additionally, the search algorithm
disabled almost the entirety of some encoding or decoding blocks
at different resolution layers, thus creating structures usually found
in ResNets.

4.3 Memory Blocks and Future Research
While the sample size is too small to make resolute statements, the
biggest jump in fitness occurred with the removal of a memory
block at the main resolution layer in almost all experiments and
this trait is present in all the best solutions. Disabling this block

corresponds with the big fitness drops in figure 5. We believe this
pattern is worth investigating in the future.
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