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Abstract—Fault tolerance in electronic systems is essential in
harsh environments such as space. However, FPGAs that can be
used to accelerate various computations are prone to configura-
tion memory faults that determine their function. Repairing these
faults is essential to increase system resilience. For this purpose,
the partial dynamic reconfiguration controller is necessary. We
force the controller to be on the same FPGA with a payload
circuit to design a comprehensive system inside one FPGA. We
create and thoroughly test a new reconfiguration controller to
increase the system’s resiliency with the ability to repair itself
during its own operation. For this purpose, the FPGA controller
is in coarse-grained triple modular redundancy to be able to
recover despite the failure of any of its modules. The proposed
controller has been tested to increase the resilience of circuits
from a set of benchmark circuits. The entire system with the
controller was evaluated on an actual FPGA, where faults were
injected directly into the configuration memory of this FPGA.
Reliability parameters are measured by a platform designed for
this purpose, partly directly on the tested FPGA. As we can see
from the results, the mean time to failure has been increased by up
to 69% compared to a system equipped with only triple modular
redundancy with a reasonable amount of hardware resources. The
competitive solution brings only a 42% improvement in resilience
with similar parameters.

Keywords—Fault Tolerance, Partial Dynamic Reconfiguration
Controller, FPGA, Fault Tolerance Evaluation.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are helpful for
computationally intensive applications. Their main contribu-
tion includes implementing efficient data processing directly in
the hardware. At the same time, they provide a high degree of
flexibility, where their function can be changed while the appli-
cation is running. Due to their flexibility and high performance,
FPGAs are often used for space applications [1]. However,
using space applications also brings specific problems that
must be addressed. Mostly, these are autonomous missions,
so the resulting system has to deal with everything without
outside interference. Commonly used SRAM-based FPGAs are
prone to Single Event Upsets, causing a configuration memory
bit to flip, which can lead to a change in the implemented
function. Fault Tolerance (FT) [2] techniques must be used to
ensure the expected behavior despite the occurrence of these
faults. The primary way is to use redundancy; spatial is the
most frequently used redundancy for FPGAs. The most well-
known and widely used is Triple Modular Redundancy (TMR).
The basic principle is to mask faults by using multiple identical
modules and selecting their majority. The problem may occur
with faults that remain in the system. Accumulation of these
faults over time leads to system failure. Timely fault mitigation
will significantly extend the life of the system. The repair of

the FPGA must be provided by the so-called Reconfiguration
Controller (RC), which uses Partial Dynamic Reconfiguration
of the FPGA. Depending on the location of RC in the system,
it can also be prone to faults.

The paper [3] deals with the design of a robust system
based on soft-core processors running the required application.
Thus, increasing resilience is limited to processor applications
only. The system’s repair is based on switching the context
between two processors, where the one in the fault is corrected
by reconfiguring using the special engine, which is in TMR. In
paper [4], an RC based on an application-specific instruction
set processor was proposed. It is equipped with TMR and
should be able to repair itself, but it has not yet been tested on
an actual FPGA with a system that would increase resilience.
With a system on multiple FPGAs, the authors came up with
article [5]. RCs have on each FPGA and are therefore able
to repair one FPGA with the help of controllers on the other
FPGAs. An RC based on a soft-core processor in TMR with its
own reconfiguration was investigated in paper [6]. In addition,
they use unused configuration memory space to store the
correct configuration. However, their RC runs continuously
because it checks the configuration memory and reconfigures
it if a fault is detected. Some of these approaches do not
allow working inside only one FPGA or, at the same time, do
not provide self-repair capability. However, other approaches
that can run on only one FPGA are based on a resource-
demanding processor core. For this reason, we researched the
principle of designing a reconfiguration controller that would
be able to self-repair on the same FPGA. We extended our
current controller [7] with the ability to repair itself during its
own operation without interrupting its function or the function
of the payload circuit. After that, we thoroughly tested the
benefits of this new ability to increase the FT of the entire
system on a single FPGA. The system’s resilience is expressed
by the Mean Time To Failure (MTTF) value from the runs
performed and measured on real FPGAs.

The paper is further organized as follows. Section II is
dedicated to improving the FT of the reconfiguration controller
itself. Emphasis is placed on the ability to repair itself. Sub-
sequently, such a controller is used to increase the resilience
of systems, i.e., selected circuits from a set of benchmarks,
which is summarized in Section III. Furthermore, this section
deals with the results of experiments with RC and benchmark
circuits. The whole paper is summarized in Section IV.

II. RECONFIGURATION CONTROLLER HARDENING

The resilience of the RC itself is critical to the system’s
overall resilience on the FPGA. A damaged RC with direct
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access to the configuration memory can insert additional faults
affecting the function and thus cause the entire system to fail.
In addition, faults accumulate in the configuration memory that
contains the RC, significantly reducing its MTTF [8].

Since the RC is located directly on the same FPGA as
the circuit, it can be repaired similarly to this. The controller
must perform as expected, even when faults affect it. We chose
the approach where TMR masks faults until they are repaired
by reconfiguration [9]. Unlike scrubbing, which detects faults
directly in the configuration memory, our approach detects
only errors at the application level. Faults in the configuration
memory that do not affect the user logic, i.e., the required
function performed by the FPGA, do not need to be repaired.
Faults that lead to a circuit error can be detected by augmenting
the majority voter with the ability to identify a module with
a different output. Due to this information, the controller as
a whole, therefore, repairs its one failed module. The major-
ity voter ensures that the remaining two functional modules
manage this reconfiguration. The commands from the failed
module are masked in this way. A diagram of this approach
is shown in Figure 1. The entire Generic Partial Dynamic
Reconfiguration Controller (GPDRC) [7] selected by us to
increase its resilience is there three times, i.e., in the Coarse-
grained TMR (CGTMR). The majority voters at the FPGA
output and the ICAP input, i.e., at the interface between the
triple and single systems, cannot be repaired using partial
dynamic reconfiguration within a single FPGA. Therefore,
these parts should be as small as possible to minimize the
probability of being hit by a fault. Therefore, the fault detection
of a module with a different output has been moved to
the Partial Reconfiguration Module (PRM) of each controller
module. Fault Detection will therefore be able to be repaired
together with this PRM. The PRM X indicates the parts of
the FPGA that are reconfigured together. PRM Error bus
carries requests for reconfiguration of payload circuits. This
bus has a separate signal dedicated to each such request so
that the reconfiguration of several modules can be requested
simultaneously. These requirements are combined in Fault
Detection to the requirements for reconfiguring the individual
modules of the entire GPDRC in CGTMR. The flash memory,
which is supposed to be FT, stores the golden bitstreams, i.e.,
the correct FPGA configuration.
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Figure 1: A GPDRC scheme in CGTMR with the ability to
self-repair by reconfiguration.

The resulting self-repairing CGTMR GPDRC occupies
more than three times the area on the FPGA compared
to the original simple version. Related to this, it will also

be three times more prone to faults, but this shortcoming
should be offset by the ability to recover from these faults
by self-reconfiguration. The Virtex-5 FPGA resource usage
for each controller version is summarized in Table I. The
values for one CGTMR GPDRC module are also given for a
more straightforward comparison. The more considerable than
expected triple increase in resources is significant for LUT
and CARRY. The reason is the logic added to the individual
modules, which is used to detect faults in both the controller
and the payload circuit itself. This overhead depends on the
number of bits of the circuit’s outputs because these outputs
need to be compared.

TABLE I: Average FPGA resource utilization by GPDRC
versions according to statistics from Xilinx PlanAhead tool.

GPDRC version FLOP LATCH LUT CARRY BRAM

Simple 288 327 223 1

One PRM of CGTMR 298 510 301 1

Whole CGTMR 894 1531 903 3

III. EVALUATION OF THE IMPROVED RECONFIGURATION
CONTROLLER

To evaluate the benefits of the reconfiguration controller,
we need an application to extend its life by increasing its
resilience. The use of benchmark circuits for FPGA seems
to us to be conclusive. The prepared systems with the circuit
and the controller must then be tested in a harsh environment.
Therefore, we will use fault injection directly into the FPGA
configuration memory to simulate such an environment accu-
rately. Faults are injected by our fault injector tool [10], allow-
ing us to target only the utilized part of LUTs. This approach
significantly speeds up the FT evaluation, and simultaneously,
the accuracy remains similar, which we verified in [11]. For
managing experiments and subsequent data collection, we use
the Fault Tolerance ESTimation (FT-EST) framework [12].

A. Evaluation Platform and Circuits

The resilience evaluation platform, FT-EST, must be
adapted to test individual benchmark circuits on the current
FPGA. For each system, it is necessary to set the appropri-
ate criticality of its future environment. In terms of testing,
a value of 2 × 10−5 inj/s/bit was experimentally chosen,
which is a reasonable compromise between the situation in
the Earth’s orbit and the time required to obtain a sufficient
number of results to evaluate the experiments. The proposed
approaches are verified on the Xilinx ML506 development
board [13] equipped with FPGA from the Virtex-5 family
(XC5VSX50TFF1136). The 16-bit onboard flash memory P30
from Intel (JS28F256P30T95) is used for memory with golden
bitstreams. We selected circuits from the ITC’99 [14] bench-
mark set for testing. Specifically, we chose three circuits
so that it was possible to evaluate the effect of their size
on the resulting resilience of the entire system. The largest
possible circuit synthesizable on an FPGA was chosen, i.e.,
b12 benchmark, a single-player game (guess a sequence).
The second selected circuit is the smallest, i.e., b01, FSM
that compares serial flows. B05, elaborating the contents of
memory, is the last selected circuit because it has the average
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TABLE II: Use of FPGA resources by benchmark circuits.

Benchmark LUT FLOP LATCH CARRY

b01 10 10 -

b05 182 36 521

b12 279 141 -

size among the previous ones. Table II summarizes the FPGA
resource utilization by the selected circuit.

The prepared test systems with the RCs and the selected
benchmark circuits have the following structure on the FPGA
shown in Figure 2. Figure 2a shows a system with a simple
controller, i.e., the benchmark circuit in TMR, the simple
version of GPDRC, and the majority voter, which also detect
a faulty module. In this case, each of the three PRMs with the
entire benchmark circuit can be repaired separately. Figure 2b,
on the other hand, shows a system with a self-repairing
GPDRC in CGTMR. In addition to PRM with benchmark
circuits, such a controller can also repair its modules. Thus,
each of the three PRMs with the controller module and fault
detection can be reconfigured separately. In this way, we
prepared nine experimental systems to evaluate the benefits of
our self-repairing RC. For each of the three selected benchmark
circuits, which is always in TMR, three scenarios are prepared:

1) reference solution without RC,
2) with simple GPDRC,
3) with GPDRC in CGTMR (self-repair version).
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(a) System with a simple controller.
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(b) System with the controller in CGTMR with self-repair.

Figure 2: Schematic of the tested system on an FPGA.

B. Experimental Results

The results of the performed experiments are summarized
in Table III for easy comparison, all with the same intensity
of faults. The total size column is expressed in terms of the

number of configuration memory bits identified as LUT con-
figuration bits used for the system’s function. The Mean Time
Between Fault Injection (MTBFI) column shows the average
time between each fault injection (FI) into the configuration
memory. This time results from the size of the circuit and the
fault intensity. The resulting system resilience is expressed in
MTTF from all runs. The FT improvement column compares
the resilience of both controllers’ versions, always with bench-
marks only in TMR without RC and between the versions
with controllers against each other (values in parentheses).
The column Mean FI into Failure shows how many injected
faults cause the failure of the complete system and, thus, how
well injected faults are masked regardless of circuit size. The
last two columns compare the FI to Failure and the sizes of
the entire test circuits, i.e., the cost of increasing resilience.
There is always a comparison of the increase to the non-RC
version and the simple controller version (in parentheses). The
numbers of individual separate experimental runs for each of
the nine combinations are given by the convergence of the
results and are in the order of thousands.

The resulting resilience of individual systems provided only
by the simple version of GPDRC shows significant shortcom-
ings of such a solution. The susceptibility of the controller
to faults manifested itself, as it could not further repair the
circuits. The resulting resilience of systems with self-repairing
GPDRC shows its advantages. In all cases, the resulting
resilience of the system is increased. We observe that this
increase does not directly correspond to the size of the circuits.
So, we assume that the circuit to which the controller is added
affects the resilience. The structure of this circuit will probably
be essential as to how it uses the FPGA resources and how its
parts influence the outputs. We can see that such a controller
needs a significant amount of FPGA resources. We observe a
direct relationship between size and increased resilience when
comparing the system with individual controller versions. The
increase in the time that the system is in faultless operation
decreases with increasing circuit size, apparently due to the
unfavorable ratio of the controller to the circuit size. However,
the controller’s ability to repair itself positively affects the
resulting system resilience. From the fault-to-failure point of
view, we can see that the systems tolerated a significant amount
of injected faults. The results show that systems with self-
repairing GPDRC withstand more faults as their size increases.

The scrubber introduced by the authors of paper [6] is the
closest to our self-repairing GPDRC; the difference is the type
of FPGA used. We assume that technology significantly affects
the occurrence of faults in FPGAs. However, the influence of
faults on the manifestation of errors in user circuits is minimal,
and we simulate precisely this part. Their scrubber is built on a
PicoBlaze soft-core processor and is also in TMR. Our solution
needs two to three times fewer resources and, at the same time,
brings a slightly better improvement in FT for the selected
circuit. The circuit with their scrubber was 42% better than
just TMR. Our controller is 69% better for the same scenario,
the b05 benchmark.

The fault detection approach can also have an impact
on the results achieved. Our approach saves energy because
faults in unused configuration memory do not lead to an error
and therefore are not needlessly corrected. At the same time,
however, latent faults that may be hidden in currently unused
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TABLE III: Influence of various RC versions on the overall FT system, measured on benchmark systems on Xilinx Virtex-5
FPGA technology with 2× 10−5 inj/s/bit fault intensity.

Bench- GPDRC Size [b] MTBFI [ms] MTTF [ms] FT improvement over Mean Num. of FI Num. of FI into Size Comparison to
mark version None (Simple) RC into Failure Failure Comparison None (Simple) RC

b01
none 2432 20 559 483 595 - 24 - -

simple 21 120 2367 371 477 -23% 157 6.7× 8.7×
self-repairing 149 120 335 568 085 17% (53%) 1694 72× (11×) 61× (7.1×)

b05
none 43 584 1147 67 263 - 59 - -

simple 61 248 816 85 877 28% 105 1.8× 1.4×
self-repairing 220 224 227 113 749 69% (32%) 501 8.5× (4.8×) 5.1× (3.6×)

b12
none 55 552 900 174 721 - 194 - -

simple 69 184 723 168 200 -4% 233 1.2× 1.2×
self-repairing 201 024 249 191 734 10% (14%) 771 4× (3.3×) 3.6× (2.9×)

parts of the circuit are not repaired. Then, if these parts of the
circuit become active, faults will result in errors in multiple
parts of the circuit simultaneously. If these faults occur in
multiple TMR modules simultaneously, masking will fail and
lead to system failure. This shortcoming strongly depends on
the circuit itself, i.e., how its parts control its outputs over
time. Therefore, latent faults are eliminated if the entire system
continuously influences the output. Conversely, the number
of latent faults increases when parts of the circuit affect the
output for only a short time. This problem is especially critical
for the RC itself, which, most of the time, only waits for a
reconfiguration request. However, even at this time, the RC is
affected by faults, which do not manifest themselves in error
as they do not affect the controller’s output. So errors usually
occur after running reconfiguration. If faults accumulate on
over half of the TMR modules, the RC can no longer fix
anything.

IV. CONCLUSIONS

This paper focuses on increasing the fault tolerance of sys-
tems on a single FPGA using partial dynamic reconfiguration.
The results show that the resilience of the reconfiguration
controller is essential to increase the fault tolerance of the
entire system. The overall fault tolerance was reduced when
using a fault-prone RC in two of the three systems. On the
other hand, a self-repairing RC has increased system resiliency
in all cases. The MTTF of the individual systems tested was
raised in the range of 10% to 69% compared to the system
consisting only of the TMR version of the payload circuit.
For comparison, on a similar system, the authors of paper [6]
achieved a resilience improvement of 42% with their scrubber.
From another point of view, reasonably large circuits require
4 to 8.5 times more configuration memory faults to fail a
system with a self-repairing controller. Compared to systems
equipped with only the simple version of the controller, i.e.,
prone to faults, the MTTF was increased by 14% to 53%
for individually selected benchmark circuits. However, using a
self-repairing controller significantly increases the demands on
FPGA resources, but it is practically a constant overhead. As
the payload circuit increases, this overhead will decrease, and
the benefit of using the controller will be even more effective.
In future work, we will address a more effective way of fault
detection. Distinguishing between latent faults and those that
never lead to an error is advantageous. Such approaches should
save resources and extend the lifetime of the controller and,
therefore, the reliability of the entire system.
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